Capitulo 7 Resolução de Exercícios

Tamanho: px
Começar a partir da página:

Download "Capitulo 7 Resolução de Exercícios"

Transcrição

1 FORMULÁRIO Audades Costates Postecpadas HP C [g][end] Cp LN C p R Cp R R a, R C p, a LN 1 Sp LN S p R S p R R s, R S p, 1 1 s LN 1 Audades Costates Atecpadas HP C [g][beg] 1 (1 ) 1 (1 ) Ca R, R C, (1 ) 1 a C a Cp (1 ) (1 ) 1 1 (1 ) (1 ) Sa R, R Sa, S (1 ) 1 a S p (1 ) (1 ) Audades Costates, Dferdas e Postecpadas HP C [g][end] C (1 ) 1 (1 ), R R C (1 ) (1 ) 1 p p Audades Costates, Dferdas e Atecpadas HP C [g][beg] 1 (1 ) 1 (1 ) C R, 1, 1 a R C C C (1 ) a ( 1 ) 1 a p Audades Perpétuas Postecpadas Cp Ra R Audades Perpétuas Atecpadas Ca 1 R Audades Dferdas, Perpétuas Postecpadas Audades Dferdas, Perpétuas Astecpadas C C p R 1 R a 1 1 Itrodução à Mateátca Facera Faro & Lachteracher Versão Fal Pága 74

2 7.5 Exercícos Propostos 1) Ua loja de departaetos está vededo u deterado odelo de áqua de lavar, cujo preço à vsta é R$ 2.000,00. Se a taxa de juros cobrada for de 1,25% a.., e rege de juros copostos, pede-se deterar o valor da prestação para cada u dos segutes plaos de facaeto co: a) 20% de etrada e o saldo facado e 24 prestações esas e guas, a prera delas vecedo-se 1 ês após a data da copra. b) 1+24 prestações esas; sto é, ua etrada, a data da copra, gual ao valor das 24 prestações esas. c) 15 prestações esas, a prera daqu a 10 eses. d) 1+7 parcelas guas e trestras. e) 24 parcelas esas e 4 parcelas seestras, abas postecpadas, aortzado 80% e 20%, respectvaete, da dívda total. f) 24 prestações esas, a prera 1 ês após à data da copra, as 4 prestações seestras de R$ 0,00, cada ua, a prera delas 6 eses após à data de copra. a) 20% de etrada e o saldo facado e 24 prestações esas e guas, a prera delas vecedo-se 1 ês após a data da copra. O valor facado correspode ao valor à vsta subtraído do valor da etrada, sto é, a 80% do valor à vsta. Ou seja, R$ 1.600,00 ( 0, ). Logo o valor da prestação R é de: , , 05 R Cp 1600 R$ 77, , 05 1 Ass, co o auxílo das teclas faceras da HP C, o valor de R sera obtdo através dos segutes passos (supodo que o odo postecpado esteja atvo): [f][reg]1600[chs][pv]24[]1.25[][pmt]77,5786 b) 1+24 prestações esas; sto é, ua etrada, a data da copra, gual ao valor das 24 prestações esas. Este tpo de facaeto correspode ao pagaeto de 25 prestações atecpadas, sedo a prera a data zero (data da copra da aqua de lavar) (1 ) 0, 05 (1 0, 05) R Ca 2000 $ 92,49 R 25 (1 ) 1 (1 0, 05) 1 Ass, co o auxílo das teclas faceras da HP C, o valor de R sera obtdo através dos segutes passos (supodo que o odo postecpado esteja atvo, BEGIN o vsor): [f][reg]2000[chs][pv]25[]1.25[][pmt]92,4888 Itrodução à Mateátca Facera Faro & Lachteracher Versão Fal Pága 75

3 c) 15 prestações esas, a prera daqu a 10 eses. O esquea abaxo represeta esta opção de pagaeto: Este problea pode ser vsto de duas foras: ua audade postecpada, dferda de 9 eses, ua audade atecpada dferda de 10 eses. Cosderado coo audade postecpada, teos a segute solução: R C p (1 ) (1 ) , 05 10, 05 R 2000 R$ 164, , 05 1 Co o auxílo das teclas faceras da HP C, o valor de R sera obtdo através dos segutes passos (se BEGIN o vsor): [f][reg]2000[chs][pv]9[]1.25[][fv]2.236, [f][fin][chs][pv]15[]1.25[][pmt]164, Cosderado coo audade atecpada, teos a segute solução: R C a (1 ) (1 ) , 05 10, 05 R 2000 R$ 164, , 05 1 Co o auxílo das teclas faceras da HP C, o valor de R sera obtdo através dos segutes passos (co BEGIN o vsor): [f][reg]2000[chs][pv]10[]1.25[][fv]2.264, [f][fin][chs][pv]15[]1.25[][pmt]164, Obvaete, as duas foras coduze ao eso resultado. d) 1+7 parcelas guas e trestras. Este tpo de facaeto correspode ao pagaeto de 8 prestações atecpadas e trestras, sedo a prera a data zero (data da copra da aqua de lavar). A taxa trestral t, equvalete a 1,25%a.., é dada por: ,05 1 0, ,7971 a. t. t Itrodução à Mateátca Facera Faro & Lachteracher Versão Fal Pága 76

4 1 81 (1 ) 0, (1 0, ) R Ca 2000 $ 283,80 R 8 (1 ) 1 (1 0, ) 1 Co o auxílo das teclas faceras da HP C, o valor de R sera obtdo através dos segutes passos (supodo que o odo atecpado esteja atvo): [f][reg]2000[chs][pv]8[]3.7971[][pmt]283, e) 24 parcelas esas e 4 parcelas seestras, abas postecpadas, aortzado 80% e 20%, respectvaete, da dívda total. As audades esas serão resposáves por 80% da dívda; sto é, R$ 1.600,00. Equato que as seestras pelos tros 20%; seja, R$ 400,00. A taxa seestral s, equvalete a 1,25%a.. é dada por: 6 6 Logo, a audade seestral será de: 1 1 1,05 1 0, ,7383 a. s. t 4 1 0, , R6 Cp 400 R$0, , E a audade esal será de: , , 05 R Cp 1600 R$ 77, , 05 1 Co o auxílo das teclas faceras da HP C (supodo atvo o odo postecpado), tereos:. para as prestações trestras [f][reg]400[chs][pv]4[]7.7381[][pmt]0, para as prestações esas [f][reg]1600[chs][pv]24[]1.25[][pmt]77, f) 24 prestações esas, a prera 1 ês após à data da copra, as 4 prestações seestras de R$ 0,00, cada ua, a prera delas 6 eses após à data de copra. Sedo R o valor da prestação esal, o plao de facaeto e questão pode ser represetado pelo segute fluxo de caxa: Itrodução à Mateátca Facera Faro & Lachteracher Versão Fal Pága 77

5 ,05 1 0, ,7381% a. s., a taxa seestral Sedo s equvalete a 1,25% a.., podeos escrever a segute equação do valor (toado coo data focal a da copra): R a 0 a 241,25 4 7, , , R , , , , 05 Co o auxílo das teclas faceras da HP C, te-se (supodo atvo o odo postecpado): [f][reg]0[pmt] 4[]7.7381[][PV] 399, [+] [f][fin][chs][pv] 24[] 1.25[][PMT] 77, Ou seja, o valor das prestações esas é R$ 77,60. 2) Pedro te u facaeto de sua orada, co 100 prestações esas de R$ 1.000,00 ada a sere pagas ; co a prera vecedo-se daqu a das. Se a taxa especfcada pelo facador é de 10% a.a., quato Pedro te que pagar, à vsta, para lqudar o débto? Coo a taxa esal equvalete a 10% a.a. é ,1 1 0, ,797414% a.. a se o resgate fosse efetuado 1 ês ates do veceto da prera prestação reaescete, seu valor de resgate sera: C , R , , , Logo, a data de hoje, terá que pagar o valor C 18 dado por: Itrodução à Mateátca Facera Faro & Lachteracher Versão Fal Pága 78

6 18 30 C18 C0 1 0, R$ , 58 Co o auxílo das teclas faceras da HP C, o valor de C 18 sera obtdo através dos segutes passos (supodo atvo o odo postecpado): [f][reg]1000[chs][pmt]100[] [][pv]68.732,25326 [f][fin][chs][pv]18[enter]30[ ][] [][FV]69.060, ) Ua agêca de autoóves que, para carros co valor de R$ ,00, estabelece os segutes plaos de facaeto, cosdera a taxa de juros de 40% a.a.: a) Etrada de R$ ,00 e prestações esas, a prera co veceto 1 ês após a data da copra, co prazo áxo de 2 aos. Qual será o valor da prestação esal? b) Alé da etrada de R$ ,00 e das 24 parcelas esas ecoadas o te ateror, deverão ser pagas 4 prestações seestras de R$ ,00, cada ua, a prera ses eses após a copra. Qual será o ovo valor da prestação esal? a) Etrada de R$ ,00 e prestações esas, a prera co veceto 1 ês após a data da copra, co prazo áxo de 2 aos. Cosderado o prazo áxo, o que plca e 24 prestações esas, tedo e vsta que o valor do facaeto é R$ ,00, co a taxa esal,, correspodete a 40% a.a. sedo 1 1 0, 4 1 0, ,8436% a.. quereos deterar a prestação esal R tal que: , , R Cp R$ 5.805, , Laçado ão das teclas faceras da HP C, tereos (supodo atvo o odo postecpado): [f][reg]100000[chs][pv]24[]2.8436[][pmt]5.805, Ou seja, deverão ser pagas 24 prestações esas de R$ 5.805,71 b) Alé da etrada de R$ ,00 e das 24 parcelas esas ecoadas o te ateror, deverão ser pagas 4 prestações seestras de R$ ,00, cada ua a prera ses eses após a copra. Qual será o ovo valor da audade esal? Agora, sedo a taxa seestral s equvalete a 40% a.a., dada por: Itrodução à Mateátca Facera Faro & Lachteracher Versão Fal Pága 79

7 s 1 0,4 1 18,3216% a. s. o valor das 24 prestações esas guas a R, deve ser tal que: , , R , , , , , R17, ,88154 R R$ 3.477, 62 17, Co o auxílo da HP C, podeos deterar R da segute aera(supodo atvo o odo postecpado) [f][reg]15000[chs][pmt]4[] [][pv]40.099, [ ] ,11845 [f][fin][pv]2.8436[]24[][pmt]3.477, Ou seja, agora, as 24 prestações esas sera reduzdas para R$ 3.477,62. 4) U facaeto de R$ ,00, à taxa de 2% a.. de juros copostos, deve ser pago através de prestações esas, postecpadas, a prera 1 ês após a assatura do cotrato. Qual o úero de prestações esas que deve ser pagas, se: a) o valor da prestação for fxado e R$ 3.500,00? b) o valor da prestação for fxado e R$ 4.000,00? c) o valor da prestação for fxado e R$ 4.500,00? a) o valor da prestação for fxado e R$ 3.500,00? O valor da prestação R deve satsfazer a segute equação: 0,02 10, , 02 1 Resolvedo aaltcaete a equação de valor, tereos: ,02 0,875 10, 02 0,875 10, , 02 10, ,5 10, 02 0,875 10, 02 7 O que é possível, já que 10, 02 0 para qualquer valor de pertecete ao cojuto dos reas. Se, esse caso, tetásseos fazer uso das teclas faceras da HP C, teríaos o vsor ua esage de erro, coo ostrado a segur (para R = R$ 3.500,00) Itrodução à Mateátca Facera Faro & Lachteracher Versão Fal Pága 80

8 [f][reg]200000[chs][pv]2[]3500[pmt][]error 5 b) o valor da prestação for fxado e R$ 4.000,00? O valor da prestação R deve satsfazer a segute equação: 0,02 10, , 02 1 Resolvedo aaltcaete a equação de valor, tereos: ,02 10, , , , , , , , O que é possível, já que, depedeteete do valor de, a equação fal é válda. Se, esse caso, tetásseos fazer uso das teclas faceras da HP C, teríaos o vsor ua esage de erro, coo ostrado a segur (para R = R$ 4.000,00) [f][reg]200000[chs][pv]2[]4000[pmt][]error 5 c) o valor da prestação for fxado e R$ 4.500,00? O valor da prestação R deve satsfazer a segute equação: 0,02 10, , 02 1 Resolvedo aaltcaete a equação de valor, tereos: ,02 10,02 1,5 1,5 1 0, 02 1,5 1 0, , , , ,5 1 0, 02 1,5 1 0, 02 9 Aplcado LN( ) e abos os lados da equação, tereos LN 9 LN 1 0,02 LN 9 110,95 eses LN 1,02 Se, esse caso, tetásseos fazer uso das teclas faceras da HP C, teríaos o vsor o valor 111, coo ostrado a segur (para R = R$ 4.500,00) [f][reg]200000[chs][pv]2[]4500[pmt][]111,000 Lebrado que a HP C sepre apreseta o úero de pagaetos coo u tero, deveos prossegur co os segutes passos: [FV]-195,171420[PMT]4.500,0000[+]4.304, Itrodução à Mateátca Facera Faro & Lachteracher Versão Fal Pága 81

9 Ou seja, alé das 110 prestações esas de R$ 4.500,00, haverá a ecessdade de u pagaeto adcoal, u ês após, de R$ 4.304,83. Notas I. Lebrado que a relação apresetada a Fgura 7.9, relatva à deteração do úero de pagaetos, o caso de pagaetos postecpados, é: C LN 1 R LN (1 ) Itrodução à Mateátca Facera Faro & Lachteracher Versão Fal Pága 82 deveos observar que, coo soete são defdos os logartos de úeros postvos, a fórula aca só fará setdo se for verfcada a segute desgualdade: R C 0 R C Ou seja, faceraete, se C for eteddo coo o valor de u eprésto, deveos ter o valor da prestação R aor do que os juros, à taxa, devdos a C, por u período. Ass, o facaeto de R$ ,00, à taxa de 2% a.., jaas será pago se fxaros as prestações esas, postecpadas, co valores ão superores a R$ 4.000,00 (0, ).. Se, por tro lado, as prestações fore atecpadas, sto é, a prera devedo ser paga o ato da copra, o valor do facaeto passa a ser, efetvaete, gual a C C R. Logo, e tal evetualdade, a restrção passa a ser: C 1 0 R C C R R C R1 C R 1 Deste odo, o caso do facaeto de R$ ,00, à taxa de 2% a.., o valor R das prestações esas, se a prera tver veceto a própra data de cocessão do facaeto, deverá ser tal que: , 02 R R 3921, ,02 Ou seja, o valor das prestações esas deve ser superor a R$ 3.921,57. 5) João, flho de Pedro, acaba ascer o da 1º de jaero. Já preocupado co o futuro do seu flho, Pedro abru, o eso da do asceto de João, ua cadereta de ppaça, a qual depost a portâca de R$20.000,00, tedo se coproetdo, co sua esposa, a fazer u depósto esal de R$ 100,00, reajustado pela varação da TR, até que João coplete 20 aos de dade, af de garatr o pagaeto de u curso superor para seu flho. Cosderado que João ce seus estudos após copletar 18 aos de dade, que os depóstos e cadereta rede juros reas de 6% a.a.c.., e que o valor real da

10 esaldade de ua IES (Isttução de Eso Superor), por ao, pagas o íco de cada ês, ão se altera durate todo o curso, perguta-se: a) Qual o valor áxo que João poderá pagar se o curso for de 4 aos (adstração)? b) Qual o valor áxo que João poderá pagar se o curso for de 5 aos (egehara)? c) Qual o valor áxo que João poderá pagar se o curso for de 6 aos (edca)? a) Qual o valor áxo que João poderá pagar se o curso for de 4 aos (adstração)? A preços da data de asceto de João, Pedro fará 20 = 240 depóstos esas de R$100.00, alé do depósto cal (o asceto de João) de R$ ,00. Logo, o valor atual dos depóstos, a época zero (asceto de João), deve ser gual ao valor atual, a época zero, dos desebolsos das esaldades. Este fluxo de caxa está represetado o esquea a segur, supodo que a prero desebolso ocorrerá exataete a data e que João copleta 18 aos de dade. Logo, tedo e vsta que tereos 48 (4 ) esaldades, a equação de valor este caso, será: R Sedo a taxa real esal efetva, gual a 0,5%a.., tereos , , R 0, , 005 0, , , , ,571546R R R$2.330, Laçado ão das teclas faceras da HP C, poderíaos ter a segute sequêca de passos (supodo atvo o odo postecpado): [f][reg]100[chs][pmt]0.5[sto]1[]240[][pv]13.958, [+]33.958,07717 [f][fin][pv][rcl]1[] 215[][FV] ,77165 [f][fin][pv][rcl]1[] 48[][PMT] 2.330, Itrodução à Mateátca Facera Faro & Lachteracher Versão Fal Pága 83

11 b) Qual o valor áxo que João poderá pagar se o curso for 5 aos (egehara)? Co relação ao te ateror, a úca dfereça é que deverão ser efetuados 60 (5 ) pagaetos, de esaldades. Logo, a equação de valor passará a ser: R ode peraece a taxa real, efetva, gual a 0,5%a.. Portato , , R 0, , 005 0, , , , , R R R$1.918, Co o uso da HP C, otado que o valor R$ ,77165, já obtdo o te (a), que represeta o otate, a data do 18º aversáro de João, de todos os depóstos efetuados por Pedro, peraece sedo o eso, te-se: [f][fin] [chs][pv][rcl]1[]60[][pmt]1.918,4088 c) Qual o valor áxo que João poderá pagar se o curso for 6 aos (edca)? Co relação ao te ateror, a úca dfereça é que deverão ser efetuados 72 (6 ) pagaetos, de esaldades. Logo, a equação de valor passará a ser: R ode peraece sedo a taxa real, efetva, gual a 0,5%a.. Portato: , , R 0, , 005 0, , , , , R R R$1.644,54 Co o uso da HP C, teríaos: [f][fin] [chs][pv][rcl]1[]72[][pmt]1.644, Itrodução à Mateátca Facera Faro & Lachteracher Versão Fal Pága 84

12 6) Luaa, tedo recebdo ua heraça de seu pa, passará a dspor de ua reda esal de R$ 3.000,00, pelos próxos 7 aos, co o prero recebeto sedo dspoível de hoje a 6 eses. Desejado adqurr u carro, drge-se a ua agêca de autoóves que efetua vedas facadas, co prazos áxos de 5 aos, cobrado a taxa de juros copostos de 2,5% a.. Perguta-se: a) se fazer ehu tro pagaeto, alé das prestações esas de R$ 3.000,00, qual é o aor valor, à vsta, de u odelo de carro que Luaa podera coprar? b) se escolher coprar u odelo de carro cujo preço à vsta é R$ ,00, quatas prestações esas de R$ 3.000,00 terá de pagar? c) de, se o preço do carro à vsta for R$ ,00? d) se sua ãe se dspuser a pagar ua etrada de R$ ,00, fcado Luaa resposável pelas prestações esas de R$ 3.000,00, sera possível a copra de u odelo cujo preço à vsta é R$ ,00? E caso afratvo, e quatas prestações esas de R$ 3.000,00? a) Cosderado o prazo áxo de 5 aos, o aor valor de u carro que Luaa podera coprar, que deotareos por C, é gual ao valor atual de ua sequêca postecpada, dferda de 5 eses, co prestações esas de R$ 3.000,00. Ou seja: , C 3000 R $ , , , , 025 Sedo que, co o eprego da HP C, assudo que a opção de parcelas postecpadas esteja atva, tereos: [f][reg]3000[pmt]2.5[]55[][pv] ,93784 [f][fin][fv]2.5[]55[][pv]78.788,48397 b) Se o preço à vsta for R$ ,00, que é feror a C, Luaa poderá adqurr o carro pagado u úero de prestações esas de R$ 3.000,00, tal que: , , , , , , , , Itrodução à Mateátca Facera Faro & Lachteracher Versão Fal Pága 85

13 79198, , , , 025 Logo, lebrado da relação LN 1 LN 1 Cp R te-se LN , , LN 1 0, , Ou seja, serão ecessáros 43 prestações esas de R$ 3.000,00, e u pagaeto adcoal, 1 ês após (sto é, eses após a data da copra), cujo valor P é tal que: , P 79198, P R $ 2.072, , , , 025 Co o eprego da HP C, te-se: [f][reg]7000[pv]2.5[]5[][fv] ,57490 [f][fin][pv]2.5[]3000[pmt][]44[fv] -927,593263[RCL][PMT][+]2.072, Lebrado que o valor de, se ão for tero, é sepre arredodado para as, segue-se que serão ecessáros prestações esas de R$ 3.000,00, as u pagaeto adcoal, 1 ês após, de R$ 2.072,41. c) Se o valor do carro, à vsta, for de R$ ,00, coo este é aor do que C R $78788, 48, o úero áxo de prestações esas de R$ 3.000,00, que é 55, ão será sufcete para a copra do carro. d) Tedo e vsta a etrada de R$ ,00, o carro de R$ ,00 à vsta, só poderá ser coprado se o úero de prestações esas de R$ 3.000,00, resultate da equação abaxo, for ão superor a , , , , , , , , Itrodução à Mateátca Facera Faro & Lachteracher Versão Fal Pága 86

14 79198, , , , 025 Ou seja, recaíos a esa equação relatva ao caso b, cuja solução é =43,688157; eor que 55. Logo, ão só é possível coprar o carro, coo, alé da etrada de R$ ,00, serão ecessáras 43 prestações esas de R$ 3.000,00, a prera co veceto 6 eses após a data da copra, as u pagaeto de R$ 2.072,41, co veceto 1 ês após o pagaeto da últa prestação de R$ 3.000,00. 7) Qual a taxa de juros aual, efetva, que trasfora ua audade esal, co 36 parcelas postecpadas, de R$ 150,00 cada, e ua audade trestral co parcelas postecpadas de R$ 500,00 cada? Utlzado a taxa esal efetva e sua equvalete taxa trestral t, teos a segute equação de valor: t t 1 t Cosderado a relação etre e t dada por t teos , Itrodução à Mateátca Facera Faro & Lachteracher Versão Fal Pága 87

15 Captulo 7 Resolução de Exercícos 1 3, , , Deveos descartar a solução =0, pos que, a expressão do valor atual, plcara a dvsão por zero, o que é adssível. Logo, deveos ter a solução do problea. Achado as raízes da equação do 2º grau, teos = -3, e = 0, Coo a 1ª raz é eor que -1, deve ser descartada por ser faceraete espúra (feror a -100%). Deste odo, a taxa de teresse é = 0, ,7275%a..; que correspode à taxa efetva aual a, tal que: 1 0, , , 6769% a. a. a Utlzado a fução Solver do Excel para resolver este problea, teos a segute plalha coo ua das possíves soluções. Mas ua vez, as coluas C e F cote as fórulas utlzadas, respectvaete as coluas B e E. Os parâetros utlzados o Solver tabé são ostrados a fgura a segur. Itrodução à Mateátca Facera Faro & Lachteracher Versão Fal Pága 88

16 Vale ressaltar que a fução-objetvo escolhda, fo a de zar o valor presete da audade esal. Mas tabé podera ter sdo o da audade trestral, já que o que va deterar a solução é a restrção de gualdade, que te apeas ua solução. 8) Alfredo, propretáro de u certo apartaeto, que dspõe para reda, recebe as duas segutes propostas de u teressado: I. Cotrato de aluguel esal, co valor cal de R$ 1.600,00, co reajuste a cada eses, co base a varação do IGP-M da FGV-Fudação Getulo Vargas, ltados às codções de ercado que seja prevalecetes. Co o prazo do cotrato sedo prorrogado defdaete; II. Copra, co o pagaeto à vsta de R$ ,00, as u pagaeto, u ao após, de R$ ,00, atualzado oetaraete de acordo co o IGP-M da FGV. Se Alfredo cosegue fazer aplcações faceras, o ercado de captas, à taxa de juros real de 0,6% a.., qual opção deve acetar se acredta que, a cada reovação aual do valor do aluguel, ocorra, e teros reas, ua redução à taxa d, sedo: a) d= 1% a.a.? b) d= 2% a.a.? c) d = 3% a.a.? d) qual a taxa d para a qual o propretáro é dferete etre as opções de alugar e veder? Cosderada a taxa de juros de 0,6% a.., o valor atual V da opção de copra é: V R$ ,11 1 0, 006 Cosderado a vda útl da propredade coo sedo fta, a sequêca de alugues esas, e teros reas, fora ua perpetudade tal coo represetada o fluxo de caxa a segur: ode R=R$1.600,00. Sedo R a taxa esal de juros e teros reas, o caso gual a 0,6%a.., à qual o propretáro pode fazer aplcações, o valor atual do fluxo de alugues esas V, gorado o custo de reforas peródcas (, supodo que o cotrato estpule que as esas seja resposabldade do qulo), e fução da taxa de deprecação d, é represetado por (Exercíco Resolvdo 11 deste capítulo): V R (1 R ) (1 0, 006) 1 R 1 R 1 d 0, , d Itrodução à Mateátca Facera Faro & Lachteracher Versão Fal Pága 89

17 a) d= 1% a.a.? 1600 (1 0, 006) 1 V R$ ,13 0, , , 01 Neste caso V > V ; logo a elhor opção é alugar b) d= 2% a.a.? V 1600 (1 0, 006) 1 R$ ,95 0, , , 02 Neste caso V > V ; logo a elhor opção é alugar c) d = 3% a.a.? V 1600 (1 0, 006) 1 0, , , 03 R$ , 05 Neste caso V > V ; logo a elhor opção é veder. d) qual a taxa d para a qual o propretáro é dferete etre as opções de alugar e veder? 1600 (1 0, 006) ,11 0, , d 1158, , d 119, , , d d 0, ,8368% a. a. 1158, ) João, dzedo estar cobrado a taxa de juros sples, de 3% a.., epresta R$ ,00 a seu ago Pedro, estabelecedo o pagaeto de 10 prestações esas, a prera sedo devda 1 ês após à data do eprésto, co valor P deterado segudo a segute expressão: ,0310 P R$13.000,00 10 E teros auas, qual a taxa de juros copostos que João está efetvaete cobrado? Sedo a taxa esal de juros copostos, tedo e vsta que as 10 prestações esas fora ua audade postecpada, deveos ter: Itrodução à Mateátca Facera Faro & Lachteracher Versão Fal Pága 90

18 10 1ì ì Fazedo uso das teclas faceras da HP C, supodo atva a opção postecpada, teos: [f][reg]100000[chs][pv]13000[pmt]10[][]5, Ou seja, a taxa esal de juros copostos que está sedo cobrada é 5,078702%. O que correspode à taxa aual a 1 0, , , 21% a.a. 10) Certa agêca de autoóves está vededo u carro usado as segutes codções: a) à vsta, por R$ ,00. b) a prazo, por eo de prestações esas de R$ 2.800,00 cada ua, a prera a data da copra, segudas de prestações esas de R$ 3.200,00 cada ua. Qual é a taxa aual de juros copostos que está plícta o plao de facaeto da agêca de autoóves? Sedo a taxa esal de juros copostos, esta deve ser tal que: ode, adotado coo data focal a data de aqusção do carro, fo cosderado que as preras prestações fora ua audade atecpada, e que as prestações segutes tabé fora ua audade atecpada, dferda de eses. Para a deteração da taxa, edate o eprego da calculadora HP C, será feto uso da fução IRR, co base o segute fluxo de caxa: 0 CF ; CF CF CF 2800; C CF CF Deste odo, tereos a segute sequêca de passos: [f][reg]47200[chs][g][cf 0]2800[g][CF j]11[g][n j]3200[g][cf j][g][n j][f][irr]3, Ou seja, a taxa esal de juros copostos que está sedo cobrada é de 3,334871%. Logo, a correspodete taxa aual de juros é: 1 0, , ,2391% a. a. a Itrodução à Mateátca Facera Faro & Lachteracher Versão Fal Pága 91

19 11) Relatvaete à veda do carro usado de R$ ,00, vsto o exercíco ateror, supoha que o propretáro da agêca de autoóves receba a proposta, de u teressado coprador, de pagar R$ ,00 de etrada, as prestações esas de R$ 3.500,0 cada ua, co a prera vecedo-se 6 eses após a data da copra. a) Cosderada a taxa de juros deterada o exercíco 7, deve o doo da agêca acetar ão a proposta? b) Se a proposta ão for teressate, deterar o percetual de aueto do valor das prestações esas, ecessáro para o acete da proposta. a) Observado que as prestações esas, cosderada a data de veceto da prera delas, fora ua audade atecpada, dferda de 6 eses, segue-se que o valor da proposta para a agêca, a data da etrada, é: V p ode é a taxa esal de juros, plícta o plao de facaeto do exercíco 7. Etão, vsto que 3, % a.., fazedo-se uso das teclas faceras da HP C, obtê-se o segute valor para a proposta (assudo que o odo atecpado esteja atvo): [f][reg]3500[pmt][] [STO]1[][PV] ,68854 [f][fin][fv]6[][rcl]1[][pv]28.986, [+]48.986,18288 Logo, coo o valor da proposta é R$ ,18, feror ao valor do carro, a agêca deve recusá-la. b) Para que a proposta seja aceta, o valor R das prestações esas deve ser tal que: R R 1 1 ode 3,334871% a.. e que supoos ada estar arazeado a eóra 1 da HP C. Fazedo uso das teclas da HP C, te-se: [f][fin]30000[pv]6[] [RCL]1[][FV] ,04624 [f][fin][pv][][rcl]1[][pmt]3.622, Ou seja, o valor das prestações esas deve subr para R$ 3.622,42; o que sgfca u acrésco de 3,5% e relação ao valor de R$ 3.500,00. Itrodução à Mateátca Facera Faro & Lachteracher Versão Fal Pága 92

20 ) Cosderado ada o caso da agêca de autoóves dos dos exercícos aterores, supoha que o teressado coprador adcoe à sua proposta cal o pagaeto de R$ 2.000,00, u ês após o pagaeto da últa prestação de R$ 3.500,00. Deterar se a ova proposta deve ão ser aceta pela agêca de autoóves. Sedo ada 3,334871% a.., valor este que suporeos cotuar arazeado a eóra 1 da HP C, o valor atual da proposta, do poto de vsta da agêca, passa a ser: V p Fazedo uso da HP C, supodo que cotue atvado o odo atecpado, te-se: [f][fin]3500[pmt][][rcl]1[][pv] ,68854 [f][fin][fv]6[][rcl]1[][pv]28.986, [+]48.986,18288[sto]2 [f][fin] 2000[CHS][FV]18[][RCL]1[][PV]1.108,117379[RCL]2[+]50.094,30026 Coo o valor da ova proposta, R$ ,30, supera o valor do carro, que é R$ ,00, a agêca deve acetar a ova proposta (tedo ada u pequeo gaho extra). 13) O propretáro de u apartaeto, avalado e R$ ,00 e que é posto à veda, recebe a segute proposta: a) etrada de R$ ,00; b) pagaetos auas de R$ ,00, co o prero sedo efetuado 1 ao após à data da copra; c) tatas prestações esas de R$ 2.500,00 quatas fore ecessáras, co a prera sedo devda 6 eses após à data da copra. Deterar o úero de prestações esas e o valor do pagaeto adcoal, caso ecessáro, co veceto 1 ês após a últa prestação esal, se o propretáro estpular a taxa de 24% a.a.c.. Sedo a a taxa aual equvalete à taxa efetva de 24% 2% a.., seja 1 0, , ,8242% a. a. a o úero de prestações esas, que fora ua audade postecpada, dferda de 5 eses, deve ser tal que satsfaça a segute equação de valor (co data focal a data da veda): , , , , , 02 0, , já que os pagaetos auas fora ua audade postecpada. Itrodução à Mateátca Facera Faro & Lachteracher Versão Fal Pága 93

21 Podeos escrever: 10, , , ,02 1 0,02 10, , ,02 10,02 Coo teos u caso ode os juros sobre o valor do facaeto que deve ser resgatado pelas prestações esas, gual a 0, , 6818 R$ 3.585,32, supera o valor da prestação, a dívda jaas será paga. 14) Nas codções do exercíco 13, qual é o eor valor das 10 prestações auas que faça co que, atdo o valor de R$ 2.500,00 para as prestações esas, tore solúvel a proposta do coprador? Sedo F a parcela do facaeto total que deve ser resgatada por eo das prestações esas de R$ 2.500,00, seu valor deve satsfazer a desgualdade: 0,02 F F Logo, tedo e vsta a equação desevolvda a solução do exercíco 10, segue-se que o valor R das 10 prestações auas deve ser tal que se teha: R 3, , R , , , 2365 Ou seja, o valor de cada ua das 10 prestações auas deve superar R$ ,24. 15) Ada co relação ao exercíco 10, deterar o úero de prestações esas de R$ 2.500,00, se o valor das 10 prestações auas for fxado e R$ ,00. Retoado a equação de valor desevolvda o exercíco 10, teos agora: 10, , , ,02 1 0,02 10, , ,02 1 0,02 Cosequeteete, a solução exata para é dada pela relação Cp LN , , 02 LN 1 R ,8807 LN 1 LN 10, 02 Itrodução à Mateátca Facera Faro & Lachteracher Versão Fal Pága 94

22 Ou seja, serão ecessáras 215 prestações esas de R$ 2.500,00, as u pagaeto adcoal, de valor X, u ês após o veceto da últa prestação esal, tal que: 215 X 10, , ,02 1 0,02 1 0, Fazedo uso das teclas faceras da HP C, te-se (supodo atvada a opção postecpada): [f][reg]3261,0043[chs][pv]2500[pmt]2[][]216[fv]-295, [RCL][PMT][+] 2.204, Ou seja, alé das 215 prestações esas de R$ 2.500,00, será ecessáro o pagaeto, co veceto u ês após o da últa prestação esal, de R$ 2.204,46. Itrodução à Mateátca Facera Faro & Lachteracher Versão Fal Pága 95

Capitulo 8 Resolução de Exercícios

Capitulo 8 Resolução de Exercícios FORMULÁRIO Audades Peródcas, Crescetes e Postecpadas, com Termos em P. A. G 1 1 1 1 G SPAC R R s s 1 1 1 1 1 G G C R a R a 1 1 PAC Audades Gradetes Postecpadas S GP G 1 1 ; C GP G 1 1 1 Audades Gradetes

Leia mais

Exercícios Propostos

Exercícios Propostos Exercícios Propostos Ateção: Na resolução dos exercícios cosiderar, salvo eção e cotrário, ao coercial de 360 dias. 1. Calcular o otate de ua aplicação de $3.500 pelas seguite taxas de juros e prazos:

Leia mais

Capitulo 6 Resolução de Exercícios

Capitulo 6 Resolução de Exercícios FORMULÁRIO Cojutos Equivaletes o Regime de Juros Simples./Vecimeto Comum. Descoto Racioal ou Por Detro C1 C2 Cm C1 C2 C...... 1 i 1 i 1 i 1 i 1 i 1 i 1 2 m 1 2 m C Ck 1 i 1 i k1 Descoto Por Fora ou Comercial

Leia mais

Olá, amigos concursandos de todo o Brasil!

Olá, amigos concursandos de todo o Brasil! Matemátca Facera ICMS-RJ/008, com gabarto cometado Prof. Wager Carvalho Olá, amgos cocursados de todo o Brasl! Veremos, hoje, a prova do ICMS-RJ/008, com o gabarto cometado. - O artgo º da Le.948 de 8

Leia mais

JUROS SIMPLES. i 100 i 100. TAXA PROPORCIONAL: É aquela que aplicada ao mesmo capital, no mesmo prazo, produze o mesmo juros.

JUROS SIMPLES. i 100 i 100. TAXA PROPORCIONAL: É aquela que aplicada ao mesmo capital, no mesmo prazo, produze o mesmo juros. JUROS MONTANTE JUROS SIMPLES J = C 0 * * t 00 M = C * + * t 00 TAXA PROPORCIONAL: É aquela que aplcada ao mesmo captal, o mesmo prazo, produze o mesmo juros. * = * JUROS COMPOSTOS MONTANTE M = C * + 00

Leia mais

Matemática Financeira

Matemática Financeira Cocetos Báscos de Matemátca Facera Uversdade do Porto Faculdade de Egehara Mestrado Itegrado em Egehara Electrotécca e de Computadores Ecooma e Gestão Na prátca As decsões faceras evolvem frequetemete

Leia mais

Capítulo 1 PORCENTAGEM

Capítulo 1 PORCENTAGEM Professor Joselas Satos da Slva Matemátca Facera Capítulo PORCETAGEM. PORCETAGEM A porcetagem ada mas é do que uma otação ( % ) usada para represetar uma parte de cem partes. Isto é, 20% lê-se 20 por ceto,

Leia mais

LEASING UMA OBSERVAÇÃO Economista Antonio Pereira da Silva

LEASING UMA OBSERVAÇÃO Economista Antonio Pereira da Silva LEASING UMA OBSERVAÇÃO Ecoomsta Atoo Perera da Slva AMOR POR DINHEIRO TITÃS Composção: Sérgo Brtto e To Bellotto Acma dos homes, a le E acma da le dos homes A le de Deus Acma dos homes, o céu E acma do

Leia mais

E-mails: damasceno1204@yahoo.com.br damasceno@interjato.com.br damasceno12@hotmail.com http://www. damasceno.info www. damasceno.info damasceno.

E-mails: damasceno1204@yahoo.com.br damasceno@interjato.com.br damasceno12@hotmail.com http://www. damasceno.info www. damasceno.info damasceno. Matemátca Facera 2007.1 Prof.: Luz Gozaga Damasceo 1 E-mals: damasceo1204@yahoo.com.br damasceo@terjato.com.br damasceo12@hotmal.com http://www. damasceo.fo www. damasceo.fo damasceo.fo Obs.: (1 Quado

Leia mais

FINANCIAMENTOS UTILIZANDO O EXCEL

FINANCIAMENTOS UTILIZANDO O EXCEL rofessores Ealdo Vergasta, Glóra Márca e Jodála Arlego ENCONTRO RM 0 FINANCIAMENTOS UTILIZANDO O EXCEL INTRODUÇÃO Numa operação de empréstmo, é comum o pagameto ser efetuado em parcelas peródcas, as quas

Leia mais

Capitulo 3 Resolução de Exercícios

Capitulo 3 Resolução de Exercícios S C J J C i FORMULÁRIO Regime de Juros Compostos S C i C S i S i C S LN C LN i 3.7 Exercícios Propostos ) Qual o motate de uma aplicação de R$ 00.000,00 aplicados por um prazo de meses, a uma taxa de 5%

Leia mais

M = C( 1 + i.n ) J = C.i.n. J = C((1+i) n -1) MATEMÁTICA FINANCEIRA. M = C(1 + i) n BANCO DO BRASIL. Prof Pacher

M = C( 1 + i.n ) J = C.i.n. J = C((1+i) n -1) MATEMÁTICA FINANCEIRA. M = C(1 + i) n BANCO DO BRASIL. Prof Pacher MATEMÁTICA 1 JUROS SIMPLES J = C.. M C J J = M - C M = C( 1 +. ) Teste exemplo. ados com valores para facltar a memorzação. Aplcado-se R$ 100,00 a juros smples, à taxa omal de 10% ao ao, o motate em reas

Leia mais

1 SISTEMA FRANCÊS DE AMORTIZAÇÃO

1 SISTEMA FRANCÊS DE AMORTIZAÇÃO scpla de Matemátca Facera 212/1 Curso de Admstração em Gestão Públca Professora Ms. Valéra Espídola Lessa EMPRÉSTIMOS Um empréstmo ou facameto pode ser feto a curto, médo ou logo prazo. zemos que um empréstmo

Leia mais

MA12 - Unidade 4 Somatórios e Binômio de Newton Semana de 11/04 a 17/04

MA12 - Unidade 4 Somatórios e Binômio de Newton Semana de 11/04 a 17/04 MA1 - Udade 4 Somatóros e Bômo de Newto Semaa de 11/04 a 17/04 Nesta udade troduzremos a otação de somatóro, mostrado como a sua mapulação pode sstematzar e facltar o cálculo de somas Dada a mportâca de

Leia mais

Capitulo 10 Resolução de Exercícios

Capitulo 10 Resolução de Exercícios FORMULÁRIO Ivestimetos com Cláusulas de Correção Moetária, com pricipal e juros simples corrigidos S C i I Ivestimetos com Cláusulas de Correção Moetária, com apeas o pricipal corrigido e juros simples.

Leia mais

Capitulo 9 Resolução de Exercícios

Capitulo 9 Resolução de Exercícios FORMULÁRIO Empréstimos a Curto Prazo (Juros Simples) Taxa efetiva liear i l i ; Taxa efetiva expoecial i Empréstimos a Logo Prazo Relações Básicas C k R k i k ; Sk i Sk i e i ; Sk Sk Rk ; Sk i Sk R k ;

Leia mais

Capítulo 1: Erros em cálculo numérico

Capítulo 1: Erros em cálculo numérico Capítulo : Erros em cálculo umérco. Itrodução Um método umérco é um método ão aalítco, que tem como objectvo determar um ou mas valores umércos, que são soluções de um certo problema. Ao cotráro das metodologas

Leia mais

4 REPRESENTAÇÃO E/S NO DOMÍNIO TRANSFORMADO (funções de transferência)

4 REPRESENTAÇÃO E/S NO DOMÍNIO TRANSFORMADO (funções de transferência) 4 REPRESENTAÇÃO E/S NO DOMÍNIO TRANSFORMADO (fuções de trasferêa) 4. Trasforada de Laplae É u operador lear, que opera sobre fuções de varável otíua postva, defdo por: L f(t) = f(s) = f(t) e -st dt Nota:

Leia mais

Requisitos metrológicos de instrumentos de pesagem de funcionamento não automático

Requisitos metrológicos de instrumentos de pesagem de funcionamento não automático Requstos metrológcos de strumetos de pesagem de fucoameto ão automátco 1. Geeraldades As balaças estão assocadas de uma forma drecta à produção do betão e ao cotrolo da qualdade do mesmo. Se são as balaças

Leia mais

RESUMO DE MATEMÁTICA FINANCEIRA. Juro Bom Investimento C valor aplicado M saldo ao fim da aplicação J rendimento (= M C)

RESUMO DE MATEMÁTICA FINANCEIRA. Juro Bom Investimento C valor aplicado M saldo ao fim da aplicação J rendimento (= M C) RESUMO DE MATEMÁTICA FINANCEIRA I. JUROS SIMPLES ) Elemetos de uma operação de Juros Smples: Captal (C); Motate (M); Juros (J); Taxa (); Tempo (). ) Relação etre Juros, Motate e Captal: J = M C ) Defção

Leia mais

CENTRO: GESTÃO ORGANIZACIONAL MATEMÁTICA FINANCEIRA

CENTRO: GESTÃO ORGANIZACIONAL MATEMÁTICA FINANCEIRA CENTRO: GESTÃO ORGANIZACIONAL CÁLCULOS DE FINANÇAS MATEMÁTICA FINANCEIRA Semestre: A/2008 PROFESSOR: IRANI LASSEN CURSO: ALUNO: SUMÁRIO CÁLCULOS DE FINANÇAS INTRODUÇÃO...3. OBJETIVO:...3.2 FLUXO DE CAIXA...4.3

Leia mais

Elaborado: 2002 Ultima atualização: 23/12/2004

Elaborado: 2002 Ultima atualização: 23/12/2004 Elaborado: 2002 Ultma atualzação: 23/12/2004 Cadero de Fórmulas Apresetação Sstema Nacoal de Atvos E ste Cadero de Fórmulas tem por objetvo esclarecer aos usuáros a metodologa de cálculo e os crtéros de

Leia mais

3. Porcentagem; 4. Problemas sobre custo e venda; 5. Fator de capitalização e taxa unitária.

3. Porcentagem; 4. Problemas sobre custo e venda; 5. Fator de capitalização e taxa unitária. 1 UTOR: Emeta Luz Herque M da Slva 1 Defções de razão e proporção, propredades; Graduado em Matemátca e habltado em ísca pelo UNIEB 2 Gradezas dretamete proporcoas e versamete proporcoas, Regra de três;

Leia mais

Prof. Benjamin Cesar. Onde a(n, i) é o fator de valor atual de uma série de pagamentos. M: montante da renda na data do último depósito.

Prof. Benjamin Cesar. Onde a(n, i) é o fator de valor atual de uma série de pagamentos. M: montante da renda na data do último depósito. Matemátca Fnancera Rendas Certas Prof. Benjamn Cesar Sére de Pagamentos Unforme e Peródca. Rendas Certas Anudades. É uma sequênca de n pagamentos de mesmo valor P, espaçados de um mesmo ntervalo de tempo

Leia mais

PUCRS - FENG - DEE - Mestrado em Engenharia Elétrica Redes Neurais Artificiais Fernando César C. de Castro e Maria Cristina F. de Castro.

PUCRS - FENG - DEE - Mestrado em Engenharia Elétrica Redes Neurais Artificiais Fernando César C. de Castro e Maria Cristina F. de Castro. PUCRS - FENG - DEE - estrado e Egehara Elétrca Redes Neuras Artfcas Ferado César C. de Castro e ara Crsta F. de Castro Capítulo 6 Redes Neuras Artfcas para Decoposção de u Espaço Vetoral e Sub-Espaços

Leia mais

IND 1115 Inferência Estatística Aula 9

IND 1115 Inferência Estatística Aula 9 Coteúdo IND 5 Iferêca Estatístca Aula 9 Outubro 2004 Môca Barros Dfereça etre Probabldade e Estatístca Amostra Aleatóra Objetvos da Estatístca Dstrbução Amostral Estmação Potual Estmação Bayesaa Clássca

Leia mais

CAPÍTULO 9 - Regressão linear e correlação

CAPÍTULO 9 - Regressão linear e correlação INF 6 Prof. Luz Alexadre Peterell CAPÍTULO 9 - Regressão lear e correlação Veremos esse capítulo os segutes assutos essa ordem: Correlação amostral Regressão Lear Smples Regressão Lear Múltpla Correlação

Leia mais

Capitulo 2 Resolução de Exercícios

Capitulo 2 Resolução de Exercícios FORMULÁRIO Regime de Juros Simples S C J S 1 C i J Ci S C (1 i) S 1 C i Juro exato C i 365 S C 1 i C i 360 Juro Comercial 2.7 Exercícios Propostos 1 1) Qual o motate de uma aplicação de R$ 100.000,00 aplicados

Leia mais

1.1 Apresentação. do capítulo

1.1 Apresentação. do capítulo apítulo Matemátca Facera. Apresetação do capítulo A Matemátca Facera trata da comparação de valores moetáros que estão dspersos ao logoo do tempo. Através de seu estudo, podemos aalsar e comparar alteratvas

Leia mais

Balanço de Massa e Energia Aula 2

Balanço de Massa e Energia Aula 2 alaço de assa e Eerga ula Udades e Desão Desão: Quatdade que pode ser edda, são as gradezas báscas coo copreto, assa, tepo, teperatura etre outras, ou quatdades calculadas pela dvsão ou ultplcação de outras

Leia mais

Aula 7. Em outras palavras, x é equivalente a y se, ao aplicarmos x até a data n, o montante obtido for igual a y.

Aula 7. Em outras palavras, x é equivalente a y se, ao aplicarmos x até a data n, o montante obtido for igual a y. DEPARTAMENTO...: ENGENHARIA CURSO...: PRODUÇÃO DISCIPLINA...: ENGENHARIA ECONÔMICA / MATEMÁTICA FINANCEIRA PROFESSORES...: WILLIAM FRANCINI PERÍODO...: NOITE SEMESTRE/ANO: 2º/2008 Aula 7 CONTEÚDO RESUMIDO

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2012 DA UNICAMP-FASE 2. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2012 DA UNICAMP-FASE 2. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR DA UNICAMP-FASE PROFA MARIA ANTÔNIA C GOUVEIA O velocíetro é u istrueto que idica a velocidade de u veículo A figura abaio ostra o velocíetro de u carro que

Leia mais

Departamento de Informática. Modelagem Analítica. Modelagem Analítica do Desempenho de Sistemas de Computação. Disciplina: Medida de Probabilidade

Departamento de Informática. Modelagem Analítica. Modelagem Analítica do Desempenho de Sistemas de Computação. Disciplina: Medida de Probabilidade Departaento de Inforátca Dscplna: do Desepenho de Ssteas de Coputação Medda de Probabldade Prof. Sérgo Colcher colcher@nf.puc-ro.br Teora da Probabldade Modelo ateátco que perte estudar, de fora abstrata,

Leia mais

Capítulo 1 Matemática Financeira

Capítulo 1 Matemática Financeira apítulo Matemátca Facera. Apresetação do capítulo A matemátca facera trata da comparação de valores moetáros ao logo do tempo. Através de seu estudo, podemos aalsar e comparar alteratvas de vestmeto e

Leia mais

Síntese de Transformadores de Quarto de Onda

Síntese de Transformadores de Quarto de Onda . Sítese de rasforadores de Quarto de Oda. Itrodução rasforadores de guia de oda são aplaete epregados o projeto de copoetes e oda guiada e são ecotrados e praticaete todas as cadeias alietadoras de ateas

Leia mais

Analise de Investimentos e Custos Prof. Adilson C. Bassan email: adilsonbassan@adilsonbassan.com

Analise de Investimentos e Custos Prof. Adilson C. Bassan email: adilsonbassan@adilsonbassan.com Aalise de Ivestimetos e Custos Prof. Adilso C. Bassa email: adilsobassa@adilsobassa.com JUROS SIMPLES 1 Juro e Cosumo Existe juro porque os recursos são escassos. As pessoas têm preferêcia temporal: preferem

Leia mais

AÇÕES E COMBINAÇÕES DAS AÇÕES

AÇÕES E COMBINAÇÕES DAS AÇÕES AÇÕES E COMBINAÇÕES DAS AÇÕES 1. INTRODUÇÃO As oras brasileiras para projetos de estruturas especifica que u projeto é coposto por eorial justificativo, desehos e, tabé por plao de execução quado há particularidades

Leia mais

INTRODUÇÃO ÀS PROBABILIDADES E ESTATÍSTICA

INTRODUÇÃO ÀS PROBABILIDADES E ESTATÍSTICA INTRODUÇÃO ÀS PROBABILIDADES E ESTATÍSTICA 003 Iformações: relembra-se os aluos teressados que a realzação de acções presecas só é possível medate solctação vossa, por escrto, à assstete da cadera. A realzação

Leia mais

Vitamina A Vitamina B Vitamina C Alimento 1 50 30 20 Alimento 2 100 40 10 Alimento 3 40 20 30

Vitamina A Vitamina B Vitamina C Alimento 1 50 30 20 Alimento 2 100 40 10 Alimento 3 40 20 30 Motvção: O prole d det Itrodução os Sstes Leres U pesso e det ecesst dgerr drete s segutes qutddes de vts: g de vt A 6 g de vt B 4 g de vt C El deve suprr sus ecessddes prtr do cosuo de três letos dferetes

Leia mais

Estudo das relações entre peso e altura de estudantes de estatística através da análise de regressão simples.

Estudo das relações entre peso e altura de estudantes de estatística através da análise de regressão simples. Estudo das relações etre peso e altura de estudates de estatístca através da aálse de regressão smples. Waessa Luaa de Brto COSTA 1, Adraa de Souza COSTA 1. Tago Almeda de OLIVEIRA 1 1 Departameto de Estatístca,

Leia mais

Análise de Regressão

Análise de Regressão Aálse de Regressão Prof. Paulo Rcardo B. Gumarães. Itrodução Os modelos de regressão são largamete utlzados em dversas áreas do cohecmeto, tas como: computação, admstração, egeharas, bologa, agrooma, saúde,

Leia mais

Curso MIX. Matemática Financeira. Juros compostos com testes resolvidos. 1.1 Conceito. 1.2 Período de Capitalização

Curso MIX. Matemática Financeira. Juros compostos com testes resolvidos. 1.1 Conceito. 1.2 Período de Capitalização Curso MI Matemática Fiaceira Professor: Pacífico Referêcia: 07//00 Juros compostos com testes resolvidos. Coceito Como vimos, o regime de capitalização composta o juro de cada período é calculado tomado

Leia mais

2 Estrutura a Termo de Taxa de Juros

2 Estrutura a Termo de Taxa de Juros Estrutura a Termo de Taxa de Juros 20 2 Estrutura a Termo de Taxa de Juros A Estrutura a termo de taxa de juros (também cohecda como Yeld Curve ou Curva de Retabldade) é a relação, em dado mometo, etre

Leia mais

CAP RATES, YIELDS E AVALIAÇÃO DE IMÓVEIS pelo método do rendimento

CAP RATES, YIELDS E AVALIAÇÃO DE IMÓVEIS pelo método do rendimento CAP RATES, YIELDS E AALIAÇÃO DE IMÓEIS pelo étodo do rendento Publcado no Confdencal Iobláro, Março de 2007 AMARO NAES LAIA Drector da Pós-Graduação de Gestão e Avalação Ioblára do ISEG. Docente das caderas

Leia mais

Perguntas Freqüentes - Bandeiras

Perguntas Freqüentes - Bandeiras Pergutas Freqüetes - Baderas Como devo proceder para prestar as formações de quatdade e valor das trasações com cartões de pagameto, os casos em que o portador opte por lqudar a obrgação de forma parcelada

Leia mais

MAE116 Noções de Estatística

MAE116 Noções de Estatística Grupo C - º semestre de 004 Exercíco 0 (3,5 potos) Uma pesqusa com usuáros de trasporte coletvo a cdade de São Paulo dagou sobre os dferetes tpos usados as suas locomoções dáras. Detre ôbus, metrô e trem,

Leia mais

Em atendimento à solicitação de V.Sa., apresentamos, na seqüência, os resultados do estudo referenciado.

Em atendimento à solicitação de V.Sa., apresentamos, na seqüência, os resultados do estudo referenciado. 1 Belo Horzote, 14 de abrl de 2007. À UNAFISCO SAÚDE AT.: Glso Bezerra REF: AVALIAÇÃO ATUARIAL Prezado Sehor, Em atedmeto à solctação de V.Sa., apresetamos, a seqüêca, os resultados do estudo referecado.

Leia mais

Palavras-chave: Problemas de corte e empacotamento, carregamento de contêineres com múltiplos destinos, otimização combinatória, modelagem matemática.

Palavras-chave: Problemas de corte e empacotamento, carregamento de contêineres com múltiplos destinos, otimização combinatória, modelagem matemática. 1 ABORDAGENS PARA PROBEMAS DE CARREGAMENTO DE CONTÊINERES COM CONSIDERAÇÕES DE MÚTIPOS DESTINOS eoardo Juquera Realdo Morabto Dese Sato Yaashta Departaeto de Egehara de Produção Uversdade Federal de São

Leia mais

Endereço. Dados. Mem Read Mem select

Endereço. Dados. Mem Read Mem select Parte IV Sistea de Meória Os sisteas de coputação utiliza vários tipos de dispositivos para arazeaeto de dados e de istruções. Os dispositivos de arazeaeto cosiste e eória pricipal e eória secudária. A

Leia mais

Econometria: 4 - Regressão Múltipla em Notação Matricial

Econometria: 4 - Regressão Múltipla em Notação Matricial Ecoometra: 4 - Regressão últpla em Notação atrcal Prof. arcelo C. ederos mcm@eco.puc-ro.br Prof. arco A.F.H. Cavalcat cavalcat@pea.gov.br Potfíca Uversdade Católca do Ro de Jaero PUC-Ro Sumáro O modelo

Leia mais

Capítulo 6 - Centro de Gravidade de Superfícies Planas

Capítulo 6 - Centro de Gravidade de Superfícies Planas Capítulo 6 - Cetro de ravdade de Superfíces Plaas 6. Itrodução O Cetro de ravdade (C) de um sóldo é um poto localzado o própro sóldo, ou fora dele, pelo qual passa a resultate das forças de gravdade que

Leia mais

PROFESSOR: SEBASTIÃO GERALDO BARBOSA

PROFESSOR: SEBASTIÃO GERALDO BARBOSA UNESPAR/Paraavaí - Professor Sebastião Geraldo Barbosa - 0 - PROFESSOR: SEBASTIÃO GERALDO BARBOSA Setembro/203 UNESPAR/Paraavaí - Professor Sebastião Geraldo Barbosa - - TÓPICOS DE MATEMÁTICA FINANCIEIRA

Leia mais

Matemática. Resolução das atividades complementares. M18 Noções de Estatística

Matemática. Resolução das atividades complementares. M18 Noções de Estatística Resolução das atvdades complemetares Matemátca M8 Noções de Estatístca p. 3 (UFRJ) Dos estados do país, um certo ao, produzem os mesmos tpos de grãos. Os grácos de setores lustram a relação etre a produção

Leia mais

Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto

Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Faculdade de Ecooma, Admstração e Cotabldade de Rberão Preto Ecooma Moetára Curso de Ecooma / º. Semestre de 014 Profa. Dra. Rosel da Slva Nota de aula CAPM Itrodução Há dos modelos bastate utlzados para

Leia mais

Ensaios Econômicos. Amortização de Dívidas e Prestações Constantes: Uma Análise Crítica. Outubro de 2013. Escola de. Pós-Graduação.

Ensaios Econômicos. Amortização de Dívidas e Prestações Constantes: Uma Análise Crítica. Outubro de 2013. Escola de. Pós-Graduação. Esaos Ecoômcos Escola de ós-graduação em Ecooma da Fudação Getulo Vargas N 746 ISSN 004-890 Amortzação de Dívdas e restações Costates: Uma Aálse Crítca Clovs de Faro Outubro de 203 URL: http://hdl.hadle.et/0438/232

Leia mais

A REGRESSÃO LINEAR EM EVENTOS HIDROLÓGICOS EXTREMOS: enchentes

A REGRESSÃO LINEAR EM EVENTOS HIDROLÓGICOS EXTREMOS: enchentes Mostra Nacoal de Icação Cetífca e Tecológca Iterdscplar VI MICTI Isttuto Federal Catarese Câmpus Camború 30 a 3 de outubro de 03 A REGRESSÃO LINEAR EM EVENTOS HIDROLÓGICOS EXTREMOS: echetes Ester Hasse

Leia mais

APLICAÇÕES DE MÉTODOS DE ENERGIA A PROBLEMAS DE INSTABILIDADE DE ESTRUTURAS

APLICAÇÕES DE MÉTODOS DE ENERGIA A PROBLEMAS DE INSTABILIDADE DE ESTRUTURAS PONTIFÍCI UNIVERSIDDE CTÓLIC DO RIO DE JNEIRO DEPRTMENTO DE ENGENHRI CIVIL PLICÇÕES DE MÉTODOS DE ENERGI PROBLEMS DE INSTBILIDDE DE ESTRUTURS Julaa Bragh Ramalho Raul Rosas e Slva lua de graduação do curso

Leia mais

Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira INEP Ministério da Educação MEC. Índice Geral de Cursos (IGC)

Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira INEP Ministério da Educação MEC. Índice Geral de Cursos (IGC) Isttuto Nacoal de Estudos e Pesqusas Educacoas Aíso exera INEP stéro da Educação EC Ídce Geral de Cursos (IGC) O Ídce Geral de Cursos (IGC) é ua éda poderada dos cocetos dos cursos de graduação e pós-graduação

Leia mais

Módulo 4 Matemática Financeira

Módulo 4 Matemática Financeira Módulo 4 Matemática Fiaceira I Coceitos Iiciais 1 Juros Juro é a remueração ou aluguel por um capital aplicado ou emprestado, o valor é obtido pela difereça etre dois pagametos, um em cada tempo, de modo

Leia mais

A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse: www.pagina10.com.br

A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse: www.pagina10.com.br A seguir, uma demostração do livro. Para adquirir a versão completa em papel, acesse: www.pagia10.com.br Matemática comercial & fiaceira - 2 4 Juros Compostos Iiciamos o capítulo discorredo sobre como

Leia mais

Conceito 31/10/2015. Módulo VI Séries ou Fluxos de Caixas Uniformes. SÉRIES OU FLUXOS DE CAIXAS UNIFORMES Fluxo de Caixa

Conceito 31/10/2015. Módulo VI Séries ou Fluxos de Caixas Uniformes. SÉRIES OU FLUXOS DE CAIXAS UNIFORMES Fluxo de Caixa Módulo VI Séries ou Fluxos de Caixas Uiformes Daillo Touriho S. da Silva, M.Sc. SÉRIES OU FLUXOS DE CAIXAS UNIFORMES Fluxo de Caixa Coceito A resolução de problemas de matemática fiaceira tora-se muito

Leia mais

SUMÁRIO GOVERNO DO ESTADO DO CEARÁ. Cid Ferreira Gomes Governador. 1. Introdução... 2. Domingos Gomes de Aguiar Filho Vice Governador

SUMÁRIO GOVERNO DO ESTADO DO CEARÁ. Cid Ferreira Gomes Governador. 1. Introdução... 2. Domingos Gomes de Aguiar Filho Vice Governador INSTITUTO DE PESQUISA E ESTRATÉGIA ECONÔMICA DO CEARÁ - IPECE GOVERNO DO ESTADO DO CEARÁ Cd Ferrera Gomes Goverador Domgos Gomes de Aguar Flho Vce Goverador SECRETARIA DO PLANEJAMENTO E GES- TÃO (SEPLAG)

Leia mais

Prof. Eugênio Carlos Stieler

Prof. Eugênio Carlos Stieler http://wwwuematbr/eugeio SISTEMAS DE AMORTIZAÇÃO A ecessidade de recursos obriga aqueles que querem fazer ivestimetos a tomar empréstimos e assumir dívidas que são pagas com juros que variam de acordo

Leia mais

UNIVERSIDADE FEDERAL FLUMINENSE CENTRO DE ESTUDOS GERAIS INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE ESTATÍSTICA NÚMEROS ÍNDICES

UNIVERSIDADE FEDERAL FLUMINENSE CENTRO DE ESTUDOS GERAIS INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE ESTATÍSTICA NÚMEROS ÍNDICES UNIVERSIDADE FEDERAL FLUMINENSE CENTRO DE ESTUDOS GERAIS INSTITUTO DE MATEMÁTICA DEPARTAMENTO DE ESTATÍSTICA NÚMEROS ÍNDICES Aa Mara Lma de Faras Luz da Costa Laurecel Com a colaboração dos motores Maracajaro

Leia mais

JUROS SIMPLES. 1. Calcule os juros simples referentes a um capital de mil reais, aplicado em 4 anos, a uma taxa de 17% a.a.

JUROS SIMPLES. 1. Calcule os juros simples referentes a um capital de mil reais, aplicado em 4 anos, a uma taxa de 17% a.a. JUROS SIMPLES 1. Calcule os juros simples referetes a um capital de mil reais, aplicado em 4 aos, a uma taxa de 17% a.a. 2. Calcule o capital ecessário para que, em 17 meses, a uma taxa de juros simples

Leia mais

Tabela Price - verdades que incomodam Por Edson Rovina

Tabela Price - verdades que incomodam Por Edson Rovina Tabela Price - verdades que icomodam Por Edso Rovia matemático Mestrado em programação matemática pela UFPR (métodos uméricos de egeharia) Este texto aborda os seguites aspectos: A capitalização dos juros

Leia mais

UERJ CTC IME Departamento de Informática e Ciência da Computação 2 Cálculo Numérico Professora Mariluci Ferreira Portes

UERJ CTC IME Departamento de Informática e Ciência da Computação 2 Cálculo Numérico Professora Mariluci Ferreira Portes UERJ CTC IE Departameto de Iormátca e Cêca da Computação Udade I - Erros as apromações umércas. I. - Cosderações geras. Há váras stuações em dversos campos da cêca em que operações umércas são utlzadas

Leia mais

Os juros compostos são conhecidos, popularmente, como juros sobre juros.

Os juros compostos são conhecidos, popularmente, como juros sobre juros. Módulo 4 JUROS COMPOSTOS Os juros compostos são cohecidos, popularmete, como juros sobre juros. 1. Itrodução Etedemos por juros compostos quado o fial de cada período de capitalização, os redimetos são

Leia mais

PRESTAÇÃO = JUROS + AMORTIZAÇÃO

PRESTAÇÃO = JUROS + AMORTIZAÇÃO AMORTIZAÇÃO Amortizar sigifica pagar em parcelas. Como o pagameto do saldo devedor pricipal é feito de forma parcelada durate um prazo estabelecido, cada parcela, chamada PRESTAÇÃO, será formada por duas

Leia mais

CAPÍTULO 2 - Estatística Descritiva

CAPÍTULO 2 - Estatística Descritiva INF 6 Prof. Luz Alexadre Peterell CAPÍTULO - Estatístca Descrtva Podemos dvdr a Estatístca em duas áreas: estatístca dutva (ferêca estatístca) e estatístca descrtva. Estatístca Idutva: (Iferêca Estatístca)

Leia mais

Perguntas freqüentes Credenciadores

Perguntas freqüentes Credenciadores Pergutas freqüetes Credecadores Como devo proceder para prestar as formações de quatdade e valor das trasações com cartões de pagameto, os casos em que o portador opte pelo facameto da compra pelo emssor?

Leia mais

Algoritmos de partição e geração de colunas para dimensionamento de lotes de produção

Algoritmos de partição e geração de colunas para dimensionamento de lotes de produção C. Petel, F. Alvelos, J. Carvalho / Ivestgação Operacoal, 26 (2006) 129-146 129 Algortos de partção e geração de coluas para desoaeto de lotes de produção Cara Mara Olvera Petel Flpe Perera e Alvelos José

Leia mais

DINÂMICA VIBRAÇÕES DE SISTEMAS COM 1 GRAU DE LIBERDADE. António Araújo Correia

DINÂMICA VIBRAÇÕES DE SISTEMAS COM 1 GRAU DE LIBERDADE. António Araújo Correia DINÂMICA VIBRAÇÕES DE SISTEMAS COM GRAU DE IBERDADE Atóo Araújo Correa Jaero de 007 VIBRAÇÕES DE SISTEMAS COM GRAU DE IBERDADE. INTRODUÇÃO Esta publcação desta-se ao apoo das aulas da dscpla seestral de

Leia mais

Uma Calculadora Financeira usando métodos numéricos e software livre

Uma Calculadora Financeira usando métodos numéricos e software livre Uma Calculadora Facera usado métos umércos e software lvre Jorge edraza Arpas, Julao Sott, Depto de Cêcas e Egeharas, Uversdade Regoal ItegradaI, URI 98400-000-, Frederco Westphale, RS Resumo.- Neste trabalho

Leia mais

Portanto, os juros podem induzir o adiamento do consumo, permitindo a formação de uma poupança.

Portanto, os juros podem induzir o adiamento do consumo, permitindo a formação de uma poupança. Matemática Fiaceira Deixar de cosumir hoje, visado comprar o futuro pode ser uma boa decisão, pois podemos, durate um período de tempo, ecoomizar uma certa quatia de diheiro para gahar os juros. Esses

Leia mais

Os Fundamentos da Física (8 a edição)

Os Fundamentos da Física (8 a edição) TEM ESPEI ENTRO DE MSS 1 Os Fudaetos da Físca (8 a edção) R MHO, N IOU E T OEDO Tea especal ENTRO DE MSS 1. etro de gradade e cetro de assa, 1. Propredade da cocetração de assas,. Propredade de setra,

Leia mais

2 Avaliação da segurança dinâmica de sistemas de energia elétrica: Teoria

2 Avaliação da segurança dinâmica de sistemas de energia elétrica: Teoria Avalação da seguraça dâmca de sstemas de eerga elétrca: Teora. Itrodução A avalação da seguraça dâmca é realzada através de estudos de establdade trastóra. Nesses estudos, aalsa-se o comportameto dos geradores

Leia mais

MODELAGEM MATEMÁTICA E ANÁLISE DO PROCESSO DE FLOCULAÇÃO EM CÂMARAS EM SÉRIE

MODELAGEM MATEMÁTICA E ANÁLISE DO PROCESSO DE FLOCULAÇÃO EM CÂMARAS EM SÉRIE MODELAGEM MATEMÁTICA E ANÁLISE DO POCESSO DE FLOCULAÇÃO EM CÂMAAS EM SÉIE odrgo B Moruzz, Sauel Coceção de Olvera Professor da Uesp, Capus de o Claro, o Claro-SP, Brasl, roruzz@rcuespbr Professor da Uesp,

Leia mais

MATEMÁTICA FINANCEIRA

MATEMÁTICA FINANCEIRA MATEMÁTICA FINANCEIRA VALOR DO DINHEIRO NO TEMPO Notas de aulas Gereciameto do Empreedimeto de Egeharia Egeharia Ecoômica e Aálise de Empreedimetos Prof. Márcio Belluomii Moraes, MsC CONCEITOS BÁSICOS

Leia mais

UNIVERSIDADE FEDERAL DE ALFENAS UNIFAL/MG. Projeto Institucional de Formação Continuada

UNIVERSIDADE FEDERAL DE ALFENAS UNIFAL/MG. Projeto Institucional de Formação Continuada 1 UNIVERSIDADE FEDERAL DE ALFENAS UNIFAL/MG Projeto Institucional de Formação Continuada Aprendizagem de Matemática Mediada por suas Aplicações 6 o Encontro: Matemática Financeira Professor José Carlos

Leia mais

Nota Técnica n o 037/2013-SRG/ANEEL. Em 17 de maio de 2013. Processo: 48500.002907/2010-89

Nota Técnica n o 037/2013-SRG/ANEEL. Em 17 de maio de 2013. Processo: 48500.002907/2010-89 Nota Técca o 037/2013-SRG/ANEEL Em 17 de mao de 2013. Processo: 48500.002907/2010-89 Assuto: Cosoldação de todas as regulametações referetes à apuração de dspobldades de empreedmetos de geração de eerga

Leia mais

Estatística Notas de Aulas ESTATÍSTICA. Notas de Aulas. Professor Inácio Andruski Guimarães, DSc. Professor Inácio Andruski Guimarães, DSc.

Estatística Notas de Aulas ESTATÍSTICA. Notas de Aulas. Professor Inácio Andruski Guimarães, DSc. Professor Inácio Andruski Guimarães, DSc. Estatístca Notas de Aulas ESTATÍSTICA Notas de Aulas Professor Iáco Adrus Gumarães, DSc. Professor Iáco Adrus Gumarães, DSc. Estatístca Notas de Aulas SUMÁRIO CONCEITOS BÁSICOS 5. Estatístca. Estatístca

Leia mais

CAPÍTULO 1 Exercícios Propostos

CAPÍTULO 1 Exercícios Propostos CAPÍTULO 1 Exercícos Propostos Atenção: Na resolução dos exercícos consderar, salvo menção em contráro, ano comercal de das. 1. Qual é a taxa anual de juros smples obtda em uma aplcação de $1.0 que produz,

Leia mais

12.2.2 CVT: Coeficiente de Variação de Thorndike...45 12.2.3 CVQ: Coeficiente Quartílico de Variação...45 13 MEDIDAS DE ASSIMETRIA...46 13.

12.2.2 CVT: Coeficiente de Variação de Thorndike...45 12.2.3 CVQ: Coeficiente Quartílico de Variação...45 13 MEDIDAS DE ASSIMETRIA...46 13. SUMARIO 2 MÉTODO ESTATÍSTICO...3 2. A ESTATÍSTICA...3 2.2 FASES DO MÉTODO ESTATÍSTICO...4 3 FERRAMENTAS DE CÁLCULO PARA O ESTUDO DA ESTATÍSTICA...5 3. FRAÇÃO...5 3.. Adção e subtração...5 3..2 Multplcação

Leia mais

ENGENHARIA ECONÔMICA AVANÇADA

ENGENHARIA ECONÔMICA AVANÇADA ENGENHARIA ECONÔMICA AVANÇADA INTRODUÇÃO MATERIAL DE APOIO ÁLVARO GEHLEN DE LEÃO gehleao@pucrs.br 1 1 Itrodução à Egeharia Ecoômica A egeharia, iserida detro do cotexto de escassez de recursos, pode aplicar

Leia mais

GST0045 MATEMÁTICA FINANCEIRA

GST0045 MATEMÁTICA FINANCEIRA GST0045 MATEMÁTICA FINANCEIRA Concetos Báscos e Smbologa HP-12C Prof. Antono Sérgo A. do Nascmento asergo@lve.estaco.br GST0045 Matemátca Fnancera 2 Valor do dnhero no tempo q O dnhero cresce no tempo

Leia mais

UFRGS 2007 - MATEMÁTICA

UFRGS 2007 - MATEMÁTICA - MATEMÁTICA 01) Em 2006, segudo otícias veiculadas a impresa, a dívida itera brasileira superou um trilhão de reais. Em otas de R$ 50, um trilhão de reais tem massa de 20.000 toeladas. Com base essas

Leia mais

a taxa de juros i está expressa na forma unitária; o período de tempo n e a taxa de juros i devem estar na mesma unidade de tempo.

a taxa de juros i está expressa na forma unitária; o período de tempo n e a taxa de juros i devem estar na mesma unidade de tempo. UFSC CFM DEPARTAMENTO DE MATEMÁTICA MTM 5151 MATEMÁTICA FINACEIRA I PROF. FERNANDO GUERRA. UNIDADE 3 JUROS COMPOSTOS Capitalização composta. É aquela em que a taxa de juros icide sempre sobre o capital

Leia mais

M = C (1 + i) n. Comparando o cálculo composto (exponencial) com o cálculo simples (linear), vemos no cálculo simples:

M = C (1 + i) n. Comparando o cálculo composto (exponencial) com o cálculo simples (linear), vemos no cálculo simples: PEDRO ORBERTO JUROS COMPOSTOS Da capitalização simples, sabemos que o redimeto se dá de forma liear ou proporcioal. A base de cálculo é sempre o capital iicial. o regime composto de capitalização, dizemos

Leia mais

Curso de An lise de Fluxo de Caixa

Curso de An lise de Fluxo de Caixa Curso de A lse de Fluxo de Caxa SUMÁRIO PROGRESSÕES... 0. FÓRMULAS BÁSICAS... 0.. Progressões artmétcas... 0..2 Progressões geométrcas... 02.2 EXERCÍCIOS SUGERIDOS... 02 2 CONCEITOS DE MATEMÁTICA FINANCEIRA...

Leia mais

N O T A S D E A U L A, R E V 7.0 U E R J 2 0 1 5. 2 F L Á V I O A L E N C A R D O R Ê G O B A R R O S. Eletrônica 4

N O T A S D E A U L A, R E V 7.0 U E R J 2 0 1 5. 2 F L Á V I O A L E N C A R D O R Ê G O B A R R O S. Eletrônica 4 Capítulo N O T A S D E A U L A, E V 7. U E J 5. F L Á V O A L E N C A D O Ê G O B A O S Eletrôica 4 Osciladores Seoidais Flávio Alecar do ego Barros Uiversidade do Estado do io de Jaeiro E-ail: falecarrb@gail.co

Leia mais

Unidade II ESTATÍSTICA

Unidade II ESTATÍSTICA ESTATÍSTICA Udade II 3 MEDIDAS OU PARÂMETROS ESTATÍSTICOS 1 O estudo que fzemos aterormete dz respeto ao agrupameto de dados coletados e à represetação gráfca de algus deles. Cumpre agora estudarmos as

Leia mais

Equivalência de capitais a juros compostos

Equivalência de capitais a juros compostos Comercial e Fiaceira Equivalêcia de capitais a juros compostos Dois capitais são equivaletes se comparados em uma mesma data, descotados ou capitalizados por uma mesma taxa de juros produzem um mesmo valor

Leia mais

Matemática Financeira I 3º semestre 2013 Professor Dorival Bonora Júnior Lista de teoria e exercícios

Matemática Financeira I 3º semestre 2013 Professor Dorival Bonora Júnior Lista de teoria e exercícios www/campossalles.br Cursos de: dmiistração, Ciêcias Cotábeis, Ecoomia, Comércio Exterior, e Sistemas de Iformação - telefoe (11) 3649-70-00 Matemática Fiaceira I 3º semestre 013 Professor Dorival Boora

Leia mais

TT.405 - ECONOMIA DE ENGENHARIA Material Didático - 2008 Prof. Lúcia R. A. Montanhini

TT.405 - ECONOMIA DE ENGENHARIA Material Didático - 2008 Prof. Lúcia R. A. Montanhini INTRODUÇÃO TT405 - ECONOMIA DE ENGENHARIA Materal Ddátco - 2008 Prof Lúca R A Motah INTRODUÇÃO 2 INDICE INTRODUÇÃO 7 2 O CONCEITO E ORIGEM DA ENGENHARIA ECONÔMICA 8 3 MATEMÁTICA FINANCEIRA 9 3 CONCEITOS

Leia mais

AN EVALUATION OF THE EFFICIENCY OF THE BRAZILIAN MUNICIPALITIES IN THE PROVISION OF PUBLIC SERVICES USING DATA ENVELOPMENT ANALYSIS.

AN EVALUATION OF THE EFFICIENCY OF THE BRAZILIAN MUNICIPALITIES IN THE PROVISION OF PUBLIC SERVICES USING DATA ENVELOPMENT ANALYSIS. AN EVALUATION OF THE EFFICIENCY OF THE BRAZILIAN MUNICIPALITIES IN THE PROVISION OF PUBLIC SERVICES USING DATA ENVELOPMENT ANALYSIS. Rogéro Bouer Brazla Isttute for Appled Ecooc Research Catholc Uverst

Leia mais

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA 5. INTRODUÇÃO É freqüete ecotrarmos problemas estatísticos do seguite tipo : temos um grade úmero de objetos (população) tais que se fossem tomadas as medidas

Leia mais

SIMULAÇÃO DE SISTEMAS CAOTICOS NO MICROMEDIA FLASC

SIMULAÇÃO DE SISTEMAS CAOTICOS NO MICROMEDIA FLASC Aas do XXXIV COBENGE. Passo Fudo: Ed. Uversdade de Passo Fudo Setebro de 006. ISBN 85-755-7- SIMULAÇÃO DE SISTEMAS CAOTICOS NO MICROMEDIA FLASC José Slvéro Edudo Gerao - slvero@ta.br ITA Isttuto Tecológco

Leia mais

AVALIAÇÃO DOS PROGRAMAS DE PÓS-GRADUAÇÃO EM ENGENHARIA DA UFRJ EMPREGANDO UMA VARIANTE DESENVOLVIDA DO MÉTODO UTA

AVALIAÇÃO DOS PROGRAMAS DE PÓS-GRADUAÇÃO EM ENGENHARIA DA UFRJ EMPREGANDO UMA VARIANTE DESENVOLVIDA DO MÉTODO UTA versão mpressa ISSN 00-7438 / versão ole ISSN 678-542 AVALIAÇÃO DOS PROGRAMAS DE PÓS-GRADUAÇÃO EM ENGENHARIA DA UFRJ EMPREGANDO UMA VARIANTE DESENVOLVIDA DO MÉTODO UTA Luís Alberto Duca Ragel UFF-COPPE/PEP/UFRJ

Leia mais