Processo de chegada: o Chegadas em grupo ocorrem segundo um processo Poisson com taxa. O tamanho do grupo é uma variável aleatória discreta
|
|
- Pedro Lucas Gama Prada
- 2 Há anos
- Visualizações:
Transcrição
1 Aula 5 Como gerar amostras de uma distribuição qualquer a partir de sua CDF e de um gerador de números aleatórios? Processo de chegada: o Chegadas em grupo ocorrem segundo um processo Poisson com taxa. O tamanho do grupo é uma variável aleatória discreta Assuma que possa ser estimada para. o Se uma simulação se inicia no instante ZERO e queremos programar a próxima chegada do grupo, qual o tamanho do grupo neste instante? o Quando uma determinada pessoa da fila é colocada em serviço, sabendo que o serviço é dado por uma variável aleatória com conhecida (gráfica ou analiticamente), qual o serviço a ser alocado a essa pessoa? Veremos que amostra de uma variável aleatória poderá sempre ser gerada com uso de um gerador de números pseudoaleatórios e com a inversa da função. Precisaremos, para isso, de estudar as funções de variáveis aleatórias. 1
2 Funções de Variáveis Aleatórias Assuma que é uma variável aleatória com e conhecidos. Queremos obter a pdf e a CDF de, tal que, onde é uma função qualquer. O que isso quer dizer? Se é uma amostra de X, então é uma amostra de. Além disso, e também. Como obter? Resposta: 3 passos. I II III Observe que ( ) ( ) [ ] [ ] que é o Teorema Fundamental da Esperança. Os 3 passos permitem relacionar as pdf s de e. a) Exemplos (outros existem na apostila): { } { } ( ) ( ) ( ) ( ) ( ) 2
3 b) Lembrar que é uma função não decrescente e que tende a 1. Então,. ( ) Ou seja, Y é uma variável aleatória com Distribuição Uniforme entre 0 e 1. Y é a uniforme unitária, representada por. Sabemos que e que e. No caso acima, e e. Como pode ser obtido com um gerador de números aleatórios entre 0 e 1,, então, dado,. 3
4 Graficamente, Como obter uma amostra de X qualquer? Obtenha amostra da uniforme unitária U(0,1) com uso de um gerador pseudo-aleatório [qualquer linguagem de programação fornece uma chamada de função RAND() ou RANDOM() que retorna um valor aleatório entre 0 e 1 (pseudo-aleatório, como veremos mais adiante)]. Faça a inversa, calculando, analiticamente, graficamente ou algoritmicamente. 4
5 Exemplo: Amostra da exponencial Então, dado amostra de U(0,1): Observação: Na prática, é também um valor aleatório, de modo que podemos calcular a amostra de X com Distribuição Exponencial com taxa como: economizando uma operação de subtração. 5
6 Exemplo: Amostra de uma geométrica Observação: Recordando Progressão Geométrica 6
7 Obtenha amostra de U(0,1) = RAND() Para, determine inteiro, tal que ( ) Atenção: O valor de q varia entre 0 e 1, de forma que Dividir por força a inversão do sinal da inequação! é negativo. Retorne é também uma uniforme! 7
8 Os procedimentos vistos se aplicam a qualquer variável aleatória, seja ela discreta, contínua ou mista. Exemplo: Exponencial Truncada Muito simples gerar a amostra de uma v.a. qualquer! Fazer a inversa é a única dificuldade! 8
9 Exponencial truncada Algoritmo U = RAND(); Se U Se U, retorna x=a;, retorna x=b; Caso contrário, retorna x = -(ln(1-u))/. (neste caso não pode eliminar a subtração!) 9
10 Interessante uso da CDF: 1 1 ( ) 2 2 [ ] ( ) Ver prova na página 49 da apostila, seção
11 Geração de números pseudo-aleatórios Referência: ver apostila (capítulo 16), capítulo 3 Knuth (69), etc. Como gerar uma seqüência de números que se repetem num determinado ciclo daí a denominação de pseudo e que seguem uma aparente aleatoriedade? Método Básico: Gerador Congruencial Exemplo: c=0, b=9, Z 0 = 1 Período de oito! Você acha que estes números parecem ser aleatórios? Sempre crescentes. Não parece. O gerador depende da escolha dos parâmetros. Para m primo e escolha adequada de b produz período de (m-1). IBM 1360 palavra de 32 bits, 1 bit de sinal (maior inteiro primo) Pacote SIMSCRIPTH II (pacote estatístico) Trabalho dos estatísticos e não nosso! Para gerar um número aleatório entre 0 e 1 faz-se o período de m-1., se temos 11
12 Lembrar que a seqüência pseudo-aleatória é totalmente determinística. Com precisão estendida em máquinas de 32 ou 64 bits o período é enorme. S 0 semente inicial S 0 repete no final do período SRAND(S 0 ) função para fixar a semente inicial RAND() retorna próximo número (dependendo da linguagem pode ser no intervalo 0 e 1 ou não, sendo necessário dividir pelo módulo utilizado. Veja a definição da função geradora). Fixar a semente serve para garantir que estamos percorrendo uma parte determinada da seqüência pseudo-aleatória. Se quiser percorrer seqüências distintas uso sementes bastante afastadas, que garantem independência de comportamento estatístico. S 0 S 1 S 0 12
Aula 5. Como gerar amostras de uma distribuição qualquer a partir de sua CDF e de um gerador de números aleatórios?
Aula 5 Como gerar amostras de uma distribuição qualquer a partir de sua CDF e de um gerador de números aleatórios? Processo de chegada: o Chegadas em grupo ocorrem segundo um processo Poisson com taxa.
Avaliação de Desempenho
Avaliação de Desempenho Aulas passadas Modelagem de sistemas via cadeias de Markov Aula de hoje Introdução à simulação Gerando números pseudo-aleatórios 1 O Ciclo de Modelagem Sistema real Criação do Modelo
Geração de Números Aleatórios e Simulação
Departamento de Informática Geração de Números Aleatórios e imulação Métodos Quantitativos LEI 26/27 usana Nascimento (snt@di.fct.unl.pt) Advertência Autores João Moura Pires (jmp@di.fct.unl.pt) usana
Simulação Estocástica
Simulação Estocástica O que é Simulação Estocástica? Simulação: ato ou efeito de simular Disfarce, fingimento,... Experiência ou ensaio realizado com o auxílio de modelos. Aleatório: dependente de circunstâncias
Representação de números em máquinas
Capítulo 1 Representação de números em máquinas 1.1. Sistema de numeração Um sistema de numeração é formado por uma coleção de símbolos e regras para representar conjuntos de números de maneira consistente.
Capítulo 4 Gerenciamento de Memória
Capítulo 4 Gerenciamento de Memória 4.1 Gerenciamento básico de memória 4.2 Troca de processos 4.3 Memória virtual 4.4 Algoritmos de substituição de páginas 4.5 Modelagem de algoritmos de substituição
COS767 - Modelagem e Análise Aula 2 - Simulação. Algoritmo para simular uma fila Medidas de interesse
COS767 - Modelagem e Análise Aula 2 - Simulação Algoritmo para simular uma fila Medidas de interesse Simulação O que é uma simulação? realização da evolução de um sistema estocástico no tempo Como caracterizar
Aritmética de Ponto Flutuante e Noções de Erro. Ana Paula
Aritmética de Ponto Flutuante e Noções de Erro Sumário 1 Introdução 2 Sistemas de Numeração 3 Representação de Números Inteiros no Computador 4 Representação de Números Reais no Computador 5 Operações
Teoria de Filas Aula 15
Teoria de Filas Aula 15 Aula de hoje Correção Prova Aula Passada Prova Little, medidas de interesse em filas Medidas de Desempenho em Filas K Utilização: fração de tempo que o servidor está ocupado Tempo
Aulas 17 & 18. Comutação Rápida a Pacote. Eytan Modiano MIT
Aulas 17 & 18 Comutação Rápida a Pacote Eytan Modiano MIT 1 Comutador a Pacote Etiqueta Um comutador a pacote consiste de uma máquina de roteamento (table lookup), um escalonador e uma máquina de comutação.
Trabalho 7 Fila de prioridade usando heap para simulação de atendimento
Trabalho 7 Fila de prioridade usando heap para simulação de atendimento Data: 21/10/2013 até meia-noite Dúvidas até: 09/10/2013 Faq disponível em: http://www2.icmc.usp.br/~mello/trabalho07.html A estrutura
Aula 29. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil
A integral de Riemann - Mais aplicações Aula 29 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 20 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica
Rediscussão do BC&T. Eixo de Representação e Simulação
Rediscussão do BC&T Eixo de Representação e Simulação Resumo 1ª Reunião Proposta Ideal Principais Alterações: GA - 4 créditos IPE - 4 créditos FUV - 6 créditos 6-0-6 ou 4-2-6 Plano B - retirada de FVV
Representação por Números Reais
Representação por Números Reais Cromossomas expressam valores através de números reais (ponto flutuante) e não em binário Para apresentarmos essa representação vamos introduzir o conceito de hibridização
MODELAGEM E SIMULAÇÃO
MODELAGEM E SIMULAÇÃO Professor: Dr. Edwin B. Mitacc Meza edwin@engenharia-puro.com.br www.engenharia-puro.com.br/edwin Terminologia Básica Utilizada em de Sistemas Terminologia Básica Uma série de termos
Geração de variáveis aleatórias
Geração de variáveis aleatórias Danilo Oliveira, Matheus Torquato Centro de Informática Universidade Federal de Pernambuco 5 de setembro de 2012 Danilo Oliveira, Matheus Torquato () 5 de setembro de 2012
Processos Estocásticos
Processos Estocásticos Terceira Lista de Exercícios 22 de julho de 20 Seja X uma VA contínua com função densidade de probabilidade f dada por Calcule P ( < X < 2. f(x = 2 e x x R. A fdp dada tem o seguinte
Linguagem e Técnicas de Programação I Tipos de dados, variáveis e constantes. Prof. MSc. Hugo Souza Material desenvolvido por: Profa.
Linguagem e Técnicas de Programação I Tipos de dados, variáveis e constantes Prof. MSc. Hugo Souza Material desenvolvido por: Profa. Ameliara Freire Tipos de dados Os programas manipulam dados, armazenando-os
http://www.matematica.br/programas/icg. 5. Uma lousa denominada EPI (registrador de endereço de próxima instrução).
Universidade de São Paulo Instituto de Matemática e Estatística DCC Leônidas O. Brandão 1 Computador à Gaveta O objetivo deste texto é introduzir os primeiros conceitos de algoritmos a partir de um modelo
Universidade Federal de São João Del Rei - UFSJ
Universidade Federal de São João Del Rei - UFSJ Instituída pela Lei 0.45, de 9/04/00 - D.O.U. de /04/00 Pró-Reitoria de Ensino de Graduação - PROEN Disciplina: Cálculo Numérico Ano: 03 Prof: Natã Goulart
M501 Probabilidade, Estatística e Processos Estocásticos
Notas de aula M501 Probabilidade, Estatística e Processos Estocásticos Dayan Adionel Guimarães Novembro de 007 Agradecimento Aos professores: Dr. José Marcos Câmara Brito Dr. Carlos Alberto Ynoguti M.Sc.
Programação: Tipos, Variáveis e Expressões
Programação de Computadores I Aula 05 Programação: Tipos, Variáveis e Expressões José Romildo Malaquias Departamento de Computação Universidade Federal de Ouro Preto 2011-1 1/56 Valores Valor é uma entidade
Gestão de Operações II Teoria das Filas
Gestão de Operações II Teoria das Filas Prof Marcio Cardoso Machado Filas O que é uma fila de espera? É um ou mais clientes esperando pelo atendimento O que são clientes? Pessoas (ex.: caixas de supermercado,
Principais códigos utilizados. Codificação. Código binário puro. Codificação binária. Codificação Binária. Código Binário puro e suas variantes
Codificação Principais códigos utilizados Computadores e Equipamentos de Comunicações Digitais trabalham com representação e códigos. A codificação binária de sinais é largamente utilizada em Sistemas
5 Um simulador estocástico para o fluxo de caixa
5 Um simulador estocástico para o fluxo de caixa O objetivo desse capítulo é o de apresentar um simulador estocástico para o fluxo de caixa de um plano de previdência do tipo PGBL de um único indivíduo.
Aula 5 Distribuição amostral da média
Aula 5 Distribuição amostral da média Nesta aula você irá aprofundar seus conhecimentos sobre a distribuição amostral da média amostral. Na aula anterior analisamos, por meio de alguns exemplos, o comportamento
Capítulo 4 Gerenciamento de Memória
Capítulo 4 Gerenciamento de Memória 4.1 Gerenciamento básico de memória 4.2 Troca de processos 4.3 Memória virtual 4.4 Algoritmos de substituição de páginas 4.5 Modelagem de algoritmos de substituição
Objetivos. Teoria de Filas. Teoria de Filas
Objetivos Teoria de Filas Michel J. Anzanello, PhD anzanello@producao.ufrgs.br 2 Teoria de Filas Filas estão presentes em toda a parte; Exemplos evidentes de fila podem ser verificados em bancos, lanchonetes,
Probabilidade. Distribuição Exponencial
Probabilidade Distribuição Exponencial Aplicação Aplicada nos casos onde queremos analisar o espaço ou intervalo de acontecimento de um evento; Na distribuição de Poisson estimativa da quantidade de eventos
CAPÍTULO 5 - Exercícios
CAPÍTULO 5 - Exercícios Distibuições de variáveis aleatórias discretas: Binomial 1. Se 20% dos parafusos produzidos por uma máquina são defeituosos, determinar a probabilidade de, entre 4 parafusos escolhidos
Livro de álgebra para ensino fundamental 2 ( 6º ao 9º ano)
O ALGEBRISTA Autor: Laércio Vasconcelos www.laercio.com.br Livro de álgebra para ensino fundamental ( º ao º ano) Preparatório para Colégio Naval, EPCAr, Colégio Militar (ensino médio) Pré-IME, Pré-ITA,
Análise de Arredondamento em Ponto Flutuante
Capítulo 2 Análise de Arredondamento em Ponto Flutuante 2.1 Introdução Neste capítulo, chamamos atenção para o fato de que o conjunto dos números representáveis em qualquer máquina é finito, e portanto
Eduardo Camponogara. DAS-5103: Cálculo Numérico para Controle e Automação. Departamento de Automação e Sistemas Universidade Federal de Santa Catarina
Eduardo Camponogara Departamento de Automação e Sistemas Universidade Federal de Santa Catarina DAS-5103: Cálculo Numérico para Controle e Automação 1/48 Sumário Arredondamentos Erros 2/48 Sumário Arredondamentos
Arquitetura de Sistemas Operacionais
rquitetura de Sistemas Operacionais Francis Berenger Machado Luiz Paulo Maia Complementado por Sidney Lucena (Prof. UNIRIO) Capítulo 11 Sistema de rquivos 11/1 Organização de rquivos Um arquivo é constituído
Aula 19. Conversão AD e DA Técnicas
Aula 19 Conversão AD e DA Técnicas Introdução As características mais importantes dos conversores AD e DA são o tempo de conversão, a taxa de conversão, que indicam quantas vezes o sinal analógico ou digital
Notas de Cálculo Numérico
Notas de Cálculo Numérico Túlio Carvalho 6 de novembro de 2002 2 Cálculo Numérico Capítulo 1 Elementos sobre erros numéricos Neste primeiro capítulo, vamos falar de uma limitação importante do cálculo
Conceitos Básicos em Análise de Sobrevivência Aula Estatística Aplicada
Conceitos Básicos em Análise de Sobrevivência Aula Estatística Aplicada Prof. José Carlos Fogo Departamento de Estatística - UFSCar Outubro de 2014 Prof. José Carlos Fogo (DEs - UFSCar) Material Didático
Karine Nayara F. Valle. Métodos Numéricos de Euler e Runge-Kutta
Karine Nayara F. Valle Métodos Numéricos de Euler e Runge-Kutta Professor Orientador: Alberto Berly Sarmiento Vera Belo Horizonte 2012 Karine Nayara F. Valle Métodos Numéricos de Euler e Runge-Kutta Monografia
Simulação de Sistemas Teoria das Filas Estrutura do Sistema
Simulação de Sistemas Teoria das Filas 1 2 3 Estrutura do Sistema Capacidade do sistema Canais de Serviço 1 Chegada de Clientes de chegada (tempo entre chegadas) Fila de Clientes Tempo de atendimento 2...
Modelos Estocásticos. Resolução de alguns exercícios da Colectânea de Exercícios 2005/06 PROCESSOS ESTOCÁSTICOS E FILAS DE ESPERA LEGI
Modelos Estocásticos Resolução de alguns exercícios da Colectânea de Exercícios 2005/06 LEGI Capítulo 7 PROCESSOS ESTOCÁSTICOS E FILAS DE ESPERA Nota: neste capítulo ilustram-se alguns dos conceitos de
Gerenciamento de memória
Na memória principal ficam todos os programas e os dados que serão executados pelo processador. Possui menor capacidade e custo maior. S.O buscam minimizar a ocupação da memória e otimizar sua utilização.
A declaração de uma variável vel define o seu tipo. O tipo do dado define como ele será: Armazenado na memória. Manipulado pela ULA.
Representação de Dados Tipos de dados: Caracteres (letras, números n e símbolos). s Lógicos. Inteiros. Ponto flutuante: Notações decimais: BCD. A declaração de uma variável vel define o seu tipo. O tipo
Funções Exponenciais e Logarítmicas
Capítulo 3 Funções Exponenciais e Logarítmicas Problema 1. Uma piscina tem capacidade para 100 m de água. Quando a piscina está completamente cheia, é colocado 1 kg de cloro na piscina. Água pura (sem
Modelos de Filas de Espera
Departamento de Informática Modelos de Filas de Espera Métodos Quantitativos LEI 2006/2007 Susana Nascimento (snt@di.fct.unl.pt) Advertência Autor João Moura Pires (jmp@di.fct.unl.pt) Este material pode
Probabilidade. Distribuição Exponencial
Probabilidade Distribuição Exponencial Aplicação Aplicada nos casos onde queremos analisar o espaço ou intervalo de acontecimento de um evento; Na distribuição de Poisson estimativa da quantidade de eventos
MINISTÉRIO DA EDUCAÇÃO DEPARTAMENTO DO ENSINO SECUNDÁRIO MATEMÁTICA B 12º ANO
MINISTÉRIO DA EDUCAÇÃO DEPARTAMENTO DO ENSINO SECUNDÁRIO MATEMÁTICA B 12º ANO Curso Científico-Humanístico de Artes Visuais 1 Cursos Tecnológicos de Construção Civil e Edificações, de Electrotecnia e Electrónica,
Aula 14: Instruções e Seus Tipos
Aula 14: Instruções e Seus Tipos Diego Passos Universidade Federal Fluminense Fundamentos de Arquiteturas de Computadores Diego Passos (UFF) Instruções e Seus Tipos FAC 1 / 35 Conceitos Básicos Diego Passos
MÓDULO 4 DISTRIBUIÇÃO DE FREQÜÊNCIAS
MÓDULO 4 DISTRIBUIÇÃO DE FREQÜÊNCIS Como vimos no módulo 1, para que nós possamos extrair dos dados estatísticos de que dispomos a correta análise e interpretação, o primeiro passo deverá ser a correta
NO ESTUDO DE FUNÇÕES
1 UNIVERSIDADE FEDERAL DO PARANÁ PROGRAMA INSTITUCIONAL DE BOLSAS DE INICIAÇÃO À DOCÊNCIA SEMANA DA MATEMÁTICA 2014 UTILIZAÇÃO DE SOFTWARES GRÁFICOS NO ESTUDO DE FUNÇÕES PIBID MATEMÁTICA 2009 CURITIBA
Administração Financeira e Orçamentária II
Administração Financeira e Orçamentária II Capítulo 6 Matemática Financeira Série Uniforme de Pagamentos e de Desembolsos Sistemas de Amortização Análise de Fluxo de Caixa Séries Uniformes de Pagamentos
Processamento Digital de Sinais
Processamento Digital de Sinais Capítulo 1 Prof. Rodrigo Varejão Andreão 2010/2 Cap. 1 Introdução PDS: área de rápido desenvolvimento nos últimos 40 anos, resultado do avanço das tecnologias de computação
Aula 2 Sistemas de Numeração (Revisão)
Aula 2 Sistemas de Numeração (Revisão) Anderson L. S. Moreira anderson.moreira@recife.ifpe.edu.br http://dase.ifpe.edu.br/~alsm 1 O que fazer com essa apresentação 2 Agenda Breve revisão da aula anterior
Classificação: Determinístico
Prof. Lorí Viali, Dr. viali@pucrs.br http://www.pucrs.br/famat/viali/ Da mesma forma que sistemas os modelos de simulação podem ser classificados de várias formas. O mais usual é classificar os modelos
Capítulo 5: Aplicações da Derivada
Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f
Capítulo 4 Gerenciamento de Memória
Capítulo 4 Gerenciamento de Memória 4.1 Gerenciamento básico de memória 4.2 Troca de processos 4.3 Memória virtual 4.4 Algoritmos de substituição de páginas 4.5 Modelagem de algoritmos de substituição
Sistemas de Tempo Real: Conceitos Básicos
Escola de Computação 2000 - IME-USP Sistemas de Tempo Real: Conceitos Básicos Jean-Marie Farines Joni da Silva Fraga Rômulo Silva de Oliveira LCMI - Laboratório de Controle e Microinformática DAS - Departamento
Comunicação de Dados. Aula 4 Conversão de Sinais Analógicos em digitais e tipos de transmissão
Comunicação de Dados Aula 4 Conversão de Sinais Analógicos em digitais e tipos de transmissão Sumário Amostragem Pulse Amplitude Modulation Pulse Code Modulation Taxa de amostragem Modos de Transmissão
Aula 3 OS TRANSITÒRIOS DAS REDES ELÉTRICAS
Aula 3 OS TRANSITÒRIOS DAS REDES ELÉTRICAS Prof. José Roberto Marques (direitos reservados) A ENERGIA DAS REDES ELÉTRICAS A transformação da energia de um sistema de uma forma para outra, dificilmente
Algoritmos e Estruturas de Dados I 01/2013. Estruturas Condicionais e de Repetição (parte 2) Pedro O.S. Vaz de Melo
Algoritmos e Estruturas de Dados I 01/2013 Estruturas Condicionais e de Repetição (parte 2) Pedro O.S. Vaz de Melo Problema 1 Suponha que soma (+) e subtração (-) são as únicas operações disponíveis em
ANEXO II DA RESOLUÇÃO CEPEC N ٥ EMENTAS DAS DISCIPLINAS DO CURSO DE CIÊNCIAS ECONÔMICAS PARA ALUNOS INGRESSOS A PARTIR DE 2005
ANEXO II DA RESOLUÇÃO CEPEC N ٥ EMENTAS DAS DISCIPLINAS DO CURSO DE CIÊNCIAS ECONÔMICAS PARA ALUNOS INGRESSOS A PARTIR DE 2005 DISCIPLINAS OBRIGATÓRIAS 1 - CONTABILIDADE Fatos contábeis e econômicos. Aspectos
Introdução à Simulação
Introdução à Simulação O que é simulação? Wikipedia: Simulação é a imitação de alguma coisa real ou processo. O ato de simular algo geralmente consiste em representar certas características e/ou comportamentos
Sistemas de Numerações.
Matemática Profº: Carlos Roberto da Silva; Lourival Pereira Martins. Sistema de numeração: Binário, Octal, Decimal, Hexadecimal; Sistema de numeração: Conversões; Sistemas de Numerações. Nosso sistema
TEORIA DAS FILAS 1.1 UMA INTRODUÇÃO À PESQUISA OPERACIONAL
TEORIA DAS FILAS 1.1 UMA INTRODUÇÃO À PESQUISA OPERACIONAL A pesquisa operacional (PO) é uma ciência aplicada cujo objetivo é a melhoria da performance em organizações, ou seja, em sistemas produtivos
Sistemas Multimédia. Ano lectivo 2006-2007. Aula 11 Conceitos básicos de Audio Digital. MIDI: Musical Instrument Digital Interface
Sistemas Multimédia Ano lectivo 2006-2007 Aula 11 Conceitos básicos de Audio Digital Sumário Aúdio digital Digitalização de som O que é o som? Digitalização Teorema de Nyquist MIDI: Musical Instrument
ATAQUE TRIBUTÁRIO À INFORMALIDADE
LC/BRS/R.171 Dezembro de 2006 Original: português CEPAL COMISSÃO ECONÔMICA PARA A AMÉRICA LATINA E O CARIBE Escritório no Brasil ATAQUE TRIBUTÁRIO À INFORMALIDADE Samuel Pessoa Silvia Matos Pessoa Documento
1 A Integral por Partes
Métodos de Integração Notas de aula relativas aos dias 14 e 16/01/2004 Já conhecemos as regras de derivação e o Teorema Fundamental do Cálculo. Este diz essencialmente que se f for uma função bem comportada,
16.36: Engenharia de Sistemas de Comunicação. Aulas 17/18: Modelos de Retardo para Redes de Dados
16.36: Engenharia de Sistemas de Comunicação Aulas 17/18: Modelos de Retardo para Redes de Dados Slide 1 Redes de Pacotes Comutados Mensagens dividas em Pacotes que são roteados ao seu destino PC PC PC
- Aulas 57, 58, 59 e 60 - Técnicas de programação. Funções
1 - Aulas 57, 58, 59 e 60 - Técnicas de programação. Funções Um programa pode possuir determinados processos realizados repetidas vezes ao longo da execução do programa. Estes processos podem se agrupar
Avaliação de Desempenho de Sistemas
Avaliação de Desempenho de Sistemas Modelo de Filas M/M/1 e M/M/m Prof. Othon Batista othonb@yahoo.com Modelo de Filas Nas aulas anteriores vimos a necessidade de se utilizar uma distribuição para representar
5.1 Modelo de uma rede óptica com conversores de comprimento de onda
5 Trabalho Realizado Na seção 2.3, estabeleceu-se que uma das alternativas sub-ótimas de alocação de conversores de comprimento de onda em redes parciais é fazer uso de simulações para gerar estatísticas
Gráficos de funções em calculadoras e com lápis e papel (*)
Rafael Domingos G Luís Universidade da Madeira/Escola Básica /3 São Roque Departamento de Matemática Gráficos de funções em calculadoras e com lápis e papel (*) A difusão de calculadoras gráficas tem levado
Memória - Gerenciamento. Sistemas Operacionais - Professor Machado
Memória - Gerenciamento Sistemas Operacionais - Professor Machado 1 Partes físicas associadas à memória Memória RAM Memória ROM Cache MMU (Memory Management Unit) Processador Tabela de Páginas TLB 2 Conceitos
Matemática Básica - 08. Função Logarítmica
Matemática Básica Função Logarítmica 08 Versão: Provisória 0. Introdução Quando calculamos as equações exponenciais, o método usado consistia em reduzirmos os dois termos da equação à mesma base, como
- Universidade do Sul de Santa Catarina Unidade Acadêmica Tecnologia Pesquisa Operacional II. Prof o. Ricardo Villarroel Dávalos, Dr. Eng.
Unidade Acadêmica Tecnologia Prof o. Ricardo Villarroel Dávalos, Dr. Eng. Palhoça, Março de 2010 2 Sumário 1.0 TEORIA DAS FILAS... 3 1.1 UMA INTRODUÇÃO À PESQUISA OPERACIONAL... 3 1.2 ASPECTOS GERAIS DA
Lista de Exercícios 3 Estruturas de Controle Profa Susana M Iglesias
Lista de Exercícios 3 Estruturas de Controle Profa Susana M Iglesias 1. Tendo em vista o alto preço da gasolina, os motoristas estão preocupados com a quilometragem percorrida por seus automóveis. Um motorista
Disponibilizo a íntegra das 8 questões elaboradas para o Simulado, no qual foram aproveitadas 4 questões, com as respectivas resoluções comentadas.
Disponibilizo a íntegra das 8 questões elaboradas para o Simulado, no qual foram aproveitadas questões, com as respectivas resoluções comentadas. Amigos, para responder às questões deste Simulado, vamos
UNIDADE 3 MEDIDAS DE POSIÇÃO E DISPERSÃO OBJETIVOS ESPECÍFICOS DE APRENDIZAGEM
Unidade 2 Distribuições de Frequências e Representação Gráfica UNIDADE 3 MEDIDAS DE POSIÇÃO E DISPERSÃO OBJETIVOS ESPECÍFICOS DE APRENDIZAGEM Ao finalizar esta Unidade, você deverá ser capaz de: Calcular
2 Modelo para o Sistema de Controle de Estoque (Q, R)
Modelo para o Sistema de Controle de Estoque (, ) Neste capítulo é apresentado um modelo para o sistema de controle de estoque (,). Considera-se que a revisão dos estoques é continua e uma encomenda de
Demonstrador Animado das Técnicas de Programação de Simuladores de Eventos Discretos, utilizando o MATLAB
REVISTA DO DETUA, VOL. 2, Nº 3, SETEMBRO 1998 1 Demonstrador Animado das Técnicas de Programação de Simuladores de Eventos Discretos, utilizando o MATLAB Elizabeth Fernandez, Rui Valadas Resumo Este artigo
ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES SISTEMAS DE NUMERAÇÃO: REPRESENTAÇÃO EM PONTO FLUTUANTE. Prof. Dr. Daniel Caetano 2012-1
ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES SISTEMAS DE NUMERAÇÃO: REPRESENTAÇÃO EM PONTO FLUTUANTE Prof. Dr. Daniel Caetano 2012-1 Objetivos Compreender o que é notação em ponto flutuante Compreender a
ASSUNTO DA APOSTILA: SISTEMAS DE INFORMAÇÃO E AS DECISÕES GERENCIAIS NA ERA DA INTERNET
AULA 01 ASSUNTO DA APOSTILA: SISTEMAS DE INFORMAÇÃO E AS DECISÕES GERENCIAIS NA ERA DA INTERNET JAMES A. O BRIEN CAPÍTULO 01 Páginas 03 à 25 1 A mistura de tecnologias da Internet e preocupações empresariais
UNIVERSIDADE FEDERAL DE PERNAMBUCO. Relatório Perfil Curricular
PERÍODO: 1º MA026- CALCULO DIFERENCIAL E INTEGRAL 1 OBRIG 60 0 60 4.0 LIMITES E CONTINUIDADE DE FUNÇÕES. DERIVADAS. APLICAÇÕES DA DERIVADA. TEOREMA DE ROLLE, TEOREMA DO VALOR MÉDIO E TEOREMA DO VALOR MÉDIO
FÍSICA. Figura 5.1 Ventilador
FÍSICA 1 MECÂNICA MECÂNICA I II Mecânica Gráfica para alunos do ensino 3. médio Pêndulo utilizando simples o PUCK 5. Movimento circular NOME ESCOLA EQUIPE SÉRIE PERÍODO DATA QUESTÃO PRÉVIA No ventilador
Trabalho de Implementação Jogo Reversi
Trabalho de Implementação Jogo Reversi Paulo Afonso Parreira Júnior {paulojr@comp.ufla.br} Rilson Machado de Olivera {rilson@comp.ufla.br} Universidade Federal de Lavras UFLA Departamento de Ciência da
Memória cache. Prof. Francisco Adelton
Memória cache Prof. Francisco Adelton Memória Cache Seu uso visa obter uma velocidade de acesso à memória próxima da velocidade das memórias mais rápidas e, ao mesmo tempo, disponibilizar no sistema uma
Capítulo 8 - Testes de hipóteses. 8.1 Introdução
Capítulo 8 - Testes de hipóteses 8.1 Introdução Nos capítulos anteriores vimos como estimar um parâmetro desconhecido a partir de uma amostra (obtendo estimativas pontuais e intervalos de confiança para
CAP4: Controle Estatístico do Processo (CEP)
CAP4: Controle Estatístico do Processo (CEP) O principal objetivo do CEP é detectar rapidamente a ocorrência de causas evitáveis que produzam defeitos nas unidades produzidas pelo processo, de modo que
Escola Básica e Secundária de Velas
Escola Básica e Secundária de Velas Planificação Anual do 12º Ano Matemática A Ano letivo 2015 /2016 1º Período 2º Período 3º Período Nº DE BLOCOS PREVISTOS 39 32 24 Apresentação 0,5 1º Período 2º Período
Algoritmos e Programação Parte Teórica
Universidade Federal do Vale do São Francisco Curso de Engenharia da Produção / Elétrica Algoritmos e Programação Parte Teórica Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti
GERADORES, RECEPTORES E POTÊNCIA
AULA 22 GERADORES, RECEPTORES E POTÊNCIA 1- GERADORES ELÉTRICOS Gerador elétrico é todo elemento que transforma energia não elétrica em energia elétrica. Observe que o gerador não gera energia e sim transforma
Redes de computadores. Redes para Internet
Redes de computadores Redes para Internet Milhões de elementos de computação interligados: hospedeiros = sistemas finais Executando aplicações distribuídas Enlaces de comunicação fibra, cobre, rádio, satélite
Capítulo 3 Modelos Estatísticos
Capítulo 3 Modelos Estatísticos Slide 1 Resenha Variáveis Aleatórias Distribuição Binomial Distribuição de Poisson Distribuição Normal Distribuição t de Student Distribuição Qui-quadrado Resenha Slide
Diferenciais Ordinárias (EDO)
Resolução Numérica de Equações Diferenciais Ordinárias (EDO) Ivanovitch Medeiros Dantas da Silva Universidade Federal do Rio Grande do Norte Departamento de Engenharia de Computação e Automação DCA0399
UNIVERSIDADE FEDERAL DE PELOTAS. Índice
Índice Capítulo 7 - Formatando os slides... 2 Inserindo Números de Páginas... 2 Criando e Alterando Esquemas de Cores... 2 Adicionando um Fundo Colorido aos Slides... 3 Efeitos de Preenchimento... 4 1
Avaliação de Desempenho
Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Departamento de Sistemas de Computação Avaliação de Desempenho 4a. Aula Técnicas de Avaliação de Desempenho Modelagem Marcos
Complexidade de Algoritmos
Complexidade de Algoritmos Complexidade de Algoritmos Envolvendo Estruturas de Dados Elementares Prof. Osvaldo Luiz de Oliveira Estas anotações devem ser complementadas por apontamentos em aula. Vetor
Testedegeradoresde. Parte X. 38 Testes de Ajuste à Distribuição. 38.1 Teste Chi-Quadrado
Parte X Testedegeradoresde números aleatórios Os usuários de uma simulação devem se certificar de que os números fornecidos pelo gerador de números aleatórios são suficientemente aleatórios. O primeiro
CDI 20705 Comunicação Digital
CDI Comunicação Digital DeModulação em Banda Base Digital Communications Fundamentals and Applications Bernard Sklar ª edição Prentice Hall Marcio Doniak www.sj.ifsc.edu.br/~mdoniak mdoniak@ifsc.edu.br
4) Abaixo está representado o nó_i do arquivo SO.txt em um sistema UNIX.
1) Dadas as seguintes tabelas, de Páginas e de Molduras de Páginas, dar os endereços físicos para os seguintes endereços virtuais: Tabela de Molduras Páginas 0 4k 7 0 0 4k 4k 8k X 1 4k 8k 8k 12k X 2 8k
Capítulo 1 Definição de Sinais e Sistemas
Capítulo 1 Definição de Sinais e Sistemas 1.1 Introdução 1.2 Representação dos sinais como funções 1.3 Representação dos sistemas como funções 1.4 Definições básicas de funções 1.5 Definição de sinal 1.6