Derivada fracionária no sentido de Caputo-Hadamard

Tamanho: px
Começar a partir da página:

Download "Derivada fracionária no sentido de Caputo-Hadamard"

Transcrição

1 Trblho prsntdo no CNMAC, Grmdo - RS, Procding Sris of th Brzilin Socity of Computtionl nd Applid Mthmtics Drivd frcionári no sntido d Cputo-Hdmrd Dnil dos Sntos d Olivir 1 Edmundo Cpls d Olivir 2 Instituto d Mtmátic, Esttístic Computção Cintífic, Unicmp, Cmpins, SP Rsumo O cálculo d ordm não intir, tmbém conhcido como cálculo frcionário, pod sr visto como um gnrlizção d intgrção difrncição ordináris, isto é, pssgm d ordm intir pr não intir ou té msmo complx. Vmos nos concntrr n formulção d Cputo-Hdmrd, rcntmnt introduzid. Aprsntrmos su dfinição lgums d sus propridds, bm como o torm fundmntl do cálculo frcionário l ssocido. Como plicção, obtmos solução d um prticulr qução difrncil frcionári. Plvrs-chv. Drivd frcionári, Cputo-Hdmrd, torm fundmntl do cálculo frcionário, qução difrncil frcionári 1 Introdução O cálculo frcionário CF) nom populrizdo pr cálculo intgrl difrncil d ordm não intir é d msm époc qu o cálculo intgrl difrncil conform proposto, indpndntmnt, por Nwton Libniz. É costum mncionrmos um corrspondênci trocd por Libniz l Hôpitl dtd do no d 1695, como sndo o possívl início do qu viri s constituir n futur tori. Nst corrspondênci l Hôpitl qustionv Libniz sobr drivd d ordm não intir, m prticulr, drivd d ordm mio. Libniz rspond m tom profético, qu isto ind viri grr um long séri d studos psquiss [1, 5]. Existm mnirs distints d introduzir o concito d intgris drivds frcionáris, porém não ncssrimnt sts coincidm [6]. Introduzimos s intgris drivds frcionáris sgundo Hdmrd [4] um modificção pr sts drivds dndo ssim origm às drivds d Cputo-Hdmrd [3]. Nst trblho, primirmnt, prsntmos s intgris drivds frcionáris no sntido d Hdmrd. N sção 2 introduzimos s intgris drivds no sntido d Cputo-Hdmrd fim d discutir lgums propridds, m prticulr, um similr torm fundmntl do cálculo frcionário pr sts intgris drivds. Aprsntmos, sguir, dfinição ds intgris drivds d ordm não intir proposts por Hdmrd. 1 r142310@im.unicmp.br 2 cpls@im.unicmp.br DOI: / SBMAC

2 2 Dfinição 1.1 Intgris frcionáris sgundo Hdmrd). Sjm,b) 0 < b ) um intrvlo limitdo ou ilimitdo d R + Rα) > 0. As intgris frcionáris d Hdmrd d ordm α C, à squrd à dirit, são dfinids, rspctivmnt, por J α +ϕx) := 1 Γα) ln x ) α 1ϕt) dt t t, < x < b 1) Jb α 1 ϕx) := Γα) b x ln t ) α 1 ϕt) dt, < x < b. 2) x t Dfinição 1.2 Drivds frcionáris sgundo Hdmrd). As drivds frcionáris d Hdmrd d ordm α C, ond Rα) 0 m,b), < x < b, são dfinids, à squrd à dirit, rspctivmnt, por D+ϕx) α := δ n J+ n α ϕx) = x d ) n 1 dx Γn α) ln x ) n α 1ϕt) dt t t 3) Db α ϕx) := δn J n α b ϕx) = x d ) n 1 dx Γn α) b x ln t ) n α 1 ϕt) dt x t, 4) ond [Rα)] é prt intir d Rα) n = [Rα)]+1. A fim d dixr o trblho utoconsistnt, prsntmos o lm sguir qu srá utilizdo n dmonstrção do torm fundmntl do cálculo frcionário ssocido às intgris drivds frcionáris no sntido d Cputo-Hdmrd. Lm 1.1 Propridd d smigrupo ds intgris drivds frcionáris sgundo Hdmrd). Sjm α,β C tis qu Rα) > Rβ) > 0 i) S 0 < < b < 1 p <, ntão pr ϕx) L p,b), D β + J +ϕx) α = J α β + ϕx) Dβ b J b α α β ϕx) = J ϕx); 5) b ii) J+J α β α+β + ϕx) = J+ ϕx) J b α J β α+β b ϕx) = Jb ϕx). 6) 2 Drivd frcionári no sntido d Cputo-Hdmrd A sguir, prsntmos dfinição d drivd d ordm não intir sgundo Cputo- Hdmrd, qul surgiu trvés d um modificção n drivd frcionári conform propost por Hdmrd [2, 3]. No dcorrr dst trblho, considrrmos o conjunto N 0 = {0,1,2,...} AC[,b] o spço d funçõs bsolutmnt contínus no intrvlo [,b]. DOI: / SBMAC

3 3 Dfinição 2.1 Drivd frcionári sgundo Cputo-Hdmrd). Sjm Rα) 0, n = [Rα)]+1 ϕ AC n δ [,b], 0 < < b <. Então, C D+ϕx) α C Db α ϕx) xistm m [,b] são dfinids, à squrd à dirit, rspctivmnt, por C D α +ϕx) := D α + C D α b ϕx) := Dα b [ [ ϕx) ϕx) δ k ϕ) 1) k δ k ϕb) ] ln x ) k 7) ln b ) ] k, 8) x ond AC n δ [,b] = {ϕ : [,b] C : δ ϕx) AC[,b],δ = x d dx }. Em prticulr, s 0 < Rα) < 1, tmos C D+ϕx) α = D+ϕx) D α +ϕ), α 9) C Db α ϕx) = Dα b ϕx) Dα b ϕb). 10) 3 Propridds torm fundmntl do cálculo frcionário pr s drivds frcionáris sgundo Cputo-Hdmrd Algums propridds d drivd frcionári d Cputo-Hdmrd são prsntds bm como o torm fundmntl do cálculo frcionário l ssocido. Proposição 3.1. S Rα) > 0, Rβ) > 0, 0 < < b <, ntão, tmos qu [ i) J+ α ln x ) ] β 1 = Γβ) ln x β+α 1, Γβ +α) ) Rβ) > n, [ ii) C D+ α ln x ) ] β 1 = Γβ) ln x β α 1, Γβ α) ) Rβ) > n. S β = k +1, tmos qu Em prticulr, C D α + ln x ) k = 0, k = 0,1,...,. 11) C D α +1 = 0. 12) O torm sguir mostr um outr form d scrvr drivd d ordm não intir sgundo Cputo-Hdmrd. Torm 3.1. Sj Rα) 0, n = [Rα)]+1 ϕx) AC n δ [,b], 0 < < b <. Então, C D+ϕx) α C Db α ϕx) xistm m [,b] DOI: / SBMAC

4 4 i) s α / N 0 C D α +ϕx) = C D α b ϕx) = 1 Γn ) 1) n Γn α) b ln x ) n α 1δ n ϕt) dt t t = J + n α δn ϕx), 13) ln t ) n α 1 δ n ϕt) dt x t = 1)n J n α b δn ϕx);14) ii) s α = n N 0, C D α +ϕx) = δ n ϕx), C D α b ϕx) = 1)n δ n ϕx). 15) Em prticulr, C D+ϕx) 0 = C Db 0 ϕx) = ϕx). 16) Dmonstrção. Pr dmonstrr primir prt dst torm dvmos dmitir, n dfinição d drivd d Hdmrd à squrd, Eq.3), qu função ϕt) srá dd pl Eq.7). Assim, dvmos intgrr por prts, considrndo u = ϕt) δ k ϕ) ln ) t k dv = ln x ) n α 1 dt t t, logo pós drivr. Dst form, obtrmos um xprssão qul dvrmos intgrr, por prts, novmnt, considrndo o msmo dv tmbém drivá-l. Fzndo isto n vzs, sgu o rsultdo. Após prsntr os oprdors d intgrção difrncição frcionários no sntido d Cputo-Hdmrd, vmos nuncir dmonstrr o torm fundmntl do cálculo frcionário ssocido sts oprdors [2, 3]. Pr tnto, considrmos o oprdor d intgrção sgundo Hdmrd o oprdor d difrncição sgundo Cputo-Hdmrd. Est torm srá utilizdo pr obtr solução d um qução difrncil frcionári. Torm 3.2 Torm Fundmntl do Cálculo Frcionário). Sjm α C com Rα) 0, n = [Rα)]+1 ϕx) AC n δ [,b], 0 < < b <. i) S Φx) = J+ϕx) α ou Φx) = Jb α ϕx), x [,b], ntão 17) C D α +Φx) = ϕx), C Db α Φx) = ϕx). 18) ii) J α b C D α +)Φx) = Φb) Φ), Jb α C Db α )Φx) = Φ) Φb). 19) DOI: / SBMAC

5 5 Dmonstrção. i) A prtir do lm 2.4 m [3] podmos notr qu, s intgris frcionáris proposts por Hrdmrd s drivds frcionáris no sntido d Cputo-Hdmrd são oprdors invrsos, isto é, C D+J α +)ϕx) α = ϕx) C Db α J b α )ϕx) = ϕx). 20) Assim, s Φx) = J+ϕx) α ou Φx) = Jb α ϕx), obtmos, imditmnt, s xprssõs n Eq.18). ii) Utilizndo Eq.13), podmos scrvr J α + C D α +)Φx) = J α +J n α + δn )Φx). 21) Nst cso, utilizmos primir qução d 6), ou sj, Em prticulr, s n = 1, tmos qu J α + C D α +)Φx) = J n +δ n )Φx). 22) o qu implic m J+ α C D+)Φx) α = J+δ 1 1 )Φx) 1 x dt = t d ) Φt) Γ1) t dt ) d = dt Φt) dt J α b C D α +)Φx) = A prtir do lm 2.5 d [3], tmos b J+ α C D+)ϕx) α = ϕx) = Φx) Φ), 23) ) d dt Φt) dt = Φb) Φ). 24) δ k ϕ) ln x ) k. 25) Em prticulr, s 0 < Rα) < 1, ntão n = 1 Φx) AC δ [,b] ou Φx) C δ [,b]. Assim, J α + C D α +Φx) = Φx) Φ). 26) Sgu qu, J α b C D α +)Φx) rsult n primir qução d 19). DOI: / SBMAC

6 6 4 Aplicção Nst sção rsolvmos um qução difrncil frcionári trvés do torm fundmntl do cálculo frcionário ssocido às drivds sgundo Cputo-Hdmrd. Considr o problm d vlor inicil frcionário C D α +ϕx) = c, ϕ) = 0, ond c são constnts não nuls, x > 0 0 < Rα) < 1. Aplicndo o oprdor d intgrção frcionário à squrd J α +, sgundo Hdmrd, n qução difrncil utilizndo Eq.26), tmos qu J+ α C D+ϕx) α = J+c α c ϕx) ϕ) = ln x α. Γ1+α) ) Not qu, pr clculr J+c α bst dmitir β = 1 n Proposição 3.1, itm i). Sgu qu solução é dd por c ϕx) = ln x α. 27) Γ1+α) ) Qundo c = = 1, tmos como solução ϕx) = [lnx)]α Γ1+α). 28) A sguir, o gráfico pr solução 28) com lguns vlors d α Α 0.5 Α 0.7 Α 0.9 Α Figur 1: Função ϕx) = [lnx)]α Γ1+α). DOI: / SBMAC

7 7 5 Conclusõs Introduzimos s drivds frcionáris no sntido d Cputo-Hdmrd fim d dmonstrr o chmdo torm fundmntl do cálculo frcionário ssocido à intgrl à drivd d Cputo-Hdmrd. Rssltmos qu, num rcnt trblho foi discutido o torm fundmntl do cálculo, m su vrsão frcionári, nvolvndo s drivds no sntido d Rimnn-Liouvill no sntido d Cputo [7]. Como plicção dss torm, rsolvmos um simpls qução difrncil frcionári nvolvndo drivd d Cputo-Hdmrd. Um continução nturl dst trblho é discutir solução d um qução difrncil frcionári ond função d Mittg-Lfflr mrg nturlmnt. Rfrêncis [1] R. Figuirdo Cmrgo E. Cpls d Olivir. Cálculo frcionário, Editor Livrri d Físic, São Pulo, [2] Y. Y. Gmbo, F. Jrd, D. Blnu nd T. Abdljwd. On Cputo modifiction of th Hdmrd frctionl drivtiv, Advncs in Diffrnc Equtions, Springr, volum 2014, númro 1, pgs 1 12, [3] F. Jrd, T. Abdljwd nd D. Blnu. Cputo-typ modifiction of th Hdmrd frctionl drivtiv. Advncs in Diffrnc Equtions, Springr, volum 2012, númro 1, pgs 1 8, [4] A. A. Kilbs. Hdmrd-typ frctionl clculus. Journl of th Korn Mthmticl Socity, volum 38, númro 6, pgs , [5] K. S. Millr nd B. Ross. An introduction to th frctionl clculus nd frctionl difrntil qutions, John Wily & Sons, Wily Intrscinc, Nw York, [6] E. Cpls d Olivir nd J. Tnriro Mchdo. A rviw of dfinitions for frctionl drivtivs nd intgrl, Mthmticl Problms in Enginring, volum 2014, pgs 1 6, Articl ID [7] E. Conthrtz Grigoltto nd E. Cpls d Olivir. Frctionl vrsions of th fundmntl thorm of clculus, Appl. Mth., volum 4, pgs 23 33, DOI: / SBMAC

VARIÁVEIS ALEATÓRIAS CONTÍNUAS. Vamos agora estudar algumas variáveis aleatórias contínuas e respectivas propriedades, nomeadamente:

VARIÁVEIS ALEATÓRIAS CONTÍNUAS. Vamos agora estudar algumas variáveis aleatórias contínuas e respectivas propriedades, nomeadamente: 86 VARIÁVIS ALATÓRIAS CONTÍNUAS Vmos gor studr lgums vriávis ltóris contínus rspctivs propridds, nomdmnt: uniform ponncil norml qui-qudrdo t-studnt F DISTRIBUIÇÃO UNIFORM Considr-s qu função dnsidd d proilidd

Leia mais

Cálculo Diferencial II Lista de Exercícios 1

Cálculo Diferencial II Lista de Exercícios 1 Cálculo Difrncil II List d Ercícios 1 CONJUNTO ABERTO E PONTOS DE ACUMULAÇÃO 1 Vrifiqu quis dos conjuntos sguir são brtos m (, ) 1 (, ) 0 (, ) 0 (, ) 0 1 Dtrmin o conjunto d pontos d cumulção do conjunto

Leia mais

INTEGRAÇÃO MÉTODO DA SUBSTITUIÇÃO

INTEGRAÇÃO MÉTODO DA SUBSTITUIÇÃO INTEGRAÇÃO MÉTODO DA UBTITUIÇÃO o MUDANÇA DE VARIAVEL PARA INTEGRAÇÃO Emplos Ercícios MÉTODO DA INTEGRAÇÃO POR PARTE Emplos Ercícios7 INTEGRAL DEFINIDA8 Emplos Ercícios REFERÊNCIA BIBLIOGRÁFICA INTRODUÇÃO:

Leia mais

= 1, independente do valor de x, logo seria uma função afim e não exponencial.

= 1, independente do valor de x, logo seria uma função afim e não exponencial. 6. Função Eponncil É todo função qu pod sr scrit n form: f: R R + = Em qu é um númro rl tl qu 0

Leia mais

Material Teórico - Módulo Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. Razões Trigonométricas no Triângulo Retângulo.

Material Teórico - Módulo Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. Razões Trigonométricas no Triângulo Retângulo. Mtril Tórico - Módulo Triângulo Rtângulo, Li dos Snos ossnos, Poĺıgonos Rgulrs Rzõs Trigonométrics no Triângulo Rtângulo Nono no utor: Prof Ulisss Lim Prnt Rvisor: Prof ntonio min M Nto Portl d OMEP 1

Leia mais

c.c. É a função que associa a cada x X(S) um número f(x) que deve satisfazer as seguintes propriedades:

c.c. É a função que associa a cada x X(S) um número f(x) que deve satisfazer as seguintes propriedades: Prof. Lorí Vili, Dr. vili@mt.ufrgs.r http://www.mt.ufrgs.r/~vili/ Sj um vriávl ltóri com conjunto d vlors (S). S o conjunto d vlors for infinito não numrávl ntão vriávl é dit contínu. É função qu ssoci

Leia mais

MATEMÁTICA A - 12o Ano Funções - Teorema de Bolzano Propostas de resolução

MATEMÁTICA A - 12o Ano Funções - Teorema de Bolzano Propostas de resolução MATEMÁTICA A - o Ano Funçõs - Torm d Bolzno Proposts d rsolução Exrcícios d xms tsts intrmédios. Dtrminndo s coordnds dos pontos P Q, m função d são, rsptivmnt P (,h() ) = P Q (,h() ) ( = Q, ln() ), tmos

Leia mais

10.7 Área da Região Limitada por duas Funções Nesta seção, consideraremos a região que está entre os gráficos de duas funções.

10.7 Área da Região Limitada por duas Funções Nesta seção, consideraremos a região que está entre os gráficos de duas funções. 0.7 Ár d Rgião Limitd por dus Funçõs Nst sção, considrrmos rgião qu stá ntr os gráficos d dus funçõs. S f g são contínus f () g() 0 pr todo m [,], ntão ár A d rgião R, limitd plos gráficos d f, g, = =,

Leia mais

Condições Suficientes de Otimalidade em Cálculo das Variações no Contexto Não-Suave

Condições Suficientes de Otimalidade em Cálculo das Variações no Contexto Não-Suave Trblho prsntdo no XXXVII CNMAC, S.J. dos Cmpos - SP, 217. Procding Sris of th Brzilin Socity of Computtionl nd Applid Mthmtics Condiçõs Suficints d Otimlidd m Cálculo ds Vriçõs no Contxto Não-Suv Crolin

Leia mais

Aulas práticas: Introdução à álgebra geométrica

Aulas práticas: Introdução à álgebra geométrica Auls prátics: Introdução à álgr gométric Prolm Mostr qu ár A do prllogrmo d figur nx é dd por A= = αβ αβ y β α α β β A = αβ αβ α x α β = α + α, = β + β = = αβ + αβ = = ( αβ αβ)( ) = + = = 0 = = = 0 = Prolm

Leia mais

A Função Densidade de Probabilidade

A Função Densidade de Probabilidade Prof. Lorí Vili, Dr. vili@mt.ufrgs.r http://www.mt.ufrgs.r/~vili/ Sj X um vriávl ltóri com conjunto d vlors X(S). S o conjunto d vlors for infinito não numrávl ntão vriávl é dit contínu. A Função Dnsidd

Leia mais

TÓPICOS. Melhor aproximação. Projecção num subespaço. Mínimo erro quadrático.

TÓPICOS. Melhor aproximação. Projecção num subespaço. Mínimo erro quadrático. Not m: litur dsts pontmntos não dispns d modo lgum litur tnt d iliogrfi principl d cdir Chm-s tnção pr importânci do trlho pssol rlizr plo luno rsolvndo os prolms prsntdos n iliogrfi, sm consult prévi

Leia mais

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P 26 a Aula 20065 AMIV 26 Exponncial d matrizs smlhants Proposição 26 S A SJS ntão Dmonstração Tmos A SJS A % SJS SJS SJ % S ond A, S J são matrizs n n ", (com dt S 0), # S $ S, dond ; A & SJ % S SJS SJ

Leia mais

COMPORTAMENTO DE SOLUÇÕES

COMPORTAMENTO DE SOLUÇÕES 1 COMPORTAMENTO DE SOLUÇÕES BEHAVIOR OF SOLUCTIONS Rfl Lim Olivir; Frnndo Prir d Souz Univrsidd Fdrl d frmtml@gmilbr Mto Grosso do Sul, CPTL/UFMS -mil: RESUMO - No prsnt trblho studdo os tipos d soluçõs

Leia mais

Sinais e Sistemas Mecatrónicos

Sinais e Sistemas Mecatrónicos Sinis Sistms Mctrónicos Anális d Sistms no Domínio do Tmpo José Sá d Cost José Sá d Cost T11 - Anális d Sistms no Tmpo - Rsp. stcionári 1 Crctrizção d rspost stcionário A crctrizção d rspost stcionári

Leia mais

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo Intgração Múltipla Prof. M.Sc. Armando Paulo da Silva UTFP Campus Cornélio Procópio )INTEGAIS DUPLAS: ESUMO Emplo Emplo Calcul 6 Calcul 6 dd dd O fato das intgrais rsolvidas nos mplos srm iguais Não é

Leia mais

Electromagnetismo e Óptica

Electromagnetismo e Óptica Elctromgntismo Óptic Lbortório 1 Expriênci d Thomson OBJECTIVOS Obsrvr o fito d forç d Lorntz. Mdir o cmpo d indução mgnétic produzido por bobins d Hlmholtz. Dtrminr xprimntlmnt o vlor d rlção crg/mss

Leia mais

Material Teórico - Módulo Teorema de Pitágoras e Aplicações. Aplicações do Teorema de Pitágoras. Nono Ano

Material Teórico - Módulo Teorema de Pitágoras e Aplicações. Aplicações do Teorema de Pitágoras. Nono Ano Mtril Tórico - Módulo Torm d Pitágors plicçõs plicçõs do Torm d Pitágors Nono no utor: Prof. Ulisss Lim Prnt Rvisor: Prof. ntonio min M. Nto d mio d 019 1 lgums plicçõs simpls Nsst ul, prsntrmos mis lgums

Leia mais

Análise Matemática IV

Análise Matemática IV Anális Matmática IV Problmas para as Aulas Práticas Smana 7 1. Dtrmin a solução da quação difrncial d y d t = t2 + 3y 2 2ty, t > 0 qu vrifica a condição inicial y(1) = 1 indiqu o intrvalo máximo d dfinição

Leia mais

Oitavo Ano. Autor: Prof. Ulisses Lima Parente Revisor: Prof. Antonio Caminha M. Neto. Portal da OBMEP

Oitavo Ano. Autor: Prof. Ulisses Lima Parente Revisor: Prof. Antonio Caminha M. Neto. Portal da OBMEP Mtril Tórico - Módulo Frçõs Algébrics Oprçõs Básics Oitvo Ano Autor: rof. Ulisss Lim rnt Rvisor: rof. Antonio Cminh M. Nto ortl d OBME Simplificção d frçõs lgébrics Um frção lgébric é um xprssão lgébric

Leia mais

TRANSFORMADA DE LAPLACE

TRANSFORMADA DE LAPLACE TRANSFORMADA DE LAPLACE Nt cpítulo trtmo d um método d rolução d quçõ difrncii linr d ordm n com coficint contnt condiçõ inici, ou j, trnformd d Lplc.. Dfinição Sj f(t) um função dd pr t, uponhmo qu f

Leia mais

3. Geometria Analítica Plana

3. Geometria Analítica Plana MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE PELOTAS DEPARTAMENTO DE MATEMÁTICA E ESTATÍSITICA APOSTILA DE GEOMETRIA ANALÍTICA PLANA PROF VINICIUS 3 Gomtria Analítica Plana 31 Vtors no plano Intuitivamnt,

Leia mais

Adição dos antecedentes com os consequentes das duas razões

Adição dos antecedentes com os consequentes das duas razões Adição dos ntcdnts com os consqunts ds dus rzõs Osrv: 0 0 0 0, ou sj,, ou sj, 0 Otnh s trnsformds por mio d dição dos ntcdnts com os consqünts: ) ) ) 0 0 0 0 0 0 0 0 ) 0 0 0 0 ) 0 0 0 0 ) Osrv gor como

Leia mais

ln xdx 1 TÉCNICAS DE INTEGRAÇÃO

ln xdx 1 TÉCNICAS DE INTEGRAÇÃO Cpítlo Técnics d Inrção - TÉCNICAS DE INTEGRAÇÃO. INTEGRAÇÃO POR PARTES Um técnic d inrção mito útil é inrção por prts, q dpnd d fórml pr difrncil d m prodto. Sjm f g fnçõs difrnciávis d. Então, pl rgr

Leia mais

TÉCNICAS DE INTEGRAÇÃO. 1.1 Integrais por Substituição Mudança de Variáveis

TÉCNICAS DE INTEGRAÇÃO. 1.1 Integrais por Substituição Mudança de Variáveis UFP VIRTUL Liccitr m Mtmátic Distâci Discipli: álclo Difrcil Irl II Prof Jorg ost Drt Filho Ttor: Moisés Vi F d Olivir TÉNIS DE INTEGRÇÃO Técics d Irção Iris por Sbstitição Mdç d Vriávis Sjm f g fçõs tis

Leia mais

+ = x + 3y = x 1. x + 2y z = Sistemas de equações Lineares

+ = x + 3y = x 1. x + 2y z = Sistemas de equações Lineares Sisms d quçõs Linrs Equção Linr Tod qução do ipo:.. n n Ond:,,., n são os ofiins;,,, n são s inógnis; é o rmo indpndn. E.: d - Equção Linr homogên qundo o rmo indpndn é nulo ( ) - Um qução linr não prsn

Leia mais

CAPÍTULO 3. Exercícios é contínua, decrescente e k 2 positiva no intervalo [ 3, [. De ln x 1 para x 3, temos. dx 3.

CAPÍTULO 3. Exercícios é contínua, decrescente e k 2 positiva no intervalo [ 3, [. De ln x 1 para x 3, temos. dx 3. CAPÍTULO Exrcícios.. b) Sj séri. A fução f( x) é cotíu, dcrsct l x l x positiv o itrvlo [, [. D l x pr x, tmos dx dx. x l x x dx x covrgt Þ l x covrgt. l d) Sj séri 0 m [ 0, [. Tmos: x 4. A fução f( x)

Leia mais

Matemática IME-2007/ a QUESTÃO. 2 a QUESTÃO COMENTA

Matemática IME-2007/ a QUESTÃO. 2 a QUESTÃO COMENTA Matmática a QUESTÃO IME-007/008 Considrando qu podmos tr csto sm bola, o númro d maniras d distribuir as bolas nos três cstos é igual ao númro d soluçõs intiras não-ngativas da quação: x + y + z = n, na

Leia mais

FUNÇÕES DE UMA VARIÁVEL COMPLEXA

FUNÇÕES DE UMA VARIÁVEL COMPLEXA FUNÇÕES DE UMA VARIÁVEL COMPLEXA Ettor A. d Barros 1. INTRODUÇÃO Sja s um númro complxo qualqur prtncnt a um conjunto S d númros complxos. Dizmos qu s é uma variávl complxa. S, para cada valor d s, o valor

Leia mais

5 Reticulados e sua relação com a álgebra booleana

5 Reticulados e sua relação com a álgebra booleana Nots d ul d MAC0329 (2004) 30 5 Rticuldos su rlção com álgbr booln 5.1 Conjuntos prcilmnt ordndos Sj A um conjunto não vzio. Um rlção binári R sobr A é um subconjunto d A A, isto é, R A A. S (x, y) R,

Leia mais

Oscilações amortecidas

Oscilações amortecidas Oscilaçõs amortcidas Uso d variávl complxa para obtr a solução harmônica ral A grand vantagm d podr utilizar númros complxos para rsolvr a quação do oscilador harmônico stá associada com o fato d qu ssa

Leia mais

1.1 O Círculo Trigonométrico

1.1 O Círculo Trigonométrico Elmntos d Cálculo I - 06/ - Drivada das Funçõs Trigonométricas Logarítmicas Prof Carlos Albrto S Soars Funçõs Trigonométricas. O Círculo Trigonométrico Considrmos no plano a cirncunfrência d quação + =,

Leia mais

III Encontro de Educação, Ciência e Tecnologia

III Encontro de Educação, Ciência e Tecnologia Ára d Publicação: Matmática UMA MANEIRA SIMPLES DE DETERMINAR TODOS OS TERNOS PITAGÓRICOS SILVA, Rodrigo M. F. da 1 ; SILVA, Lucas da² ; FILHO, Danil Cordiro d Morais ² 1 UFCG/CCT/UAMAT/Voluntário PET-

Leia mais

Tópicos de Física Clássica I Aula 7 O problema de Dido; condições auxiliares II

Tópicos de Física Clássica I Aula 7 O problema de Dido; condições auxiliares II Tópicos d Física Clássica I Aula 7 O problma d Dido; condiçõs auxiliars II a c tort O problma d Dido Fugindo d su irmão Pigmalião qu havia assasinado su tio marido, Dido d Tiro, mais tard fundadora rainha

Leia mais

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ PR UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Prof Mc ARMANDO PAULO DA SILVA Prof Mc JOSÉ DONIZETTI DE LIMA INTEGRAIS IMPRÓPRIAS A TRANSFORMADA DE LAPLACE g ()d = lim R R g()d o limit it Qudo o limit it

Leia mais

log5 log 5 x log 2x log x 2

log5 log 5 x log 2x log x 2 mta unção rítmic. Indiqu o vlor d:.. 6.. 7 49...5..6. 5 ln.7. 9.4. ln.8..9. 46.. 4 4 6 6 8 8. Dtrmin o vlor d... 4 8.. 8.. 8.4. 5.5..9. 5.6. 9.7.,8.8... 6 5 8 4 5..... Rsolv cd um ds quçõs:.... 5.. ln

Leia mais

PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR 0 Fs Prof. Mri Antôni Gouvi. CONHECIMENTOS GERAIS QUESTÃO 0 ) Quntos são os númros intiros positivos d qutro grismos, scohidos sm rptição, ntr,, 5, 6, 8, 9? b)

Leia mais

Uniforme Exponencial Normal Gama Weibull Lognormal. t (Student) χ 2 (Qui-quadrado) F (Snedekor)

Uniforme Exponencial Normal Gama Weibull Lognormal. t (Student) χ 2 (Qui-quadrado) F (Snedekor) Prof. Lorí Vili, Dr. vili@pucrs.br vili@m.ufrgs.br hp://www.pucrs.br/fm/vili/ hp://www.m.ufrgs.br/~vili/ Uniform Exponncil Norml Gm Wibull Lognorml (Sudn) χ (Qui-qudrdo) F (Sndkor) Um VAC X é uniform no

Leia mais

TÓPICOS. Números complexos. Plano complexo. Forma polar. Fórmulas de Euler e de Moivre. Raízes de números complexos.

TÓPICOS. Números complexos. Plano complexo. Forma polar. Fórmulas de Euler e de Moivre. Raízes de números complexos. Not m: litur dsts potmtos ão disps d modo lgum litur tt d iliogrfi pricipl d cdir Chm-s tção pr importâci do trlho pssol rlir plo luo rsolvdo os prolms prstdos iliogrfi, sm cosult prévi ds soluçõs proposts,

Leia mais

Lista de Matemática ITA 2012 Trigonometria

Lista de Matemática ITA 2012 Trigonometria List d Mtmátic ITA 0 Trigonomtri 0 - (UERJ/00) Obsrv bixo ilustrção d um pistão su squm no plno. Um condição ncssári suficint pr qu s dus árs sombrds n figur sjm iguis é t =. tg =. tg =. tg =. tg. O pistão

Leia mais

APLICAÇÕES DO PEQUENO TEOREMA DE FERMAT

APLICAÇÕES DO PEQUENO TEOREMA DE FERMAT Encontro d Ensino Psquisa Extnsão Prsidnt Prudnt 20 a 23 d outubro 2014 1 APLICAÇÕES DO PEQUENO TEOREMA DE FERMAT APPLICATIONS OF THE FERMAT'S LITTLE THEOREM Vanssa d Fritas Travllo 1 ; Luana Batriz Cardoso¹;

Leia mais

Representação de Números no Computador e Erros

Representação de Números no Computador e Erros Rprsntação d Númros no Computador Erros Anális Numérica Patrícia Ribiro Artur igul Cruz Escola Suprior d Tcnologia Instituto Politécnico d Stúbal 2015/2016 1 1 vrsão 23 d Fvriro d 2017 Contúdo 1 Introdução...................................

Leia mais

ELECTROMAGNETISMO. TESTE 1 17 de Abril de 2010 RESOLUÇÕES. campo eléctrico apontam ambas para a esquerda, logo E 0.

ELECTROMAGNETISMO. TESTE 1 17 de Abril de 2010 RESOLUÇÕES. campo eléctrico apontam ambas para a esquerda, logo E 0. LTROMAGNTIMO TT 7 d Ail d 00 ROLUÇÕ Ao longo do io dos yy, o vcto cmpo léctico é pllo o io dos pont p squd Isto dv-s o fcto qu qulqu ponto no io dos yy stá quidistnt d dus ptículs cujs cgs são iguis m

Leia mais

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE ASSUNTO: DERIVADAS E INTEGRAIS DAS FUNÇÕES, TRIGONOMÉTRICAS E HIPÉRBOLICAS INVERSAS

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE ASSUNTO: DERIVADAS E INTEGRAIS DAS FUNÇÕES, TRIGONOMÉTRICAS E HIPÉRBOLICAS INVERSAS FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ENGENHARIA DE PRODUÇÃO ASSUNTO: DERIVADAS E INTEGRAIS DAS FUNÇÕES, TRIGONOMÉTRICAS E HIPÉRBOLICAS INVERSAS PROFESSOR: MARCOS AGUIAR CÁLCULO I. FUNÇÕES

Leia mais

Expressão Semi-Empírica da Energia de Ligação

Expressão Semi-Empírica da Energia de Ligação Exprssão Smi-Empíric d Enrgi d Ligção om o pssr do tmpo n usênci d um tori dtlhd pr dscrvr strutur nuclr, vários modlos form dsnvolvidos, cd qul corrlcionndo os ddos xprimntis d um conjunto mis ou mnos

Leia mais

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período Rsolução da Prova d Física Tórica Turma C2 d Engnharia Civil Príodo 2005. Problma : Qustõs Dados do problma: m = 500 kg ; v i = 4; 0 m=s ;! a = 5! g d = 2 m. Trabalho ralizado por uma força constant: W

Leia mais

10 Encontro de Ensino, Pesquisa e Extensão, Presidente Prudente, 21 a 24 de outubro, 2013

10 Encontro de Ensino, Pesquisa e Extensão, Presidente Prudente, 21 a 24 de outubro, 2013 10 Encontro d Ensino, Psquisa Extnsão, Prsidnt Prudnt, 21 a 24 d outubro, 2013 DIFERENCIAÇÃO COMPLEXA E AS CONDIÇÕES DE CAUCHY-RIEMANN Pâmla Catarina d Sousa Brandão1, Frnando Prira Sousa2 1 Aluna do Curso

Leia mais

Associação de Resistores e Resistência Equivalente

Associação de Resistores e Resistência Equivalente Associção d sistors sistêci Equivlt. Itrodução A ális projto d circuitos rqurm m muitos csos dtrmição d rsistêci quivlt prtir d dois trmiis quisqur do circuito. Além disso, pod-s um séri d csos práticos

Leia mais

3 Freqüências Naturais e Modos de Vibração

3 Freqüências Naturais e Modos de Vibração 3 Frqüêncis Nturis Modos d Vibrção Aprsnt-s nst cpítulo ddução ds quçõs difrnciis prciis d movimnto com s rspctivs condiçõs d contorno prtir do funcionl d nrgi.3. Tm-s ssim um problm d vlor d contorno

Leia mais

Notas sobre Integrais Impróprios em R. Pedro Lopes Departamento de Matemática Instituto Superior Técnico 1o. Semestre 2009/2010

Notas sobre Integrais Impróprios em R. Pedro Lopes Departamento de Matemática Instituto Superior Técnico 1o. Semestre 2009/2010 Nots sobr Intris Impróprios m R Pdro Lops Dprtmnto d Mtmátic Instituto Suprior Técnico o. Smstr 29/2 Ests nots constitum um mtril d poio o curso d Cálculo Dirncil Intrl II pr s licnciturs m Ennhri Inormátic,

Leia mais

Seja f uma função r.v.r. de domínio D e seja a R um ponto de acumulação de

Seja f uma função r.v.r. de domínio D e seja a R um ponto de acumulação de p-p8 : Continuidad d funçõs rais d variávl ral. Lr atntamnt. Dominar os concitos. Fazr rcícios. Função contínua, prolongávl por continuidad, dscontínua. Classificação d dscontinuidads. Continuidad num

Leia mais

Métodos Computacionais em Engenharia DCA0304 Capítulo 4

Métodos Computacionais em Engenharia DCA0304 Capítulo 4 Métodos Computciois m Eghri DCA34 Cpítulo 4 4 Solução d Equçõs Não-lirs 4 Técic d isolmto d rízs ris m poliômios Cosidrdo um poliômio d orm: P L Dsj-s cotrr os limits ds rízs ris dst poliômio Chmrmos d

Leia mais

Experiência 6 - Oscilações harmônicas amortecidas

Experiência 6 - Oscilações harmônicas amortecidas Rotio d Físic Expimntl II 6 Expiênci 6 - Oscilçõs hmônics motcids 1 OBJETIVO O objtivo dst ul é discuti liz xpimntos nvolvndo um conjunto mss-mol no qul o fito d motcimnto sob o movimnto do conjunto não

Leia mais

MATRIZES. Matriz é uma tabela de números formada por m linhas e n colunas. Dizemos que essa matriz tem ordem m x n (lê-se: m por n), com m, n N*

MATRIZES. Matriz é uma tabela de números formada por m linhas e n colunas. Dizemos que essa matriz tem ordem m x n (lê-se: m por n), com m, n N* MTRIZES DEFINIÇÃO: Mtriz é um tl d númros formd por m linhs n coluns. Dizmos qu ss mtriz tm ordm m n (lê-s: m por n), com m, n N* Grlmnt dispomos os lmntos d um mtriz ntr prêntss ou ntr colchts. m m m

Leia mais

Geometria Espacial (Exercícios de Fixação)

Geometria Espacial (Exercícios de Fixação) Gomtri Espcil Prof. Pdro Flipp 1 Gomtri Espcil (Exrcícios d Fixção) Polidros 01. Um polidro convxo é formdo por 0 fcs tringulrs. O númro d vértics dss polidro ) 1 b) 15 c) 18 d) 0 ) 4 0. Um polidro convxo

Leia mais

r = (x 2 + y 2 ) 1 2 θ = arctan y x

r = (x 2 + y 2 ) 1 2 θ = arctan y x Sção 0: Equação d Laplac m coordnadas polars Laplaciano m coordnadas polars. Sja u = ux, y uma função d duas variávis. Dpndndo da rgião m qu a função stja dfinida, pod sr mais fácil trabalhar com coordnadas

Leia mais

Exame de Proficiência de Pré-Cálculo

Exame de Proficiência de Pré-Cálculo +//+ Em d Profiiêni d Pré-Cálulo - Informçõs instruçõs. Cro studnt, sj bm-vindo à Univrsidd Fdrl d Snt Ctrin! Em oposição o vstibulr, st m não tm rátr sltivo. O objtivo qui é mdir su onhimnto m mtmáti

Leia mais

(x, y) dy. (x, y) dy =

(x, y) dy. (x, y) dy = Seção 7 Função Gm A expressão n! = 1 3... n (1 está definid pens pr vlores inteiros positivos de n. Um primeir extensão é feit dizendo que! = 1. Ms queremos estender noção de ftoril inclusive pr vlores

Leia mais

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}.

ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR 2. < arg z < π}. Instituto Suprior Técnico Dpartamnto d Matmática Scção d Álgbra Anális ANÁLISE MATEMÁTICA IV FICHA SUPLEMENTAR LOGARITMOS E INTEGRAÇÃO DE FUNÇÕES COMPLEXAS Logaritmos () Para cada um dos sguints conjuntos

Leia mais

Ficha 2. 1 Polinómios de Taylor de um campo escalar. 1.1 O primeiro polinómio de Taylor.

Ficha 2. 1 Polinómios de Taylor de um campo escalar. 1.1 O primeiro polinómio de Taylor. Aulas Práticas d Matmática II Mstrado m Arquitctura o Smstr Fica 1 Polinómios d Talor d um campo scalar. Rcord qu os polinómios d Talor são uma important frramnta para studar o comportamnto d uma função

Leia mais

CAPÍTULO 9 COORDENADAS POLARES

CAPÍTULO 9 COORDENADAS POLARES Luiz Frncisco d Cruz Drtmnto d Mtmátic Uns/Buru CAPÍTULO 9 COORDENADAS POLARES O lno, tmbém chmdo d R, ond R RR {(,)/, R}, ou sj, o roduto crtsino d R or R, é o conjunto d todos os rs ordndos (,), R El

Leia mais

Matemática C Extensivo V. 7

Matemática C Extensivo V. 7 Matmática C Extnsivo V 7 Exrcícios 0) 0 0) D 0 Falsa B A 4 0 6 0 4 6 4 6 0 Vrdadira A + B 0 0 + 4 6 7 04 Vrdadira A B 0 0 4 6 6 4 08 Vrdadira dt ( A) dt (A) 9 ( ) 9 dt (B) 9 0 6 Vrdadira A A 0 0 0 0 0

Leia mais

Estes resultados podem ser obtidos através da regra da mão direita.

Estes resultados podem ser obtidos através da regra da mão direita. Produto toril ou produto trno Notção: Propridds Intnsidd: Sntido: ntiomuttiidd: Distriutio m rlção à dição: Não é ssoitios pois, m grl, Cso prtiulr: Pr tors dfinidos m oordnds rtsins: Ests rsultdos podm

Leia mais

O teorema da função inversa para funções de várias variáveis reais a valores vetoriais

O teorema da função inversa para funções de várias variáveis reais a valores vetoriais Matmática O torma da função invrsa para funçõs d várias variávis rais a valors vtoriais Vivian Rodrigus Lal Psquisadora Prof Dr David Pirs Dias Orintador Rsumo Est artigo tm como objtivo aprsntar o Torma

Leia mais

A geometria do espaço-tempo

A geometria do espaço-tempo A gomtria do spaço-tmpo Uma rvisão da cinmática da dinâmica rlativísticas Uma transformação d Lorntz dixa invariant o intrvalo s 2 AB ntr dois vntos, A B, do spaço-tmpo. Em um rfrncial inrcial S, o intrvalo

Leia mais

DIFRAÇÃO. E 2 = Em(r 2 ) cos(k r 2 - ω t) ê 2 (1) : : : : E N = E m (r N ) cos(k r N - ω t) ê N

DIFRAÇÃO. E 2 = Em(r 2 ) cos(k r 2 - ω t) ê 2 (1) : : : : E N = E m (r N ) cos(k r N - ω t) ê N ISTITUTO DE FÍSICA DA UFBA DEPARTAMETO DE FÍSICA DO ESTADO SÓLIDO DISCIPLIA : FÍSICA GERAL E EXPERIMETAL IV-E (FIS 4) DIFRAÇÃO. Difrção d Frunhofr d fnd simpls Suponh um fnd simpls, d lrgur comprimnto

Leia mais

Lista 3 - Resolução. 1. Verifique se os produtos abaixo estão bem definidos e, em caso afirmativo, calcule-os.

Lista 3 - Resolução. 1. Verifique se os produtos abaixo estão bem definidos e, em caso afirmativo, calcule-os. GN7 Introução à Álgr Linr Prof n Mri Luz List - Rsolução Vrifiqu s os proutos ixo stão m finios, m so firmtivo, lul-os ) [ / ] / ) / [ / ] ) ) Solução ) orm primir mtriz é x sgun é x, logo o prouto stá

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA

ESCOLA SUPERIOR DE TECNOLOGIA Dprtnto Mtátic Disciplin Anális Mtátic II Curso Engnhri do Abint º Sstr º Fich nº 6: Equçõs difrnciis d vriávis sprds správis, totis cts, co fctor intgrnt hoogéns d ª ord. Coptição ntr spécis E hbitts

Leia mais

Capítulo 4 Resposta em frequência

Capítulo 4 Resposta em frequência Capítulo 4 Rsposta m frquência 4. Noção do domínio da frquência 4.2 Séris d Fourir propridads 4.3 Rsposta m frquência dos SLITs 4.4 Anális da composição d sistmas através da rsposta m frquência 4.5 Transformadas

Leia mais

1 a Prova de F-128 Turmas do Noturno Segundo semestre de /10/2004

1 a Prova de F-128 Turmas do Noturno Segundo semestre de /10/2004 1 a Prova d F-18 Turmas do Noturno Sgundo smstr d 004 18/10/004 1) Um carro s dsloca m uma avnida sgundo a quação x(t) = 0t - 5t, ond x é dado m m t m s. a) Calcul a vlocidad instantâna do carro para os

Leia mais

AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Ficha de Trabalho nº 0B Funções exponenciais e logarítmicas - 12º ano

AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Ficha de Trabalho nº 0B Funções exponenciais e logarítmicas - 12º ano AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Fich d Trblho nº B Funçõs ponnciis logrítmics - º no Mts (C.A.). Clcul os sguints limits: n n.. lim.. lim.. lim n n n n n n n n.. lim.. lim.6. lim n n n n. Clcul, m,

Leia mais

Módulo II Resistores e Circuitos

Módulo II Resistores e Circuitos Módulo Cludi gin Cmpos d Crvlho Módulo sistors Circuitos sistênci Elétric () sistors: sistor é o condutor qu trnsform nrgi létric m clor. Como o rsistor é um condutor d létrons, xistm quls qu fcilitm ou

Leia mais

Cálculo Diferencial e Integral 1

Cálculo Diferencial e Integral 1 NOTAS DE AULA Cálculo Dirncil Intgrl Drivds Prossor: Luiz Frnndo Nuns, Dr. 8/Sm_ Cálculo ii Índic Drivds.... Dinição.... Função drivd.... Drivds ds unçõs composts.... Rgrs d drivção.... A Drivd como T

Leia mais

A seção de choque diferencial de Rutherford

A seção de choque diferencial de Rutherford A sção d choqu difrncial d Ruthrford Qual é o ângulo d dflxão quando a partícula passa por um cntro d força rpulsiva? Nss caso, quando tratamos as trajtórias sob a ação d forças cntrais proporcionais ao

Leia mais

Introdução ao Processamento Digital de Sinais Soluções dos Exercícios Propostos Capítulo 6

Introdução ao Processamento Digital de Sinais Soluções dos Exercícios Propostos Capítulo 6 Introdução ao Soluçõs dos Exrcícios Propostos Capítulo 6 1. Dadas as squências x[n] abaixo com sus rspctivos comprimntos, ncontr as transformadas discrtas d Fourir: a x[n] = n, para n < 4 X[] = 6 X[1]

Leia mais

PREFÁCIO BOM TRABALHO!

PREFÁCIO BOM TRABALHO! PREFÁCIO Est volum corrspond o sgundo livro virtul lnçdo plo Sistm d Ensino Intrtivo SEI. O livro trt d um curso d cálculo voltdo pr os vstibulrs militrs o longo d qutro cpítulos. Cd um dos qutro cpítulos

Leia mais

Hewlett-Packard MATRIZES. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard MATRIZES. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hwltt-Packard MTRIZES ulas 0 a 05 Elson Rodrigus, Gabril Carvalho Paulo Luiz Sumário MTRIZES NOÇÃO DE MTRIZ REPRESENTÇÃO DE UM MTRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDMENTL MTRIZES ESPECIIS IGULDDE ENTRE

Leia mais

Ângulos de Euler. x y z. onde

Ângulos de Euler. x y z. onde Ângulos d Eulr Considr um corpo rígido sus três ios principais, ê, ê 2 ê 3, qu são ortonormais. Vamos dfinir o sistma d coordnadas fio ao corpo rígido, S, com os ios, 2 3 ao longo dos vrsors ê, ê 2 ê 3,

Leia mais

tg 2 x , x > 0 Para determinar a continuidade de f em x = 0, devemos calcular os limites laterais

tg 2 x , x > 0 Para determinar a continuidade de f em x = 0, devemos calcular os limites laterais UFRGS Instituto d Matmática DMPA - Dpto. d Matmática Pura Aplicada MAT 0 353 Cálculo Gomtria Analítica I A Gabarito da a PROVA fila A 5 d novmbro d 005 Qustão (,5 pontos Vrifiqu s a função f dada abaixo

Leia mais

LEITURA 1: CAMPO ELÁSTICO PRÓXIMO À PONTA DA TRINCA

LEITURA 1: CAMPO ELÁSTICO PRÓXIMO À PONTA DA TRINCA Fadiga dos Matriais Mtálicos Prof. Carlos Baptista Cap. 4 PROPAGAÇÃO DE TRINCAS POR FADIGA LEITURA 1: CAMPO ELÁSTICO PRÓXIMO À PONTA DA TRINCA Qualqur solução do campo d tnsõs para um dado problma m lasticidad

Leia mais

Sala: Rúbrica do Docente: Registo:

Sala: Rúbrica do Docente: Registo: Instituto Suprior Técnico Dpartamnto d Matmática Scção d Àlgbra Anális o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I (MEFT, LMAC, MEBiom) o Sm. 0/ 4/Jan/0 Duração: h30mn Instruçõs Prncha os sus dados na

Leia mais

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard MATRIZES. Aulas 01 a 06. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hwltt-Packard MTRIZES ulas 0 a 06 Elson Rodrigus, Gabril Carvalho Paulo Luiz no 06 Sumário MTRIZES NOÇÃO DE MTRIZ REPRESENTÇÃO DE UM MTRIZ E SEUS ELEMENTOS EXERCÍCIO FUNDMENTL MTRIZES ESPECIIS IGULDDE

Leia mais

Função Exponencial: Conforme já vimos, o candidato natural à função exponencial complexa é dado pela função. f z x iy f z e cos y ie sen y.

Função Exponencial: Conforme já vimos, o candidato natural à função exponencial complexa é dado pela função. f z x iy f z e cos y ie sen y. Funçõs Elmntars Função Exponncial: Conform já vimos, o candidato natural à função xponncial complxa é dado pla função Uma v qu : : ( ) x x f x i f cos i sn x f, x. E uma gnraliação para sr útil dv prsrvar

Leia mais

1. (2,0) Um cilindro circular reto é inscrito em uma esfera de raio r. Encontre a maior área de superfície possível para esse cilindro.

1. (2,0) Um cilindro circular reto é inscrito em uma esfera de raio r. Encontre a maior área de superfície possível para esse cilindro. Gabarito da a Prova Unificada d Cálculo I- 15/, //16 1. (,) Um cilindro circular rto é inscrito m uma sfra d raio r. Encontr a maior ára d suprfíci possívl para ss cilindro. Solução: Como o cilindro rto

Leia mais

Material Teórico - Módulo de Geometria Anaĺıtica 2. Círculos. Terceiro Ano - Médio

Material Teórico - Módulo de Geometria Anaĺıtica 2. Círculos. Terceiro Ano - Médio Matrial Tórico - Módulo d Gomtria Anaĺıtica Círculos Trciro Ano - Médio Autor: Prof. Anglo Papa Nto Rvisor: Prof. Antonio Caminha M. Nto 9 d julho d 018 1 Equação rduzida d um círculo Considrmos um ponto

Leia mais

Material Teórico - Módulo: Vetores em R 2 e R 3. Produto Misto - Parte 1. Terceiro Ano - Médio

Material Teórico - Módulo: Vetores em R 2 e R 3. Produto Misto - Parte 1. Terceiro Ano - Médio Mtril Tórico - Módulo: Vtors m R 2 R 3 Produto Misto - Prt 1 Trciro Ano - Médio Autor: Prof Anglo Pp Nto Rvisor: Prof Antonio Cminh M Nto Nst primir prt d ul sor produto misto, studrmos dfinição lgums

Leia mais

Razão e Proporção. Noção de Razão. 3 3 lê-se: três quartos lê-se: três para quatro ou três está para quatro

Razão e Proporção. Noção de Razão. 3 3 lê-se: três quartos lê-se: três para quatro ou três está para quatro Razão Proporção Noção d Razão Suponha qu o profssor d Educação Física d su colégio tnha organizado um tornio d basqutbol com quatro quips formadas plos alunos da ª séri. Admita qu o su tim foi o vncdor

Leia mais

ESTUDO SOBRE A INTEGRAL DE DARBOUX. Introdução. Partição de um Intervalo. Alana Cavalcante Felippe 1, Júlio César do Espírito Santo 1.

ESTUDO SOBRE A INTEGRAL DE DARBOUX. Introdução. Partição de um Intervalo. Alana Cavalcante Felippe 1, Júlio César do Espírito Santo 1. Revist d Mtemátic UFOP, Vol I, 2011 - X Semn d Mtemátic e II Semn d Esttístic, 2010 ISSN 2237-8103 ESTUDO SOBRE A INTEGRAL DE DARBOUX Aln Cvlcnte Felippe 1, Júlio Césr do Espírito Snto 1 Resumo: Este trblho

Leia mais

Transformada de Clarke e Park

Transformada de Clarke e Park Cnro d Tcnologi Pós-Grdução m Engnhri Eléric Aplicçõs d Elrônic d Poênci m Sisms d Poênci Trnsformd d Clrk Prk Prof. Klbr Lim Dprmno d Engnhri Eléric Sumário Obivos Inrodução Trnsformd d Clrk Vor spcil

Leia mais

λ, para x 0. Outras Distribuições de Probabilidade Contínuas

λ, para x 0. Outras Distribuições de Probabilidade Contínuas abilidad Estatística I Antonio Roqu Aula 3 Outras Distribuiçõs d abilidad Contínuas Vamos agora studar mais algumas distribuiçõs d probabilidads para variávis contínuas. Distribuição Eponncial Uma variávl

Leia mais

u t = L t N t L t Aplicação dos conceitos: Exemplo: Interpretando Rendimento Per Capita: Y = Pop {z} PIB per capita Y {z} Produtividade Trabalho

u t = L t N t L t Aplicação dos conceitos: Exemplo: Interpretando Rendimento Per Capita: Y = Pop {z} PIB per capita Y {z} Produtividade Trabalho 1 Aul 14 Ofrt Agrgd, Inflção Dsmprgo Populção, Tx d Prticipção, Populção Activ ( t ), Tx d Emprgo, Populção Emprgd (N t ), Tx d Dsmprgo (u t ) Populção Dsmprgd ( t N t ). Tx d Dsmprgo (u t ): u t t N t

Leia mais

Justifique todas as passagens

Justifique todas as passagens ā Prova d Cálculo II - MAT2 - IOUSP /2/204 Nom : GABARITO N ō USP : Profssor : Oswaldo Rio Branco d Olivira Justifiqu todas as passagns Q 2 4 5 Total N. Considr a função f : R 2 R dfinida por f(x,y) =

Leia mais

ANÁLISE MATEMÁTICA IV A =

ANÁLISE MATEMÁTICA IV A = Instituto uprior Técnico Dpartamnto d Matmática cção d Álgbra Anális ANÁLIE MATEMÁTICA IV FICHA 5 ITEMA DE EQUAÇÕE LINEARE E EQUAÇÕE DE ORDEM UPERIOR À PRIMEIRA () Considr a matriz A 3 3 (a) Quais são

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA PRIMEIRO SEMESTRE DE 2015 13 de Fevereiro de 2015 Prte I Álgebr Liner 1 Questão: Sejm

Leia mais

MATRIZES E DETERMINANTES LISTA 5

MATRIZES E DETERMINANTES LISTA 5 RACIOCÍNIO LÓGICO - Zé Crlos MATRIZES E DETERMINANTES LISTA 5 RESUMO TEÓRICO Mriz rl Sjm m n dois númros iniros. Um mriz rl d ordm m n é um conjuno d mn númros ris, disribuídos m m linhs n coluns, formndo

Leia mais

Corrected. Exame de Proficiência de Pré-Cálculo (2018.2)

Corrected. Exame de Proficiência de Pré-Cálculo (2018.2) Em d Profiiêni d Pré-Cálulo (. Informçõs instruçõs. Cro studnt, sj m-vindo à Univrsidd Fdrl d Snt Ctrin! Em oposição o vstiulr, st m não tm rátr sltivo. O ojtivo qui é mdir su onhimnto m mtmáti dqur sus

Leia mais

Geometria Analítica - Aula

Geometria Analítica - Aula Gomtria Analítica - Aula 0 60 K. Frnsl - J. Dlgado Aula 1 1. Rotação dos ixos coordnados Sja OXY um sistma d ixos ortogonais no plano sja O X Y o sistma d ixos obtido girando os ixos OX OY d um ângulo

Leia mais

An expert is someone who has made all the mistakes.

An expert is someone who has made all the mistakes. Exm d Fotónic Docnt rsponsávl: Prof Crlos Piv Ano Lctivo: 6/7 Exm d d Junho d 7 ª DATA An xprt is somon who hs md ll th mistks Hns Albrcht Bth No problm vricionl d brquistócron dtrmin rlção min rct pr

Leia mais

Curso de Engenharia Mecânica Disciplina: Física 2 Nota: Rubrica. Coordenador Professor: Rudson R Alves Aluno:

Curso de Engenharia Mecânica Disciplina: Física 2 Nota: Rubrica. Coordenador Professor: Rudson R Alves Aluno: Curso d Engnharia Mcânica Disciplina: Física 2 Nota: Rubrica Coordnador Profssor: Rudson R Alvs Aluno: Turma: EA3N Smstr: 1 sm/2017 Data: 20/04/2017 Avaliação: 1 a Prova Valor: 10,0 p tos INSTRUÇÕES DA

Leia mais