Universidade Federal de Viçosa Departamento de Matemática III LISTA DE MAT INTRODUÇÃO À ÁLGEBRA

Tamanho: px
Começar a partir da página:

Download "Universidade Federal de Viçosa Departamento de Matemática III LISTA DE MAT INTRODUÇÃO À ÁLGEBRA"

Transcrição

1 Universidade Federal de Viçosa Departamento de Matemática III LISTA DE MAT INTRODUÇÃO À ÁLGEBRA 1. Seja A = {1, 3, 5, 7, 11}. Verifique quais das seguintes proposições são verdadeiras ou falsas. (a) 1 A; (b) 2 A; (c) 7 A; (d) 11 A. 2. Descreva, por extenso, todos os elementos de cada um dos seguintes conjuntos. (a) Conjunto das letras da palavra granada ; (b) Conjunto dos nomes dos meses que começam pela letra j; (c) Conjunto dos nomes dos poliedros regulares convexos; (d) Conjunto de todos os número naturais que são divisores de 20; (e) Conjunto de todos os número naturais primos maiores que 15 e menores que Descrever, por extenso, cada um dos seguintes conjuntos: (a) {x N x < 3}; (b) {x N x 2 < 18}; (c) {x N x é par}; (d) {x N 2x 5 < 6}; (e) {x Z x 2 3x = 0}; (f) {x N 4 < x < 9}; (g) {x Z x 2 = x}; (h) {x Z x < 3}; (i) {x Z + x = 1}. 4. Descrever, cada um dos seguintes conjuntos, pela propriedade comum que define seus elementos: (a) {3}; (b) {1, 2, 3,..., 9}; (c) {3, 6, 9,,..., 99}; (d) {2, 4, 6, 8,...}; (e) {5, 10, 15, 20,...}; (f) { 3, 2, 1, 0, 1, 2, 3}. 5. Verificar quais dos seguintes conjuntos são vazios ou unitários. (a) {x N x + 8 = 5}; (b) {x Z 1 < x < 1}; (c) {x R x < 0}. 6. Representar, com a notação de conjunto, os seguintes intervalos: (a) ] 3, 5[; (b) [3, 8]; (c) [0, 4]; (d) ] 7, 2[; (e) ], 2]; (f) ] 1, [. 7. Representar, com a notação de intervalo, os seguintes conjuntos: (a) {x R 3 x < 1}; (g) {x R x 1} (b) {x R 1 x 2}; (h) {x R x > 1} (c) {x R 1 < x 3}; (i) {x R 3x < 9} (d) {x R 4 < x < 2}; (j) {x R x 1 < 3}; (e) {x R x < 3}; (k) {x R x > 2} (f) {x R x 2}. (l) {x R 5x 7 8} 1 (m) { } x R x 2 x + 3 < 0 (n) {x R x 2 4x+3 0}; (o) {x R x 2 5 > 0}.

2 8. Verificar as seguintes igualdades: (a) {x R (x + 2) 2 (x 2) 2 = 8} = {1}; (b) {x N x < 5} = {x N (x + 1) 2 < 28}; (c) {x Z + x < 1} = {x Z 6x 2 + 5x 4 = 0}; (d) {x N 8 < x 2 < 20} = {x N x 2 7x + 12 = 0}; (e) {x Z 2x 2 + x 6 = 0} = {x Z 3x 2 + 7x + 2 = 0}; 9. Dados os conjuntos (a) A = {1, 2,..., 8, 9}; (b) B = {2, 4, 6, 8}; (c) C = {1, 3, 5, 7, 9}; (d) D = {3, 4, 5}; (e) E = {3, 5}; determinar quais dos conjuntos dados pode substituir o conjunto X de modo que resultem verdadeiras as seguintes proposições: (a) X D e X B; (b) x C e X A; (c) X A e X C; 10. Mostrar que: (a) {x N 3 5x } {x N 3 x }; (b) {x N 1 x 3 100} {x N 1 x 2 100}. 11. Dado o conjunto A = {1, 2} e B = {1, 2, 3, 4}, determinar todos os conjuntos X B tais que A X B. 12. Provar que se A, então A =. 13. Sendo E = {a}, determinar P (P (E)). 14. Determinar P (P (P ( ))). 15. Dados os conjuntos (a) E = {1, 2, 3, 4, 5, 6}; (b) A = {1, 4, 5, 6}; (c) B = {1, 4, 6} calcular C E A, C E B e C A B. 16. Demonstrar que E = F se, e somente se, P (E) = P (F ). 17. Seja A = {, { }}. Verificar quais das seguintes proposições são verdadeiras ou falsas. (a) {{ }} A; (b) A; (c) { } A (d) {{ }} A (e) A (f) { } A 2

3 18. Dados os conjuntos (a) U = {1, 2, 3, 4, 5, 6, 7, 8}; (b) X = {1, 2, 3, 4, 5}; (c) Y = {1, 2, 3}; (d) Z = {4, 6, 8}. Calcular (a) X Y, X Z, Y Z; (b) U X, X Y, (Y Z) Z, (c) U (X Y Z); (d) X Y, X Z, Y Z (e) (X Y ), (X Z), (Y Z) ; (f) X (Y Z), (X Y ) (X Z). (g) X Y, X Z, Y Z; (h) X Y, X Z, Y Z (i) (X Y ), (X Z), (Y Z) ; (j) X (Y Z), (X Y ) (X Z). 19. Calcular, apresentando o resultado com notação de intervalo: (a) {x R x 2 4} {x R x [ 1, 2]}; (b) {x R 2 < x 3} {x R 5 < x 1} (c) {x R x 3 > 1} {x R x 3 < 8} (d) {x R x 2 4} {x R x [ 1, 2]}; (e) {x R 2 < x 3} {x R 5 < x 1} (f) {x R x 3 > 1} {x R x 3 < 8} 20. Construir os diagramas de VENN dos três conjuntos não vazios A, B e C tais que: (a) A B, C B e A C = ; (b) A B, C B e A C ; (c) A C, A C e B C = ; (d) A (B C), B C, C B e A C. 21. Determinar os elementos dos conjuntos A, B e E, sabendo que: (a) A, B E; (b) A B={b,c}; (c) C E A = {d, e, f}; (d) C E B = {a, e, f}. 22. Determinar os elementos dos conjuntos A, B, C e E, sabendo que: (a) A, B, C E; (b) C E (A B C) = {1, 8, 12} (c) B C = ; (d) A C = {5}; (e) A B = {2, 3, 4, 5, 7, 9}; (f) A C = {2, 3, 4, 5, 6, 10, 11}; (g) C E B = {1, 2, 5, 6, 8, 10, 11, 12}; 23. Demonstrar: Se A B e C D então (A C) B D e A C B D. 3

4 24. Demonstrar: P (E F ) = P (E) P (F ) e P (E) P (F ) P (E F ). 25. Verificar as igualdades (a) (A B) (B C) = A C; (b) (A C) (B C) = B C; (c) (A B) (A C) (A B ) = A (B C). 26. Simplificar as expressões: (a) (A B) (A B ) (b) (A B) (A B ) (c) (A (A B)) B (d) (A B) (A B ) (e) A ((A B ) (A B)) (f) ((A B) (C D)) (A B) B (g) ((A B) (C D)) (A B) A 27. Demonstrar (a) (A B) (A B) = (A B) (B A) = (b) (A B) (B A) = (A B) (A B) 28. Demonstrar: n(a B) = n(a) + n(b) n(a B). 29. Sejam E = {1, 3, 5, 7, 9} e F = {0, 2, 4, 6}. Determinar (a) os elementos das seguintes relações de E em F : i. R 1 = {(x, y) y = x 1}; ii. R 2 = {(x, y) x < y}; iii. R 3 = {(x, y) y = 3x}. (b) o domínio e imagem de R 1, R 2 e R Sejam E um conjunto com 5 elementos e R = {(a, b), (b, c), (c, d), (d, e)} uma relação sobre E. Determinar (a) os elementos de E. (b) o domínio e imagem de R. (c) Os elementos, domínio e imagem de R 1 ; (d) esquema de flechas de R. 31. Sendo R = {(x, y) 4x 2 + y 2 = 4} uma relação sobre R. Determinar (a) O gráfico cartesiano de R e R 1 ; (b) O domínio e imagem de R e R Seja R uma relação sobre o conjunto de N definida pela sentença x + 3y = 10. Determinar: (a) Os elementos de R e R 1 (b) O gráfico cartesiano de R e R 1 ; (c) O domínio e imagem de R e R 1. 4

5 33. Sejam E e F dois conjuntos finitos com m e n elementos, respectivamente. (a) Qual é o número de elementos de E F? (b) Qual é o número de relações de E em F? 34. Construir o gráfico cartesiano das relações sobre R definidas pelas seguintes sentenças: (a) x = 4 e y [ 2, 4]; (b) x 2 + y 2 = 25 e y 0; (c) x + y = 5 ou 2x y = 4; (d) x 4 e y 3; (e) x 3 e y 3; (f) x [ 3, 2] e y [1, 3]. 35. Seja R a relação em E = {1, 2, 3, 4, 5} tal que xry se, e somente se, x y é múltiplo de 2. (a) Quais são os elementnos de R. (b) Faça o diagrama de flechas para R. (c) R é reflexiva? Simétrica? Transitiva? 36. Verificar quais das seguintes relações em N são reflexivas. xry x + y = 12; xry mdc(x, y) = Verificar quais das seguintes relações em N são simétricas. xry x + 2y = 10; xry (x y) 2 > Verificar quais das seguintes relações em N são transitivas. xry x y; xry x + 2y = Dado o conjunto A = {1, 2, 3, 4} construir oito relações R i (i = 1, 2,..., 8) em A que verifiquem as condições da tabela abaixo R 1 R 2 R 3 R 4 R 5 R 6 R 7 R 8 Reflexiva Sim Sim Sim Não Não Não Sim Não Simétrica Sim Sim Não Sim Não Sim Não Não Transitiva Sim Não Sim Sim Sim Não Não Não 5

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática MAT Introdução à Álgebra 2015/I

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática MAT Introdução à Álgebra 2015/I 1 Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática MAT 131 - Introdução à Álgebra 2015/I Tópico: Produto Cartesiano 1. Dados os conjuntos M = {1, 3, 5} e N = {2, 4},

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática MAT Introdução à Álgebra 2015/I 2 a Lista de Exercícios

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática MAT Introdução à Álgebra 2015/I 2 a Lista de Exercícios 1 Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática MAT 131 - Introdução à Álgebra 2015/I 2 a Lista de Exercícios Tópico: Conjuntos, Elementos, Subconjuntos e Conjuntos

Leia mais

2 a Lista de Exercícios 2001/I

2 a Lista de Exercícios 2001/I 1 Universidade Federal de Viçosa Departamento de Matemática MAT 131 Introdução à Álgebra a Lista de xercícios 001/I Tópico: onjuntos e elementos 1) Definir, pela enumeração dos seus elementos, cada um

Leia mais

n. 28 RELAÇÕES BINÁRIAS ENTRE CONJUNTOS

n. 28 RELAÇÕES BINÁRIAS ENTRE CONJUNTOS n. 28 RELAÇÕES BINÁRIAS ENTRE CONJUNTOS Uma relação é um conjunto de pares ordenados, ou seja, um subconjunto de A B. Utilizando pares ordenados podemos definir relações por meio da linguagem de conjuntos.

Leia mais

MATEMÁTICA AULA 4 ÁLGEBRA CONJUNTOS. Conjunto é um conceito primitivo, e portanto, não tem definição.

MATEMÁTICA AULA 4 ÁLGEBRA CONJUNTOS. Conjunto é um conceito primitivo, e portanto, não tem definição. 1 - Conceito de Conjunto MATEMÁTICA AULA 4 ÁLGEBRA CONJUNTOS Conjunto é um conceito primitivo, e portanto, não tem definição. Representação O conjunto pode ser representado de três maneiras diferentes:

Leia mais

CONJUNTO DOS NÚMEROS INTEIROS

CONJUNTO DOS NÚMEROS INTEIROS Fundamentos de Álgebra Moderna Profª Ana Paula CONJUNTO DOS NÚMEROS INTEIROS Os números inteiros formam um conjunto, que notaremos por, no qual estão definidas duas operações, que chamaremos de adição

Leia mais

Notas de aulas. álgebra abstrata

Notas de aulas. álgebra abstrata 1 Notas de aulas de álgebra abstrata UEMA LICENCIATURA EM MATEMATICA Elaborada por : Raimundo Merval Morais Gonçalves Licenciado em Matemática/UFMA Professor Assistente/UEMA Especialista em Ensino de Ciências/UEMA

Leia mais

Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática. MTM Pré-cálculo

Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática. MTM Pré-cálculo niversidade Federal de Santa atarina entro de iências Físicas e Matemáticas Departamento de Matemática MTM3100 - Pré-cálculo 1 a lista complementar de exercícios (31/07/2017 a 04/08/2017) 1. Representar,

Leia mais

Produto Cartesiano. Exemplo: Dados os conjuntos A = {5,6} e B = {2,3,4}, vamos determinar o produto cartesiano AXB;

Produto Cartesiano. Exemplo: Dados os conjuntos A = {5,6} e B = {2,3,4}, vamos determinar o produto cartesiano AXB; Produto Cartesiano Par ordenado: são dois elementos em uma ordem fixa, (x,y) Produto Cartesiano: Dados dois conjuntos A e B, não vazios, chamamos de produto cartesiano de A por B o conjunto indicado por

Leia mais

CONJUNTOS RELAÇÕES DE PERTINÊNCIA, INCLUSÃO E IGUALDADE; OPERAÇÕES ENTRE CONJUNTOS, UNIÃO, INTER- SEÇÃO E DIFERENÇA

CONJUNTOS RELAÇÕES DE PERTINÊNCIA, INCLUSÃO E IGUALDADE; OPERAÇÕES ENTRE CONJUNTOS, UNIÃO, INTER- SEÇÃO E DIFERENÇA CONJUNTOS RELAÇÕES DE PERTINÊNCIA, INCLUSÃO E IGUALDADE; OPERAÇÕES ENTRE CONJUNTOS, UNIÃO, INTER- SEÇÃO E DIFERENÇA CONJUNTO: É um conceito primitivo associado à idéia de coleção.. - INDICAÇÃO: Os conjuntos

Leia mais

Lista 1. 1 a LISTA DE EXERCÍCIOS Prof. Ânderson Vieira

Lista 1. 1 a LISTA DE EXERCÍCIOS Prof. Ânderson Vieira ÁLLO I 1 a LIST DE EXERÍIOS Prof. Ânderson Vieira 1. Dê os elementos dos seguintes conjuntos: = {x x é letra da palavra matemática} = {x x é cor da bandeira brasileira} = {x x é nome do estado brasileiro

Leia mais

AXB = {(x, y) x A e y B}

AXB = {(x, y) x A e y B} CENTRO UNIVERSITÁRIO DO NORTE PAULISTA LÓGICA E MATEMÁTICA DISCRETA 2010 1 Produto Cartesiano Par ordenado: são dois elementos em uma ordem fixa, (x,y) Produto Cartesiano: Dados dois conjuntos A e B, não

Leia mais

EXERCÍCIOS DO CAPÍTULO 1

EXERCÍCIOS DO CAPÍTULO 1 EXERCÍCIOS DO CPÍTULO 1 1) Escreva em notação simbólica: a) a é elemento de b) é subconjunto de c) contém d) não está contido em e) não contém f) a não é elemento de ) Enumere os elementos de cada um dos

Leia mais

Teoria Elementar dos Conjuntos

Teoria Elementar dos Conjuntos Teoria Elementar dos Conjuntos Este capítulo visa oferecer uma breve revisão sobre teoria elementar dos conjuntos. Além de conceitos básicos importantes em matemática, a sua imprtância reside no fato da

Leia mais

A ordem em que os elementos se apresentam em um conjunto não é levada em consideração. Há

A ordem em que os elementos se apresentam em um conjunto não é levada em consideração. Há 1 Produto Cartesiano Par Ordenado A ordem em que os elementos se apresentam em um conjunto não é levada em consideração. Há casos entretanto em que a ordem é importante. Daí a necessidade de se introduzir

Leia mais

Teoria Elementar dos Conjuntos

Teoria Elementar dos Conjuntos Teoria Elementar dos Conjuntos Última revisão em 27 de fevereiro de 2009 Este texto é uma breve revisão sobre teoria elementar dos conjuntos. Em particular, importam-nos os aspectos algébricos no estudo

Leia mais

MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES

MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES Newton José Vieira 21 de agosto de 2007 SUMÁRIO Teoria dos Conjuntos Relações e Funções Fundamentos de Lógica Técnicas Elementares de Prova 1 CONJUNTOS A NOÇÃO

Leia mais

( r, s) S r s r s sendo S plano euclidiano. RELAÇÕES

( r, s) S r s r s sendo S plano euclidiano. RELAÇÕES RELAÇÕES 1. Produto cartesiano Sejam A e B conjuntos não vazios. Chama-se produto cartesiano de A por B o conjunto de todo os pares ordenados ( xy, ) com x A e y B. Notação: A B ( x, y) x A e y B. Relação

Leia mais

Sejam A e B conjuntos não vazios. Chama-se produto cartesiano de A por B o conjunto

Sejam A e B conjuntos não vazios. Chama-se produto cartesiano de A por B o conjunto RELAÇÕES 1. PRODUTO CARTESIANO Sejam A e conjuntos não vazios. Chama-se produto cartesiano de A por o conjunto xy com x A e y. Notação: de todo os pares ordenados (, ) A ( x, y) x A e y Exemplo 1: Sejam

Leia mais

4.1 Preliminares. No exemplo acima: Dom(R 1 ) = e Im(R 1 ) = Dom(R 2 ) = e Im(R 2 ) = Dom(R 3 ) = e Im(R 3 ) = Diagrama de Venn

4.1 Preliminares. No exemplo acima: Dom(R 1 ) = e Im(R 1 ) = Dom(R 2 ) = e Im(R 2 ) = Dom(R 3 ) = e Im(R 3 ) = Diagrama de Venn 4 Relações 4.1 Preliminares Definição 4.1. Sejam A e B conjuntos. Uma relação binária, R, de A em B é um subconjunto de A B. (R A B) Dizemos que a A está relacionado com b B sss (a, b) R. Notação: arb.

Leia mais

Teoria Ingênua dos Conjuntos (naive set theory)

Teoria Ingênua dos Conjuntos (naive set theory) Teoria Ingênua dos Conjuntos (naive set theory) MAT 131-2018 II Pouya Mehdipour 5 de outubro de 2018 Pouya Mehdipour 5 de outubro de 2018 1 / 22 Referências ALENCAR FILHO, E. Iniciação à Lógica Matemática,

Leia mais

Matemática Básica Noções Básicas de Operações com Conjuntos / Conjuntos Numéricos

Matemática Básica Noções Básicas de Operações com Conjuntos / Conjuntos Numéricos Matemática Básica Noções Básicas de Operações com Conjuntos / Conjuntos Numéricos 02 1. Noção intuitiva de conjunto Intuitivamente, entendemos como um conjunto: toda coleção bem definida de objetos (chamados

Leia mais

OBSERVAÇÕES SOBRE A NOTA DE AULA 04 / RELAÇÕES E FUNÇÕES. Aluno: Matrícula: (1) Na folha 1/11, as figuras estão trocadas. Assim, o correto é:

OBSERVAÇÕES SOBRE A NOTA DE AULA 04 / RELAÇÕES E FUNÇÕES. Aluno: Matrícula: (1) Na folha 1/11, as figuras estão trocadas. Assim, o correto é: ENGENHARIA CIVIL MATEMÁTICA BÁSICA / VALE VT TDE Lista - VT 04 13/03/2015 (Turma NOITE) - QUESTÕES OBJETIVAS CONJUNTOS TRABALHO DE PESQUISA - VALE VT ENTREGAR AO PROFESSOR em 25/03/2015 (4ª feira) Aluno:

Leia mais

Gabarito da lista de Exercícios sobre Conjuntos

Gabarito da lista de Exercícios sobre Conjuntos Universidade Federal Fluminense Curso: Sistemas de Informação Disciplina: Fundamentos Matemáticos para Computação Professora: Raquel Bravo Gabarito da lista de Exercícios sobre Conjuntos 1. Determine quais

Leia mais

Curso: Ciência da Computação Disciplina: Matemática Discreta 3. CONJUNTOS. Prof.: Marcelo Maraschin de Souza

Curso: Ciência da Computação Disciplina: Matemática Discreta 3. CONJUNTOS. Prof.: Marcelo Maraschin de Souza Curso: Ciência da Computação Disciplina: Matemática Discreta 3. CONJUNTOS Prof.: Marcelo Maraschin de Souza 3. Conjuntos Definição: Um conjunto é uma coleção desordenada de zero ou mais objetos, denominados

Leia mais

Lista 3. A = x x < 9 4 e x > 6 } B = {x 0 x = 2} C = { x x é inteiro e x 2 = 3 } D = {x 2x+1 = 7} A = {x 0 x = 0} B = x x > 9 4 e x < 6 }

Lista 3. A = x x < 9 4 e x > 6 } B = {x 0 x = 2} C = { x x é inteiro e x 2 = 3 } D = {x 2x+1 = 7} A = {x 0 x = 0} B = x x > 9 4 e x < 6 } 3 a LIST DE EXERÍIOS Prof. Ânderson Vieira 1. Dê os elementos dos seguintes conjuntos: = {x x é letra da palavra matemática} = {x x é cor da bandeira brasileira} = {x x é nome do estado brasileiro que

Leia mais

Lógica e Matemática Discreta

Lógica e Matemática Discreta Lógica e Matemática Discreta Teoria Elementar dos Conjuntos Prof Clezio 19 de Agosto de 2018 Curso de Ciência da Computação Relações Binárias Sejam A e B dois conjuntos. Definição: Chama-se relação binária

Leia mais

Equação de 1º Grau. ax = -b

Equação de 1º Grau. ax = -b Introdução Equação é toda sentença matemática aberta que exprime uma relação de igualdade. A palavra equação tem o prefixo equa, que em latim quer dizer "igual". Exemplos: 2x + 8 = 0 5x - 4 = 6x + 8 3a

Leia mais

Teoria dos Conjuntos MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES. Fundamentos de Lógica Técnicas Elementares de Prova A NOÇÃO DE CONJUNTO

Teoria dos Conjuntos MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES. Fundamentos de Lógica Técnicas Elementares de Prova A NOÇÃO DE CONJUNTO SUMÁRIO MATEMÁTICA DISCRETA CONCEITOS PRELIMINARES Teoria dos Conjuntos Relações e Funções Fundamentos de Lógica Técnicas Elementares de Prova Newton José Vieira 21 de agosto de 2007 1 A NOÇÃO DE CONJUNTO

Leia mais

MÓDULO 9. Conjuntos. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA

MÓDULO 9. Conjuntos. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 9 Conjuntos 1. (ITA) Considere as seguintes afirmações sobre o conjunto U = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}: I. Ø U e n(u) = 10. II.

Leia mais

NOÇÃO INTUITIVA E OPERAÇÕES COM CONJUNTOS

NOÇÃO INTUITIVA E OPERAÇÕES COM CONJUNTOS NOÇÃO INTUITIVA E OPERAÇÕES COM CONJUNTOS CONJUNTO: É um conceito primitivo associado à idéia de coleção.. - INDICAÇÃO: Os conjuntos serão, em geral, indicados por letras maiúsculas do alfabeto: A,B,C,...,

Leia mais

complemento para a disciplina de Matemática Discreta versão 1 - Jerônimo C. Pellegrini Relações de Equivalência e de Ordem

complemento para a disciplina de Matemática Discreta versão 1 - Jerônimo C. Pellegrini Relações de Equivalência e de Ordem Relações de Equivalência e de Ordem complemento para a disciplina de Matemática Discreta versão 1 Jerônimo C. Pellegrini 5 de agosto de 2013 ii Sumário Sumário Nomenclatura 1 Conjuntos e Relações 1 1.1

Leia mais

MINISTÉRIO DA EDUCAÇÃO INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DA PARAÍBA CAMPUS CAJAZEIRAS COORDENAÇÃO DO CURSO TÉCNICO EM INFORMÁTICA

MINISTÉRIO DA EDUCAÇÃO INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DA PARAÍBA CAMPUS CAJAZEIRAS COORDENAÇÃO DO CURSO TÉCNICO EM INFORMÁTICA MINISTÉRIO DA EDUCAÇÃO INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DA PARAÍBA CAMPUS CAJAZEIRAS COORDENAÇÃO DO CURSO TÉCNICO EM INFORMÁTICA MATEMÁTICA I Nome: MATEMÁTICA I Curso: TÉCNICO EM INFORMÁTICA

Leia mais

Aplicações da teoria de conjuntos álgebra booleana. Pontifícia Universidade Católica de Goiás Msc. Gustavo Siqueira Vinhal 2016/1

Aplicações da teoria de conjuntos álgebra booleana. Pontifícia Universidade Católica de Goiás Msc. Gustavo Siqueira Vinhal 2016/1 Aplicações da teoria de conjuntos álgebra booleana Pontifícia Universidade Católica de Goiás Msc. Gustavo Siqueira Vinhal 2016/1 CONJUNTOS Conjuntos são fundamentais para formalização de qualquer teoria.

Leia mais

n. 25 DIAGRAMAS DE VENN

n. 25 DIAGRAMAS DE VENN n. 25 DIAGRAMAS DE VENN Foi o matemático inglês John Venn (1834-1923) que criou os diagramas, com o intuito de facilitar a compreensão na relação de união e intersecção entre conjuntos. John Venn desenvolveu

Leia mais

PC Polícia Civil do Estado de São Paulo PAPILOSCOPISTA

PC Polícia Civil do Estado de São Paulo PAPILOSCOPISTA PC Polícia Civil do Estado de São Paulo PAPILOSCOPISTA Concurso Público 2016 Conteúdo Teoria dos conjuntos. Razão e proporção. Grandezas proporcionais. Porcentagem. Regras de três simples. Conjuntos numéricos

Leia mais

Pontifícia Universidade Católica do Rio Grande do Sul

Pontifícia Universidade Católica do Rio Grande do Sul Pontifícia Universidade Católica do Rio Grande do Sul Faculdade de Matemática - Departamento de Matemática Estruturas Algébricas Prof. M.Sc. Guilherme Luís Roëhe Vaccaro e-mail: vaccaro@mat.pucrs.br Prof.

Leia mais

Relações Binárias, Aplicações e Operações

Relações Binárias, Aplicações e Operações Relações Binárias, Aplicações e Operações MAT 131-2018 II Pouya Mehdipour 6 de dezembro de 2018 Pouya Mehdipour 6 de dezembro de 2018 1 / 24 Referências ALENCAR FILHO, E. Teoria Elementar dos Conjuntos,

Leia mais

Relações binárias. Laura Goulart. 7 de Março de 2018 UESB. Laura Goulart (UESB) Relações binárias 7 de Março de / 1

Relações binárias. Laura Goulart. 7 de Março de 2018 UESB. Laura Goulart (UESB) Relações binárias 7 de Março de / 1 Relações binárias Laura Goulart UESB 7 de Março de 2018 Laura Goulart (UESB) Relações binárias 7 de Março de 2018 1 / 1 Produto Cartesiano Dados E, F conjuntos quaisquer não vazios, denimos o produto cartesiano

Leia mais

Notas sobre Relações

Notas sobre Relações 1 / 1 Notas sobre Relações Fonte: livro de Kenneth Rosen (ref. completa na página) Centro de Informática Universidade Federal de Pernambuco CIn-UFPE 2 / 1 Seja S um conjunto de pessoas. Digamos que queremos

Leia mais

Linguagem Básica de Conjuntos

Linguagem Básica de Conjuntos Capítulo 1 Linguagem Básica de Conjuntos 1.1 A Noção de Conjunto A teoria dos conjuntos surgiu com os trabalhos de George Cantor no século XIX. Entretanto, tal teoria não se preocupava com muito rigor

Leia mais

Teoria dos Conjuntos. Prof. Jorge

Teoria dos Conjuntos. Prof. Jorge Teoria dos Conjuntos Conjuntos Conceitos iniciais Na teoria dos conjuntos, consideramos como primitivos os conceitos de elemento, pertinência e conjunto. Exemplos - Conjunto I. O conjunto dos alunos do

Leia mais

1.1. Conhecer e aplicar propriedades dos números primos Representar e comparar números positivos e negativos.

1.1. Conhecer e aplicar propriedades dos números primos Representar e comparar números positivos e negativos. Agrupamento de Escolas General Humberto Delgado Sede na Escola Secundária/3 José Cardoso Pires Santo António dos Cavaleiros 3º Ciclo - 7º Ano Planificação Anual 2012-2013 Matemática METAS CURRICULARES

Leia mais

GAN Matemática Discreta Professores Renata de Freitas e Petrucio Viana. Lista A

GAN Matemática Discreta Professores Renata de Freitas e Petrucio Viana. Lista A GAN 00167 Matemática Discreta Professores Renata de Freitas e Petrucio Viana Lista A 1. Verdadeiro ou falso? Justifique. (a) {3} {3, 4, 5} (b) {3} {{3}, 4, 5} (c) {3} {3, 4, 5} (d) {3} {{3}, 4, 5} 2. Verdadeiro

Leia mais

Conjunto Quociente e Classe de Equivalência (Alguns Exemplos e Definições)

Conjunto Quociente e Classe de Equivalência (Alguns Exemplos e Definições) Exemplos Definições Conjunto Quociente e Classe de Equivalência (Alguns Exemplos e Definições) Matemática Elementar - EAD Departamento de Matemática Universidade Federal da Paraíba 4 de setembro de 2014

Leia mais

ÁLGEBRA. AULA 1 _ Conjuntos Professor Luciano Nóbrega. Maria Auxiliadora

ÁLGEBRA. AULA 1 _ Conjuntos Professor Luciano Nóbrega. Maria Auxiliadora 1 ÁLGEBRA AULA 1 _ Conjuntos Professor Luciano Nóbrega Maria Auxiliadora 2 Pode-se dizer que a é, em grande parte, trabalho de um único matemático: Georg Cantor (1845-1918). A noção de conjunto não é suscetível

Leia mais

LFA. Provas formais; Indução; Sintaxe e Semântica Teoria dos Conjuntos

LFA. Provas formais; Indução; Sintaxe e Semântica Teoria dos Conjuntos LFA Provas formais; Indução; Sintaxe e Semântica Teoria dos Conjuntos Técnicas de Demonstração Um teorema é uma proposição do tipo: p q a qual, prova-se, é verdadeira sempre que: p q Técnicas de Demonstração

Leia mais

INE0003 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE0003 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE0003 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/3 6 - RELAÇÕES DE ORDENAMENTO 6.1) Conjuntos parcialmente

Leia mais

AGRUPAMENTO de ESCOLAS Nº1 de SANTIAGO do CACÉM Ano Letivo 2013/2014 PLANIFICAÇÃO ANUAL

AGRUPAMENTO de ESCOLAS Nº1 de SANTIAGO do CACÉM Ano Letivo 2013/2014 PLANIFICAÇÃO ANUAL AGRUPAMENTO de ESCOLAS Nº1 de SANTIAGO do CACÉM Ano Letivo 2013/2014 PLANIFICAÇÃO ANUAL Documento(s) Orientador(es): Programa e Metas de Aprendizagem e manual adoptado 3º CICLO MATEMÁTICA 7ºANO TEMAS/DOMÍNIOS

Leia mais

MATEMÁTICA Conjuntos. Professor Marcelo Gonzalez Badin

MATEMÁTICA Conjuntos. Professor Marcelo Gonzalez Badin MATEMÁTICA Conjuntos Professor Marcelo Gonzalez Badin Alguns símbolos importantes Œ Pertence / Tal que œ Não Pertence : Tal que $ " fi Existe Não existe Qualquer (para todo) Portanto Se, e somente se,...(equivalência)

Leia mais

Exercícios de revisão para a primeira avaliação Gabaritos selecionados

Exercícios de revisão para a primeira avaliação Gabaritos selecionados UFPB/CCEN/DM Matemática Elementar I - 2011.2 Exercícios de revisão para a primeira avaliação Gabaritos selecionados 1. Sejam p, q e r proposições. Mostre que as seguintes proposições compostas são tautologias:

Leia mais

Teoria dos conjuntos

Teoria dos conjuntos Matemática I Teoria dos conjuntos UNE - Universidade do Estado da ahia Departamento de Ciências Humanas e Tecnologias Campus XXIV Xique Xique Matemática I Teoria dos conjuntos Prof. MSc. Rebeca Dourado

Leia mais

Gênesis S. Araújo Pré-Cálculo

Gênesis S. Araújo Pré-Cálculo Gênesis Soares Jaboatão, de de 2016. Estudante: PAR ORDENADO: Um par ordenado de números reais é o conjunto formado por dois números reais em determinada ordem. Os parênteses, em substituição às chaves,

Leia mais

EMENTA Lógica; Conjuntos Numéricos; Relações e Funções. OBJETIVOS. Geral

EMENTA Lógica; Conjuntos Numéricos; Relações e Funções. OBJETIVOS. Geral DADOS DO COMPONENTE CURRICULAR Disciplina: Matemática Curso: Técnico Integrado em Eletromecânica Série: 1ª Carga Horária: 100 h.r Docente Responsável: EMENTA Lógica; Conjuntos Numéricos; Relações e Funções.

Leia mais

Sistemas Digitais. Revisão Portas Lógicas. Isaac Maia

Sistemas Digitais. Revisão Portas Lógicas. Isaac Maia Sistemas Digitais Revisão Portas Lógicas Isaac Maia Portas Lógicas - Revisão Conteúdo Introdução Notações Tabela Verdade Diagramas de Tempo Porta OR(Operação OU) Porta AND(Operação E) Porta NOT(Inversor)

Leia mais

Conjuntos. Ou ainda por diagrama (diagrama de Venn-Euler):

Conjuntos. Ou ainda por diagrama (diagrama de Venn-Euler): Capítulo 1 Conjuntos Conjunto é uma coleção de objetos, não importando a ordem ou quantas vezes algum objeto apareça, exemplos: Conjunto dos meses do ano; Conjunto das letras do nosso alfabeto; Conjunto

Leia mais

Relações Binárias, Aplicações e Operações

Relações Binárias, Aplicações e Operações Relações Binárias, Aplicações e Operações MAT 131-2018 II Pouya Mehdipour 19 de outubro de 2018 Pouya Mehdipour 19 de outubro de 2018 1 / 7 Referências ALENCAR FILHO, E. Teoria Elementar dos Conjuntos,

Leia mais

Lógica Elementar, Conjuntos e Relações

Lógica Elementar, Conjuntos e Relações Lógica Elementar Conjuntos e Relações Lógica Elementar O estudo da lógica é o estudo dos princípios e métodos usados para distinguir argumentos válidos dos não válidos. Proposição Declaração que é verdadeira

Leia mais

Matemática Discreta 11/12 Soluções

Matemática Discreta 11/12 Soluções Matemática Discreta 11/1 Soluções Lógica 1. (a) Não é proposição. (b) Proposição verdadeira. (c) Proposição falsa. (d) Não é proposição. (e) Proposição falsa. (f) Não é proposição.. (a) + 4 5 e. (c) A

Leia mais

Universidade Federal do Pará Curso de Licenciatura em Matemática PARFOR Lista de Exercícios Referentes a Prova Substitutiva de Geometria Analítica

Universidade Federal do Pará Curso de Licenciatura em Matemática PARFOR Lista de Exercícios Referentes a Prova Substitutiva de Geometria Analítica 1 Universidade Federal do Pará Curso de Licenciatura em Matemática PARFOR Lista de Exercícios Referentes a Prova Substitutiva de Geometria Analítica 1. Determine a distância entre os pontos A(-2, 7) e

Leia mais

FUNÇÃO. 4.1 Relação Binária. Definição 4.1

FUNÇÃO. 4.1 Relação Binária. Definição 4.1 FUNÇÃO Apesar da formalização de função ter se efetivado com as reformas curriculares do século IX, seu uso já era freqüente desde a antiguidade, pelos babilônios. O conceito de função está presente em

Leia mais

DIVISÃO NOS INTEIROS. Luciana Santos da Silva Martino. lulismartino.wordpress.com PROFMAT - Colégio Pedro II

DIVISÃO NOS INTEIROS. Luciana Santos da Silva Martino. lulismartino.wordpress.com PROFMAT - Colégio Pedro II Sumário DIVISÃO NOS INTEIROS Luciana Santos da Silva Martino lulismartino.wordpress.com lulismartino@gmail.com PROFMAT - Colégio Pedro II 18 de agosto de 2017 Sumário 1 Divisibilidade 2 Divisão Euclidiana

Leia mais

AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2016/2017

AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2016/2017 AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM 3º CICLO Ano Letivo 2016/2017 MATEMÁTICA 7ºANO PLANIFICAÇÃO ANUAL Documento(s) Orientador(es): Programa e Metas de Aprendizagem, apoiado pelas novas Orientações

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 RELAÇÕES e FUNÇÕES

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 RELAÇÕES e FUNÇÕES PAR ORDENADO... 2 PRODUTO CARTESIANO... 3 REPRESENTAÇÃO GRÁFICA... 4 RELAÇÃO... 8 DOMÍNIO E IMAGEM... 12 CONTRA-DOMÍNIO... 13 RELAÇÃO INVERSA... 17 PROPRIEDADES DA RELAÇÃO INVERSA... 18 FUNÇÕES... 22 IMAGEM

Leia mais

Números Inteiros: Continuação

Números Inteiros: Continuação META: Apresentar as propriedades aritméticas dos números inteiros OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Entender o conceito de divisibilidade nos números inteiros. Entender o conceito

Leia mais

CAPÍTULO 1 - Teoria dos conjuntos

CAPÍTULO 1 - Teoria dos conjuntos TEORI DOS CONJUNTOS 1. CONCEITO DE CONJUNTOS teoria dos conjuntos tem inicio com o matemático Georg Cantor ( 1845-1918). Como na Geometria Euclidiana adota-se ponto, reta e plano como conceitos primitivos

Leia mais

Aula 1 Conjuntos. Meta. Introduzir as noções básicas de conjunto e produto cartesiano de. conjuntos. Objetivos

Aula 1 Conjuntos. Meta. Introduzir as noções básicas de conjunto e produto cartesiano de. conjuntos. Objetivos Conjuntos AULA 1 Aula 1 Conjuntos Meta conjuntos. Introduzir as noções básicas de conjunto e produto cartesiano de Objetivos Ao final desta aula, você deve ser capaz de: Definir as noções básicas de conjunto

Leia mais

Os números inteiros. Álgebra (Curso de CC) Ano lectivo 2005/ / 51

Os números inteiros. Álgebra (Curso de CC) Ano lectivo 2005/ / 51 Os números inteiros Abordaremos algumas propriedades dos números inteiros, sendo de destacar o Algoritmo da Divisão e o Teorema Fundamental da Aritmética. Falaremos de algumas aplicações como sejam a detecção

Leia mais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 7.º ANO PLANIFICAÇÃO GLOBAL Múltiplos e divisores. Critérios de divisibilidade. - Escrever múltiplos

Leia mais

AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2015/2016 PLANIFICAÇÃO ANUAL. Documento(s) Orientador(es): Programa e Metas de Aprendizagem

AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2015/2016 PLANIFICAÇÃO ANUAL. Documento(s) Orientador(es): Programa e Metas de Aprendizagem AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2015/2016 PLANIFICAÇÃO ANUAL Documento(s) Orientador(es): Programa e Metas de Aprendizagem 3º CICLO MATEMÁTICA 7ºANO TEMAS/DOMÍNIOS CONTEÚDOS OBJETIVOS

Leia mais

dividendo e reconhecer que.

dividendo e reconhecer que. Agrupamento de Escolas General Humberto Delgado Sede na Escola Secundária/3 José Cardoso Pires Santo António dos Cavaleiros 3º Ciclo - 7º Ano Planificação Anual 2016-2017 - Matemática METAS CURRICULARES

Leia mais

AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2017/2018 PLANIFICAÇÃO ANUAL

AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2017/2018 PLANIFICAÇÃO ANUAL AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM 3º CICLO Ano Letivo 2017/2018 PLANIFICAÇÃO ANUAL MATEMÁTICA 7ºANO Documento(s) Orientador(es): Programa e Metas de Aprendizagem, apoiado pelas novas Orientações

Leia mais

1.1. Conhecer e aplicar propriedades dos números primos.

1.1. Conhecer e aplicar propriedades dos números primos. Agrupamento de Escolas General Humberto Delgado Sede na Escola Secundária/3 José Cardoso Pires Santo António dos Cavaleiros 3º Ciclo - 7º Ano Planificação Anual 2014-2015 Matemática METAS CURRICULARES

Leia mais

Agrupamento de Escolas General Humberto Delgado Sede na Escola Secundária/3 José Cardoso Pires Santo António dos Cavaleiros

Agrupamento de Escolas General Humberto Delgado Sede na Escola Secundária/3 José Cardoso Pires Santo António dos Cavaleiros Agrupamento de Escolas General Humberto Delgado Sede na Escola Secundária/3 José Cardoso Pires Santo António dos Cavaleiros 3º Ciclo - 7º Ano Planificação Anual 2015-2016 Matemática METAS CURRICULARES

Leia mais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 7.º ANO PLANIFICAÇÃO ANUAL Planificação 7º ano 2010/2011 Página 1 DOMÍNIO TEMÁTICO: NÚMEROS

Leia mais

Atividades 1 - Matemática Discreta /02

Atividades 1 - Matemática Discreta /02 Atividades 1 - Matemática Discreta - 2014/02 1. Descreva cada um dos conjuntos a seguir, listando seus elementos: (a) P = {x R x 2 x 2 = 0}; (b) Q = {x x é uma letra na palavra amor }; (c) R = {x Z x 2

Leia mais

Já falamos que, na Matemática, tudo se baseia em axiomas. Já estudamos os números inteiros partindo dos seus axiomas.

Já falamos que, na Matemática, tudo se baseia em axiomas. Já estudamos os números inteiros partindo dos seus axiomas. Teoria dos Conjuntos Já falamos que, na Matemática, tudo se baseia em axiomas. Já estudamos os números inteiros partindo dos seus axiomas. Porém, não é nosso objetivo ver uma teoria axiomática dos conjuntos.

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática 1 Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática MAT 101 - Fundamentos de Matemática I 2012/I 2 a Lista - Funções (Parte I) 1. Dados os conjuntos M = {1, 3, 5} e N

Leia mais

Um par ordenado é indica por x e y dentro de parêntese e separado por vírgula.

Um par ordenado é indica por x e y dentro de parêntese e separado por vírgula. PRODUTO CARTESIANO PAR ORDENADO Um par ordenado é indica por x e y dentro de parêntese e separado por vírgula. ( x, y ) pode ser indicado para representar uma determinada posição e que esta ordem de primeiro

Leia mais

Álgebra Linear e Geometria Analítica

Álgebra Linear e Geometria Analítica Álgebra Linear e Geometria Analítica Engenharia Electrotécnica Escola Superior de Tecnologia de Viseu www.estv.ipv.pt/paginaspessoais/lucas lucas@mat.estv.ipv.pt 2007/2008 Álgebra Linear e Geometria Analítica

Leia mais

O verbo induzir significa gerar. Nesta aula, começaremos a ver o assunto Indução Matemática

O verbo induzir significa gerar. Nesta aula, começaremos a ver o assunto Indução Matemática Polos Olímpicos de Treinamento Curso de Álgebra - Nível 2 Prof. Marcelo Mendes Aula 6 Indução - Parte I O verbo induzir significa gerar. Nesta aula, começaremos a ver o assunto Indução Matemática (ou Indução

Leia mais

Capítulo 1. Conjuntos e Relações. 1.1 Noção intuitiva de conjuntos. Notação dos conjuntos

Capítulo 1. Conjuntos e Relações. 1.1 Noção intuitiva de conjuntos. Notação dos conjuntos Conjuntos e Relações Capítulo Neste capítulo você deverá: Identificar e escrever os tipos de conjuntos, tais como, conjunto vazio, unitário, finito, infinito, os conjuntos numéricos, a reta numérica e

Leia mais

Matemática Discreta Parte 11

Matemática Discreta Parte 11 Universidade Federal do Vale do São Francisco Curso de Engenharia da Computação Matemática Discreta Parte 11 Prof. Jorge Cavalcanti jorge.cavalcanti@univasf.edu.br - www.univasf.edu.br/~jorge.cavalcanti

Leia mais

Um conjunto é uma coleção de objetos. Esses objetos podem ser qualquer coisa. Costumamos chamar esses objetos de elementos do conjuntos.

Um conjunto é uma coleção de objetos. Esses objetos podem ser qualquer coisa. Costumamos chamar esses objetos de elementos do conjuntos. Capítulo 1 Conjuntos 1.1 Noção de conjuntos Um conjunto é uma coleção de objetos. Esses objetos podem ser qualquer coisa. Costumamos chamar esses objetos de elementos do conjuntos. 1. Uma coleção de revista

Leia mais

FUNÇÕES I- PRÉ-REQUISITOS PARA O ESTUDO DAS FUNÇÕES

FUNÇÕES I- PRÉ-REQUISITOS PARA O ESTUDO DAS FUNÇÕES FUNÇÕES I- PRÉ-REQUISITOS PARA O ESTUDO DAS FUNÇÕES 1- PRODUTO CARTESIANO 1.1- Par Ordenado - Ao par de números reais a e b, dispostos em uma certa ordem, denominamos par ordenado e indicamos por: (a,

Leia mais

Lógica e Matemática Discreta

Lógica e Matemática Discreta Lógica e Matemática Discreta Teoria Elementar dos Conjuntos Prof Clezio 04 de Junho de 2010 Curso de Ciência da Computação Noções básicas Um conjunto designa-se geralmente por uma letra latina maiúscula:

Leia mais

(b) { (ρ, θ);1 ρ 2 e π θ } 3π. 5. Representar graficamente

(b) { (ρ, θ);1 ρ 2 e π θ } 3π. 5. Representar graficamente Universidade Federal de Uberlândia Faculdade de Matemática isciplina : Geometria nalítica (GM003) ssunto: sistemas de coordenadas; vetores: operações com vetores, produto escalar, produto vetorial, produto

Leia mais

INE Fundamentos de Matemática Discreta para a Computação

INE Fundamentos de Matemática Discreta para a Computação INE5403 - Fundamentos de Matemática Discreta para a Computação 5) Relações 5.1) Relações e Dígrafos 5.2) Propriedades de Relações 5.3) Relações de Equivalência 5.4) Manipulação de Relações 5.5) Fecho de

Leia mais

Universidade Federal Rural de Pernambuco Departamento de Matemática Disciplina: Elementos de Lógica Matemática Prof a Yane Lísley

Universidade Federal Rural de Pernambuco Departamento de Matemática Disciplina: Elementos de Lógica Matemática Prof a Yane Lísley Universidade Federal Rural de Pernambuco Departamento de Matemática Disciplina: Elementos de Lógica Matemática Prof a Yane Lísley 1 a Lista de Exercícios 1. Determinar o valor lógico (V ou F) de cada uma

Leia mais

MDI0001 Matemática Discreta Aula 04 Álgebra de Conjuntos

MDI0001 Matemática Discreta Aula 04 Álgebra de Conjuntos MDI0001 Matemática Discreta Aula 04 Álgebra de Conjuntos Karina Girardi Roggia karina.roggia@udesc.br Departamento de Ciência da Computação Centro de Ciências Tecnológicas Universidade do Estado de Santa

Leia mais

Fundamentos de Matemática

Fundamentos de Matemática Fundamentos de Matemática Aula 1 Antonio Nascimento Plano de Ensino Conteúdos Teoria dos Conjuntos; Noções de Potenciação, Radiciação; Intervalos Numéricos; Fatoração, Equações e Inequações; Razão, Proporção,

Leia mais

Roteiro de trabalho para o 5o ano

Roteiro de trabalho para o 5o ano Roteiro de trabalho para o 5o ano No volume do 5º ano estão assim organizados os conteúdos e as habilidades a serem desenvolvidos no decorrer do ano. LIÇÃO CONTEÚDO OBJETOS 1. Vamos recordar 2. Sistema

Leia mais

Notas de Aula de Fundamentos de Matemática

Notas de Aula de Fundamentos de Matemática Universidade Estadual de Montes Claros Centro de Ciências Exatas e Tecnológicas Departamento de Ciências Exatas Notas de Aula de Fundamentos de Matemática Rosivaldo Antonio Gonçalves Notas de aulas que

Leia mais

Observação: Todas as letras em negrito abaixo (x, y, z, a e b) representam números reais.

Observação: Todas as letras em negrito abaixo (x, y, z, a e b) representam números reais. Para mostrar que menos vezes menos dá mais precisamos admitir alguns fatos relacionados aos números reais. Vamos chamá-los de axiomas e simplesmente aceitá-los como sendo válidos: Observação: Todas as

Leia mais

Curso: Ciência da Computação Disciplina: Matemática Discreta RELAÇÕES. Prof.: Marcelo Maraschin de Souza

Curso: Ciência da Computação Disciplina: Matemática Discreta RELAÇÕES. Prof.: Marcelo Maraschin de Souza Curso: Ciência da Computação Disciplina: Matemática Discreta RELAÇÕES Prof.: Marcelo Maraschin de Souza marcelo.maraschin@ifsc.edu.br Considere o conjunto S={1,2,3}, descreva o conjunto dos pares ordenados

Leia mais

13 AULA. Relações de Equivalência LIVRO. META: Introduzir o conceito de relações de equivalência e suas propriedades.

13 AULA. Relações de Equivalência LIVRO. META: Introduzir o conceito de relações de equivalência e suas propriedades. 2 LIVRO Relações de Equivalência META: Introduzir o conceito de relações de equivalência e suas propriedades. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Identificar se uma dada relação

Leia mais

MÓDULO 9. Conjuntos. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA

MÓDULO 9. Conjuntos. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 9 Conjuntos 1. (ITA) Considere as seguintes afirmações sobre o conjunto U = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}: I. Ø U e n(u) = 10. II.

Leia mais

Algebra Sandro Marcos Guzzo Cascavel 1 de abril de 2019

Algebra Sandro Marcos Guzzo Cascavel 1 de abril de 2019 Álgebra Sandro Marcos Guzzo Cascavel 1 de abril de 2019 Sumário Introdução 4 1 Relações, aplicações e operações 5 1.1 Terminologia básica dos conjuntos.......................... 5 1.2 Números inteiros....................................

Leia mais