Lançamento de projéteis, antenas parabólicas e campeonato de futebol; o que eles têm em comum? Fonte: bp2.blogger.com/.../s400/argentinabrasil5.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Lançamento de projéteis, antenas parabólicas e campeonato de futebol; o que eles têm em comum? Fonte: bp2.blogger.com/.../s400/argentinabrasil5."

Transcrição

1 1 NRE: Cornélio Procópio Nome do Professor: Marinez Pereira dos Santos Escola: Colégio Estadual Profª Regina Municipío: Uraí Tokano Disciplina: Matemática Série: 1ª Conteúdo Estruturante: Funções Conteúdo Específico: Função Quadrática Relação interdisciplinar 1: Educação Física Relação interdisciplinar 2: Física Fone: (43) Lançamento de projéteis, antenas parabólicas e campeonato de futebol; o que eles têm em comum? Fonte: bp2.blogger.com/.../s400/argentinabrasil5.jpg Início de Campeonato Brasileiro de Futebol. Todos estão ansiosos para o primeiro jogo. A escolha da rede de TV transmissora depende da afinidade entre os telespectadores e os comentaristas e narradores e também da qualidade das imagens captadas pelas antenas de TV, principalmente as antenas parabólicas, presentes em um bom número de lares brasileiros. Porém, existe algo em comum entre o campeonato de futebol e as antenas parabólicas? Apesar de a princípio não parecer, eles possuem! Você já deve ter assistido a um jogo de futebol. É torcedor de algum time? Que tipo de emoção uma partida de futebol do seu time do coração provoca em você?

2 2 O futebol é o esporte coletivo mais praticado no mundo. Nascido na Inglaterra no século XIX e difundido rapidamente em todo mundo, chegou ao Brasil através dos pés de ingleses expatriados. Aqui, o pai do futebol foi Charles Miller, que tomou contato com o esporte na Inglaterra em seu período de estudos. No seu retorno para o Brasil, trouxe consigo duas bolas de futebol e formou o primeiro clube de futebol. O futebol rapidamente se tornou a paixão nacional e comumente ouvimos a expressão país do futebol quando se deseja fazer referência ao Brasil. (Fonte: Aqui, a importância do futebol é tão grande que criaram os campeonatos estaduais e o Brasileiro. Apesar de este esporte ser praticado em todo o país à longa data, apenas em 1971 se criou o Campeonato Brasileiro em virtude das dificuldades de se organizar um campeonato que abrangesse uma área tão grande como é a do Brasil. O primeiro campeão brasileiro foi o Clube Atlético Mineiro. O Campeonato Brasileiro, organizado pela CBF (Confederação Brasileira de Futebol) congrega hoje 20 clubes tanto na Série A (1ª divisão) quanto na Série B (2ª divisão) onde são disputadas as partidas em turno e returno e a classificação é feita através de pontos corridos, sendo que o Campeão, o Vice, 3º e 4º colocados têm acesso à Taça Libertadores da América. Para a Série C (3ª divisão), são realizadas eliminatórias regionais até a última fase o que permite a participação de clubes pequenos e com orçamento baixo. Porém, existe algo em comum entre o campeonato de futebol e as antenas parabólicas? No Brasileirão, como já foi dito, cada clube joga duas vezes com outro em turno e returno. Supondo que apenas dois clubes participem do campeonato, temos então, 2 partidas; se forem 3 os participantes, temos 6 partidas. Simbolizando por n o número de clubes participantes e p o número de partidas, temos: Número de clubes (n) Número de partidas (p) 2 2(2-1) 3 3(3-1) 4 4(4-1) 5 5(5-1) n n(n-1)

3 3 Observando a tabela, vemos que o número de partidas é dado em função do número de clubes participantes: p(n) = n(n-1) p(n) = n 2 n Observando a tabela acima, verificamos que a função que nos permite calcular o número de partidas a serem disputadas tem um elemento com expoente 2. Essa função é denominada função polinomial de 2º grau ou função quadrática. As funções de 2º grau têm a variável independente com grau 2, isto é, o seu maior expoente é 2. A função quadrática é função f de R em R onde a cada x R se associa o elemento ( ax 2 + bx + c) R, com a R *, b R e c R, f(x) = ax 2 + bx + c, onde a 0. Como podemos observar, o fato de a R * implica que existe um termo de 2º grau. Em geral, uma função quadrática ou polinomial do 2º grau é expressa na forma f(x) = ax 2 + bx + c, onde a, b e c são coeficientes reais. Exemplo: 2x 2 7x + 3 = 0. Nessa equação a variável é x e os coeficientes são: a = 2 ( coeficiente de x 2 ) b = -7 (coeficiente de x) c = 3 (coeficiente constante ou termo independente) Sabemos que a deve ser diferente de zero, porém b e/ou c podem ser nulos. Se b e c forem ambos diferentes de zero, a equação é chamada de completa. Se b e/ou c forem nulos, a equação será chamada incompleta. Exemplos de equações incompletas: a) 3x 2 12 = 0 3x 2 + 0x -12 = 0 Observamos que b = 0 b) 2x 2 + 4x = 0 2x 2 + 4x + 0 = 0 Observamos que c = 0 c) 2x 2 = 0 2x 2 + 0x + 0 = 0 Observamos que b = c = 0 Devemos atentar para o fato de que o termo de 2º grau está presente em todas as funções completas ou incompletas.

4 4 Ainda sobre futebol! Durante uma partida, é comum termos cobrança de escanteio. Nesse tipo de jogada, a bola apresenta movimento análogo ao do lançamento de projéteis, como por exemplo, uma bala sendo lançada obliquamente por um canhão que esteja próximo à superfície da Terra. O projétil sai do canhão com velocidade inicial (V 0 ) diferente de zero. A velocidade (V 0 ) do projétil sempre é decomposta em duas componentes: - uma vertical (V 0y ), com módulo, direção e sentido variando no decorrer do tempo e tem como equação: V 0y = V 0. cos θ; - uma componente horizontal (V 0x ) que apresenta módulo, direção e sentido constantes, tendo como equação: V 0x = V 0. sen θ. Fonte: FERRARO, 1991, p.143 O movimento em relação ao eixo Oy é um movimento uniformemente variado, descrito sob a ação da gravidade e no eixo 0x é um movimento uniforme. O movimento em relação ao eixo Oy tem como y = v y. t 2 gt. equação 2 0. O valor de y não representa a distância percorrida na vertical e sim a posição do corpo em relação ao eixo OY. A velocidade v y varia com o tempo segundo a equação v y = v 0y - gt.

5 5 Como o movimento em relação ao eixo Ox é um movimento uniforme, a velocidade permanece constante e é dada por V x = V 0x. Permanecendo constante o valor da velocidade, teremos o deslocamento em relação ao eixo Ox dado por x= vx. t. Observação: Estamos considerando os eixos como: Ox eixo horizontal, orientado para a direita. Oy eixo vertical, orientado para cima. Atividade: Durante um jogo de futebol, um dos jogadores cobrou uma falta frontal ao gol adversário. Sabendo que a bola saiu dos pés do jogador com velocidade de 30 m/s, o ângulo θ era 30º e que o gol ocorreu após 4 s da bola ter sido chutada, determine a que distância do gol o jogador cobrou a falta. (Adote g= 10m/s² e despreze a resistência do ar). A equação do movimento em relação ao eixo 0Y é uma equação do 2º grau e descreve uma trajetória parabólica, como podemos observar no gráfico acima. O termo parabólica vem de parábola, palavra que se origina do grego parabole e é definida como uma seção cônica gerada pela interseção de um plano paralelo a uma linha geradora do cone (geratriz). (Fonte: Pode ser também definida como o conjunto de pontos eqüidistantes de um ponto dado (foco) e de uma reta dada (diretriz).

6 6 Fonte: membros.aveiro-digital.net/.../math061.jpg As parábolas são utilizadas em diversos equipamentos, que são presenças constantes em nosso dia-a-dia. Como exemplo pode-se citar: os radares, que são compostos por uma antena transmissora/receptora, que emite pulso eletromagnético, o qual é refletido quando atinge o alvo e captado pela antena; os faróis dos veículos que utilizam lentes parabólicas que ficam posicionadas na parte de trás dos faróis e que direcionam a luz emitida pelos mesmos, e as antenas parabólicas comumente encontradas nos telhados das residências e edifícios. Elas captam as ondas eletromagnéticas emitidas pelos satélites artificiais que orbitam ao redor da Terra. (Fonte: Atividade: Construa o gráfico da função que relaciona o número de partidas de cada clube em função do número de participantes. Analisando o gráfico do campeonato e do lançamento de projéteis, percebemos que as concavidades são invertidas. Isto acontece porque o coeficiente a pode apresentar-se da seguinte forma: a > 0, isto acarreta concavidade voltada para cima; a < 0, isto acarreta concavidade voltada para baixo.

7 7 Analisemos agora, o gráfico abaixo. Percebemos que ele corta o eixo Ox (abcissas), isto é, a parábola apresenta pontos de interseção com o eixo x. No gráfico acima, a parábola cortou o eixo 0x em dois pontos (x 1,0) e (x 2,0). Devemos atentar para o fato de que os pares ordenados (x,y) estão apresentando y=0; isto significa que x 1 e x 2 são os zeros ou raízes da função. Atividade Encontre os zeros ou raízes das seguintes funções: f(x)= x 2 + 2x f(x)= x 2-2x +6 Para a determinação dos zeros ou raízes da função é necessário resolvermos a função quadrática e isto pode ser feito de formas diversas. Apresentamos aqui uma dessas formas: Imaginemos um quadrado de área 2( ax+ b)² como o da figura abaixo:

8 8 A área total do quadrado equivale a soma das áreas dos quadriláteros da figura, isto é: ( x + b)² = 4a ² x² + 4bx+ b² Vamos agora isolar o coeficiente c da equação da 2º grau: ax²+ bx+ c ax² + bx= c Multiplequemos agora os dois membros da equação por 4 a: 4 a² x² + 4abxb² = b² = 4ac Comparando a primeira equação com a última, percebemos que falta apenas o termo b². Vamos então, acrescentá-lo aos dois membros da última equação: 4a² x² + 4abx+ b² = b² 4ac. Observamos que o primeiro membro é igual a 2( ax+ b)², então podemos escrever da seguinte forma: 2 ( ax+ b)² = b² = 4ac. Sendo o segundo membro positivo, podemos então extrair a raiz quadrada: ( x+ b)² = b² 4ac x+ b=± b² 4ac x+ b=± b² 4ac x = b ± b² 4ac x = b ± b± b² 4ac x = b² 4ac Temos então o conjunto solução da equação completa: S = b+ b² 4ac, b b² 4ac

9 9 Exemplo: Resolver a equação: x² - 5x + 6 =0 Calculamos primeiro o valor numérico b² 4ac. Sabendo que a=1, b=-5 e c=6, temos: b 4ac b± b² 4ac Como x = ² = ( 5) ² = 25 24= 1>0. 5± 1 x = ou 2.1 5±1 x = 2 Chamando uma das raízes de x e a outra de x, obtemos: x ' = = = x' ' = = = Então S = {2;3}, pois se atribuímos os valores 2 e 3 a x tornamos a sentença x² 5x+ 6= 0verdadeira. Verificamos que a expressão b² 4ac é um fator condicionante para a solução da equação, pois se seu valor numérico for negativo, teremos b² 4ac R. Devido à sua importância, ela é denominada discriminante e representada por (letra grega delta maiúscula). Sendo assim, podemos escrever a solução da equação da seguinte forma: S = b+, b Observação: Esta solução também é válida para as equações incompletas. Quando calculamos o valor do discriminante ( ), podem ocorrer as seguintes situações: 1ª) > 0; isto significa um positivo, o que leva a ser um número real diferente de zero e a equação a ter duas raízes reais e distintas; 2ª) = 0; isto significa um nulo, o que leva a ser igual a zero e a equação possuir duas raízes reais e iguais; 3ª) < 0; isto significa um negativo, o que leva a não ser um número real e a equação não possuir raízes reais.

10 10 Atividade: Preencha a tabela abaixo com o discriminante e as raízes de cada função: Função f ( x) = x+ 2x f ( x) = x² 13x + 40 f ( x) = 2x² 7x+ 3 f ( x) = x² 2x 3 Coeficient e (a) Coeficient e (b) Coeficient e (c) Discrimina nte ( ) Raízes Vamos agora, esboçar o gráfico da função y = x² 6x+ 5. Para isso, vamos traçar a mediatriz do segmento dado pelos valores de x e x isto é, onde os valores de x correspondem a um mesmo valor de y. A mediatriz obtida é nosso eixo de simetria. A interseção da parábola com o eixo de simetria é denominado vértice da parábola e tem como x' + x'' valor numérico a média aritmética de x e, isto é, V =. 2 O vértice possui como coordenadas V = (x v, y v ), onde x v e y v são obtidos da seguinte forma: x v b = (abscissas) e yv = (ordenadas) 4a Se o ponto V (vértice da parábola) representar uma função f ( x) = ax²+ bx+ ccom a < 0, então a abscissa de V será o ponto de máximo e a ordenada será o valor máximo da função f. Porém, se V representar uma função f ( x) = ax²+ bx+ ccom a > 0, a abscissa será o ponto de mínimo e a ordenada o valor mínimo da função f. Por exemplo: A função f(x) = x² - 6x tem vértice de coordenadas V= (3,-9). Isto significa que: f(3) = -9 é o valor mínimo da função; 3 é o ponto de mínimo da função f. Atividade: Determine o valor máximo (mínimo) e o ponto de máximo (de mínimo) de cada função abaixo:

11 11 a) f(x) = 2x² - 12x +10 b) f(x) = -x² + 4x + 5 c) f(x) = x² - 9 d) f(x) = 3x² Depois de você ter recebido essas informações sobre parábolas e algumas das aplicações em nosso cotidiano, responda sem vacilar: Quem é o atual campeão brasileiro de futebol?

12 12 REFERÊNCIAS BIBLIOGRÁFICAS ANDREATINI, Alessandro. A fórmula de Bhaskara. Disponível em: <http://sandroatini.sites.uol.com.br/bhaskara.htm>. Acesso em: 12 jun CARRON, Wilson; GUIMARÃES, Osvaldo. Física. 2.ed. São Paulo: Moderna, GARBI, Gilberto G. Para que serve isso? Revista do Professor de Matemática, Rio de Janeiro, nº 63, 1-5, 2º quadrimestre, GIOVANNI, José Ruy; BONJORNO, José Roberto; GIOVANNI JR., José Ruy. Matemática Fundamental. 2º Grau. São Paulo: FTD,1994. (Volume único) GUICHARD, Jean Paul. História da Matemática no ensino da Matemática. Disponível em: Acesso em 20 jun KRULIK, Stephen; REYS, Robert E.. A Resolução de Problemas na Matemática Escolar. São Paulo: Atual, Formulando problemas adequadamente. In: KRULIK, Stephen; REYS, Robert E. A Resolução de Problemas na Matemática Escolar. São Paulo:Editora Atual, (p ) MÁXIMO, Antônio; ALVARENGA, Beatriz. Curso de Física.4.ed.São Paulo:Scipione,1997. (Volume 1) PARANÁ. Secretaria de Estado da Educação. Superintendência da Educação. Departamento de Ensino Médio. Diretrizes Curriculares da Rede Pública de Educação Básica do Estado do Paraná. Curitiba, POLYA, G. A arte de Resolver Problemas. Rio de Janeiro: Interciência, SANTOS, Alberto Marcondes dos; GENTIL, Nelson; GRECO, Sérgio Emílio, Matemática, São Paulo: Ática, 2002.

13 13 SCOPEL, Daiane Ramiro; BASSO, Eide L. Funções Quadráticas e Representações de Fenômenos. Disponível em: deme/emsoares/inipes/funcquad.html. Acesso em 21 abr WIKIPEDIA. Futebol. Disponível em: Acesso em 23 abr WIKIPÉDIA. Parábola. Disponível em: %C3%A1bola. Acesso em 13 maio YOUSSEF, Antonio Nicolau; FERNANDES, Vicente Paz; SOARES, Elizabeth. Matemática para o 2º Grau. São Paulo: Scipione, 1997.

Função do 2º Grau. Alex Oliveira

Função do 2º Grau. Alex Oliveira Função do 2º Grau Alex Oliveira Apresentação A função do 2º grau, também chamada de função quadrática é definida pela expressão do tipo: y = f(x) = ax² + bx + c onde a, b e c são números reais e a 0. Exemplos:

Leia mais

b) a 0 e 0 d) a 0 e 0

b) a 0 e 0 d) a 0 e 0 IFRN - INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RN PROFESSOR: MARCELO SILVA MATEMÁTICA FUNÇÃO DO º GRAU 1. Um grupo de pessoas gastou R$ 10,00 em uma lanchonete. Quando foram pagar a conta,

Leia mais

Curvas em coordenadas polares

Curvas em coordenadas polares 1 Curvas em coordenadas polares As coordenadas polares nos dão uma maneira alternativa de localizar pontos no plano e são especialmente adequadas para expressar certas situações, como veremos a seguir.

Leia mais

Universidade Federal do Rio Grande do Norte. Centro De Ciências Exatas e da Terra. Departamento de Física Teórica e Experimental

Universidade Federal do Rio Grande do Norte. Centro De Ciências Exatas e da Terra. Departamento de Física Teórica e Experimental Universidade Federal do Rio Grande do Norte Centro De Ciências Exatas e da Terra Departamento de Física Teórica e Experimental Programa de Educação Tutorial Curso de Nivelamento: Pré-Cálculo PET DE FÍSICA:

Leia mais

LISTA DE FUNÇÃO POLINOMIAL DO 1º GRAU - 2012. ax b, sabendo que:

LISTA DE FUNÇÃO POLINOMIAL DO 1º GRAU - 2012. ax b, sabendo que: 1) Dada a função f(x) = 2x + 3, determine f(1). LISTA DE FUNÇÃO POLINOMIAL DO 1º GRAU - 2012 2) Dada a função f(x) = 4x + 5, determine x tal que f(x) = 7. 3) Escreva a função afim f ( x) ax b, sabendo

Leia mais

NIVELAMENTO 2007/1 MATEMÁTICA BÁSICA. Núcleo Básico da Primeira Fase

NIVELAMENTO 2007/1 MATEMÁTICA BÁSICA. Núcleo Básico da Primeira Fase NIVELAMENTO 00/ MATEMÁTICA BÁSICA Núcleo Básico da Primeira Fase Instituto Superior Tupy Nivelamento de Matemática Básica ÍNDICE. Regras dos Sinais.... Operações com frações.... Adição e Subtração....

Leia mais

Uma lei que associa mais de um valor y a um valor x é uma relação, mas não uma função. O contrário é verdadeiro (isto é, toda função é uma relação).

Uma lei que associa mais de um valor y a um valor x é uma relação, mas não uma função. O contrário é verdadeiro (isto é, toda função é uma relação). 5. FUNÇÕES DE UMA VARIÁVEL 5.1. INTRODUÇÃO Devemos compreender função como uma lei que associa um valor x pertencente a um conjunto A a um único valor y pertencente a um conjunto B, ao que denotamos por

Leia mais

Capítulo 5: Aplicações da Derivada

Capítulo 5: Aplicações da Derivada Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f

Leia mais

Plano de Aula. 1 - Como abrir o programa KmPlot

Plano de Aula. 1 - Como abrir o programa KmPlot Plano de Aula Aluno(a):PIBID MATEMÁTICA Escola: Escola Estadual de Ensino Médio Mestre Santa Bárbara Disciplina: Matemática Conteúdo: Função quadrática Assunto: Gráficos, coeficientes da função Público

Leia mais

INSTITUTO TECNOLÓGICO

INSTITUTO TECNOLÓGICO PAC - PROGRAMA DE APRIMORAMENTO DE CONTEÚDOS. ATIVIDADES DE NIVELAMENTO BÁSICO. DISCIPLINAS: MATEMÁTICA & ESTATÍSTICA. PROFº.: PROF. DR. AUSTER RUZANTE 1ª SEMANA DE ATIVIDADES DOS CURSOS DE TECNOLOGIA

Leia mais

Capítulo 1. x > y ou x < y ou x = y

Capítulo 1. x > y ou x < y ou x = y Capítulo Funções, Plano Cartesiano e Gráfico de Função Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

Física 1 ano Prof. Miranda. Lista de Exercícios II Unidade

Física 1 ano Prof. Miranda. Lista de Exercícios II Unidade Física 1 ano Prof. Miranda Lista de Exercícios II Unidade mirandawelber@gmail.com 01. O que é necessário para determinar (caracterizar) uma: a) grandeza escalar? b) grandeza vetorial? 02. Classifique os

Leia mais

Experimento. Guia do professor. Otimização da cerca. Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia. Ministério da Educação

Experimento. Guia do professor. Otimização da cerca. Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia. Ministério da Educação Números e funções Guia do professor Experimento Otimização da cerca Objetivos da unidade 1. Resolver um problema de otimização através do estudo de uma função quadrática. 2. Estudar as propriedades de

Leia mais

Aula 3 CONSTRUÇÃO DE GRÁFICOS EM PAPEL DILOG. Menilton Menezes. META Expandir o estudo da utilização de gráficos em escala logarítmica.

Aula 3 CONSTRUÇÃO DE GRÁFICOS EM PAPEL DILOG. Menilton Menezes. META Expandir o estudo da utilização de gráficos em escala logarítmica. Aula 3 CONSTRUÇÃO DE GRÁFICOS EM PAPEL DILOG META Expandir o estudo da utilização de gráficos em escala logarítmica. OBJETIVOS Ao final desta aula, o aluno deverá: Construir gráficos em escala di-logarítmica.

Leia mais

Capítulo 2 A Cinemática

Capítulo 2 A Cinemática Capítulo 2 A Cinemática ACinemática é a parte da Física que tenta descrever os movimentos, sem levar em consideração as suas causas. Para isso, organiza informações sobre a posição, o deslocamento, o espaço

Leia mais

Unidade III: Movimento Uniformemente Variado (M.U.V.)

Unidade III: Movimento Uniformemente Variado (M.U.V.) Colégio Santa Catarina Unidade III: Movimento Uniformemente Variado (M.U.V.) 17 Unidade III: Movimento Uniformemente Variado (M.U.V.) 3.1- Aceleração Escalar (a): Em movimentos nos quais as velocidades

Leia mais

Potenciação no Conjunto dos Números Inteiros - Z

Potenciação no Conjunto dos Números Inteiros - Z Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente

Leia mais

4. A FUNÇÃO AFIM. Uma função f: R R chama-se afim quando existem números reais a e b tais que f(x) = ax + b para todo x R. Casos particulares

4. A FUNÇÃO AFIM. Uma função f: R R chama-se afim quando existem números reais a e b tais que f(x) = ax + b para todo x R. Casos particulares 38 4. A FUNÇÃO AFIM Uma função f: R R chama-se afim quando existem números reais a e b tais que f(x) = ax + b para todo x R. Casos particulares 1) A função identidade fr : Rdefinida por f(x) = x para todo

Leia mais

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel. Matemática Essencial Equações do Segundo grau Conteúdo Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.br/matessencial/ 1 Introdução

Leia mais

O momento do gol. Parece muito fácil marcar um gol de pênalti, mas na verdade o espaço que a bola tem para entrar é pequeno. Observe na Figura 1:

O momento do gol. Parece muito fácil marcar um gol de pênalti, mas na verdade o espaço que a bola tem para entrar é pequeno. Observe na Figura 1: O momento do gol A UU L AL A Falta 1 minuto para terminar o jogo. Final de campeonato! O jogador entra na área adversária driblando, e fica de frente para o gol. A torcida entra em delírio gritando Chuta!

Leia mais

Truques e Dicas. = 7 30 Para multiplicar fracções basta multiplicar os numeradores e os denominadores: 2 30 = 12 5

Truques e Dicas. = 7 30 Para multiplicar fracções basta multiplicar os numeradores e os denominadores: 2 30 = 12 5 Truques e Dicas O que se segue serve para esclarecer alguma questão que possa surgir ao resolver um exercício de matemática. Espero que lhe seja útil! Cap. I Fracções. Soma e Produto de Fracções Para somar

Leia mais

Função. Definição formal: Considere dois conjuntos: o conjunto X com elementos x e o conjunto Y com elementos y. Isto é:

Função. Definição formal: Considere dois conjuntos: o conjunto X com elementos x e o conjunto Y com elementos y. Isto é: Função Toda vez que temos dois conjuntos e algum tipo de associação entre eles, que faça corresponder a todo elemento do primeiro conjunto um único elemento do segundo, ocorre uma função. Definição formal:

Leia mais

FACULDADE DE CIÊNCIA E TECNOLOGIA. Cursos de Engenharia. Prof. Álvaro Fernandes Serafim

FACULDADE DE CIÊNCIA E TECNOLOGIA. Cursos de Engenharia. Prof. Álvaro Fernandes Serafim FACULDADE DE CIÊNCIA E TECNOLOGIA Cursos de Engenharia Prof. Álvaro Fernandes Serafim Última atualização: //7. Esta apostila de Álgebra Linear foi elaborada pela Professora Ilka Rebouças Freire. A formatação

Leia mais

Gráfico: O gráfico de uma função quadrática é uma parábola. Exemplos: 1) f(x) = x 2 + x -3-2 -1-1/2 1 3/2 2. 2) y = -x 2 + 1 -3-2 -1

Gráfico: O gráfico de uma função quadrática é uma parábola. Exemplos: 1) f(x) = x 2 + x -3-2 -1-1/2 1 3/2 2. 2) y = -x 2 + 1 -3-2 -1 Engenharia Civil/Mecânica Cálculo 1 1º semestre 2015 Profa Olga Função Quadrática Uma função f : R R chama-se função quadrática quando existem números reais a, b e c, com a 0, tais que f(x) = ax 2 + bx

Leia mais

Função do 2 grau. Módulo 2 Unidade 6. Para início de conversa... Matemática e suas Tecnologias Matemática 67

Função do 2 grau. Módulo 2 Unidade 6. Para início de conversa... Matemática e suas Tecnologias Matemática 67 Módulo Unidade 6 Função do grau Para início de conversa... A função é um grande instrumento de modelagem de fenômenos físicos e situações cotidianas como foi visto em unidades anteriores. Um tipo de função

Leia mais

Os conceitos mais básicos dessa matéria são: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo.

Os conceitos mais básicos dessa matéria são: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo. Os conceitos mais básicos dessa matéria são: Cinemática Básica: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo. Velocidade: Consiste na taxa de variação dessa distância

Leia mais

PROVA G1 FIS 1033 23/08/2011 MECÅNICA NEWTONIANA

PROVA G1 FIS 1033 23/08/2011 MECÅNICA NEWTONIANA PROVA G1 FIS 1033 23/08/2011 MECÅNICA NEWTONIANA NOME LEGÇVEL: Gabarito TURMA: ASSINATURA: MATRÇCULA N o : QUESTÉO VALOR GRAU REVISÉO 1 1,0 2 1,0 3 4,0 4 4,0 TOTAL 10,0 Dados: r/ t = (v + v 0 )/2; v v

Leia mais

Vestibulando Web Page www.vestibulandoweb.com.br

Vestibulando Web Page www.vestibulandoweb.com.br 1. (Ufv 2000) Um aluno, sentado na carteira da sala, observa os colegas, também sentados nas respectivas carteiras, bem como um mosquito que voa perseguindo o professor que fiscaliza a prova da turma.

Leia mais

www.concursovirtual.com.br

www.concursovirtual.com.br Cinemática: É a parte da mecânica que estuda os movimentos, procurando determinar a posição, velocidade e aceleração do corpo a cada instante. Ponto Material: É todo corpo que não possua dimensões a serem

Leia mais

CA 6 - Apropriar-se de conhecimentos da Física para, em situações problema, interpretar, avaliar ou planejar intervenções científico-tecnológicas.

CA 6 - Apropriar-se de conhecimentos da Física para, em situações problema, interpretar, avaliar ou planejar intervenções científico-tecnológicas. COMPETÊNCIAS E HABILIDADES CADERNO 8 PROF.: Célio Normando CA 6 - Apropriar-se de conhecimentos da Física para, em situações problema, interpretar, avaliar ou planejar intervenções científico-tecnológicas.

Leia mais

f (x) = x Marcelo Viana Instituto Nacional de Matemática Pura e Aplicada Marcelo Viana

f (x) = x Marcelo Viana Instituto Nacional de Matemática Pura e Aplicada Marcelo Viana Instituto Nacional de Matemática Pura e Aplicada Resolução de equações A resolução de equações (encontrar o valor de x ) é um dos problemas mais básicos e antigos da Matemática, motivado desde sempre por

Leia mais

(S.I.) = 10 + 6 3) (FP) O

(S.I.) = 10 + 6 3) (FP) O Lista Cinemática 1) (FP) Um motorista pretende realizar uma viagem com velocidade média de 90 km/h. A primeira terça parte do percurso é realizada à 50km/h e os próximos 3/5 do restante é realizado à 80

Leia mais

Aula 17 GRANDEZAS ESCALARES E VETORIAIS. META Apresentar as grandezas vetoriais e seu signifi cado

Aula 17 GRANDEZAS ESCALARES E VETORIAIS. META Apresentar as grandezas vetoriais e seu signifi cado GRANDEZAS ESCALARES E VETORIAIS META Apresentar as grandezas vetoriais e seu signifi cado OBJETIVOS Ao fi nal desta aula, o aluno deverá: Diferenciar grandezas escalares e vetoriais; compreender a notação

Leia mais

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO INDIVIDUAL DE ESTUDO ESTUDOS INDEPENDENTES RESOLUÇÃO SEE Nº 2.197, DE 26 DE OUTUBRO DE 2012

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO INDIVIDUAL DE ESTUDO ESTUDOS INDEPENDENTES RESOLUÇÃO SEE Nº 2.197, DE 26 DE OUTUBRO DE 2012 ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO INDIVIDUAL DE ESTUDO ESTUDOS INDEPENDENTES RESOLUÇÃO SEE Nº 2.197, DE 26 DE OUTUBRO DE 2012 ANO 2013 PROFESSOR (a) Ana Paula Cintra de Carvalho DISCIPLINA

Leia mais

FEPI FUNDAÇÃO DE ENSINO E PESQUISA DE ITAJUBÁ UNIVERSITAS CENTRO UNIVERSITÁRIO DEITAJUBÁ CÁLCULO 1. Prof. William Mascia Resende. Engenharia Elétrica

FEPI FUNDAÇÃO DE ENSINO E PESQUISA DE ITAJUBÁ UNIVERSITAS CENTRO UNIVERSITÁRIO DEITAJUBÁ CÁLCULO 1. Prof. William Mascia Resende. Engenharia Elétrica FEPI FUNDAÇÃO DE ENSINO E PESQUISA DE ITAJUBÁ UNIVERSITAS CENTRO UNIVERSITÁRIO DEITAJUBÁ CÁLCULO 1 Prof. William Mascia Resende Engenharia Elétrica ITAJUBÁ 2013 CENTRO UNIVERSITÁRIO DE ITAJUBÁ Curso: Engenharia

Leia mais

UNIDADE 4 FUNÇÕES 2 MÓDULO 1 FUNÇÃO QUADRÁTICA 1 - FUNÇÃO QUADRÁTICA. 103 Matemática e Lógica Unidade 04. a > 0 a < 0 > 0

UNIDADE 4 FUNÇÕES 2 MÓDULO 1 FUNÇÃO QUADRÁTICA 1 - FUNÇÃO QUADRÁTICA. 103 Matemática e Lógica Unidade 04. a > 0 a < 0 > 0 1 - FUNÇÃO QUADRÁTICA UNIDADE 4 FUNÇÕES 2 MÓDULO 1 FUNÇÃO QUADRÁTICA 01 É toda função do tipo f(x)=ax 2 +bx+c, onde a, b e c são constantes reais com a 0. Ou, simplesmente, uma função polinomial de grau

Leia mais

Equações Diferenciais

Equações Diferenciais Equações Diferenciais EQUAÇÕES DIFERENCIAS Em qualquer processo natural, as variáveis envolvidas e suas taxas de variação estão interligadas com uma ou outras por meio de princípios básicos científicos

Leia mais

EXERCÍCIOS 2ª SÉRIE - LANÇAMENTOS

EXERCÍCIOS 2ª SÉRIE - LANÇAMENTOS EXERCÍCIOS ª SÉRIE - LANÇAMENTOS 1. (Unifesp 01) Em uma manhã de calmaria, um Veículo Lançador de Satélite (VLS) é lançado verticalmente do solo e, após um período de aceleração, ao atingir a altura de

Leia mais

Possibilitar ao candidato condições para que ele possa fazer uma breve revisão dos conteúdos no ensino fundamental.

Possibilitar ao candidato condições para que ele possa fazer uma breve revisão dos conteúdos no ensino fundamental. INTRODUÇÃO Esse trabalho abordará alguns conceitos importantes sobre a Matemática no Ensino Fundamental. Além desse material, indicamos que você leia livros, acesse sites relacionados à Matemática para

Leia mais

É usual representar uma função f de uma variável real a valores reais e com domínio A, simplesmente por y=f(x), x A

É usual representar uma função f de uma variável real a valores reais e com domínio A, simplesmente por y=f(x), x A 4. Função O objeto fundamental do cálculo são as funções. Assim, num curso de Pré-Cálculo é importante estudar as idéias básicas concernentes às funções e seus gráficos, bem como as formas de combiná-los

Leia mais

Prova 3 - Matemática

Prova 3 - Matemática Prova 3 - QUESTÕES OBJETIIVAS N ọ DE ORDEM: N ọ DE INSCRIÇÃO: NOME DO CANDIDATO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que constam na etiqueta

Leia mais

MATEMÁTICA TIPO A GABARITO: VFFVF. Solução: é a parábola com foco no ponto (0, 3) e reta diretriz y = -3.

MATEMÁTICA TIPO A GABARITO: VFFVF. Solução: é a parábola com foco no ponto (0, 3) e reta diretriz y = -3. 1 MATEMÁTICA TIPO A 01. Seja o conjunto de pontos do plano cartesiano, cuja distância ao ponto é igual à distância da reta com equação. Analise as afirmações a seguir. 0-0) é a parábola com foco no ponto

Leia mais

A UTILIZAÇÃO DE NOVAS TECNOLOGIAS PARA AUXILIAR O ENSINO DE FUNÇÕES

A UTILIZAÇÃO DE NOVAS TECNOLOGIAS PARA AUXILIAR O ENSINO DE FUNÇÕES A UTILIZAÇÃO DE NOVAS TECNOLOGIAS PARA AUXILIAR O ENSINO DE FUNÇÕES Bruno BAZZO brunobaz@seed.pr.gov.br Resumo Maria Regina C M LOPES mrlopes@unicentro.br Este trabalho apresenta algumas atividades envolvendo

Leia mais

Colégio FAAT Ensino Fundamental e Médio

Colégio FAAT Ensino Fundamental e Médio Colégio FAAT Ensino Fundamental e Médio Atividade experimental 2º bimestre 10 pontos Nome: N.: Nome: N.: Nome: N.: Nome: N.: Nome: N.: Série: 1ª série Profª Elizangela Goldoni Conteúdo: Função quadrática

Leia mais

Onde usar os conhecimentos os sobre função?

Onde usar os conhecimentos os sobre função? II FUNÇÃO E LOGARITMO Por que aprender função?... As funções exponenciais e logarítmicas estão presentes no estudo de fenômenos que envolvem taxas de crescimento e de decrescimento. Onde usar os conhecimentos

Leia mais

Matemática Aplicada. Qual é a altitude do centro do parque, ponto de encontro das diagonais, em relação ao nível do mar?

Matemática Aplicada. Qual é a altitude do centro do parque, ponto de encontro das diagonais, em relação ao nível do mar? Matemática Aplicada 1 Um mapa de um pequeno parque é uma região em forma de quadrilátero, limitado pelas retas y = x, y = x +, y = x + e y = x, sendo que as unidades estão em quilômetros. A altitude em

Leia mais

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980 Questão 1. Uma venda imobiliária envolve o pagamento de 12 prestações mensais iguais a R$ 10.000,00, a primeira no ato da venda, acrescidas de uma parcela final de R$ 100.000,00, 12 meses após a venda.

Leia mais

FICHA DE TRABALHO DERIVADAS I PARTE. 1. Uma função f tem derivadas finitas à direita e à esquerda de x = 0. Então:

FICHA DE TRABALHO DERIVADAS I PARTE. 1. Uma função f tem derivadas finitas à direita e à esquerda de x = 0. Então: FICHA DE TRABALHO DERIVADAS I PARTE. Uma função f tem derivadas finitas à direita e à esquerda de = 0. Então: (A) f tem necessariamente derivada finita em = 0; (B) f não tem com certeza derivada finita

Leia mais

Universidade Federal de São João Del Rei - UFSJ

Universidade Federal de São João Del Rei - UFSJ Universidade Federal de São João Del Rei - UFSJ Instituída pela Lei 0.45, de 9/04/00 - D.O.U. de /04/00 Pró-Reitoria de Ensino de Graduação - PROEN Disciplina: Cálculo Numérico Ano: 03 Prof: Natã Goulart

Leia mais

Função Quadrática Função do 2º Grau

Função Quadrática Função do 2º Grau Colégio Adventista Portão EIEFM MATEMÁTICA Função Quadrática 1º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 5 º Bimestre/13 Aluno(a): Número: Turma: Função Quadrática

Leia mais

Os gráficos estão na vida

Os gráficos estão na vida Os gráficos estão na vida A UUL AL A Nas Aulas 8, 9 e 28 deste curso você já se familiarizou com o estudo de gráficos. A Aula 8 introduziu essa importante ferramenta da Matemática. A Aula 9 foi dedicada

Leia mais

Root Locus (Método do Lugar das Raízes)

Root Locus (Método do Lugar das Raízes) Root Locus (Método do Lugar das Raízes) Ambos a estabilidade e o comportamento da resposta transitória em um sistema de controle em malha fechada estão diretamente relacionadas com a localização das raízes

Leia mais

Pesquisa Operacional. Função Linear - Introdução. Função do 1 Grau. Função Linear - Exemplos Representação no Plano Cartesiano. Prof.

Pesquisa Operacional. Função Linear - Introdução. Função do 1 Grau. Função Linear - Exemplos Representação no Plano Cartesiano. Prof. Pesquisa Operacional Prof. José Luiz Prof. José Luiz Função Linear - Introdução O conceito de função é encontrado em diversos setores da economia, por exemplo, nos valores pagos em um determinado período

Leia mais

EQUAÇÕES DIFERENCIAIS

EQUAÇÕES DIFERENCIAIS GRUPO Educação adistância Caderno de Estudos EQUAÇÕES DIFERENCIAIS Prof. Ruy Piehowiak Editora UNIASSELVI 2012 NEAD Copyright Editora UNIASSELVI 2012 Elaboração: Prof. Ruy Piehowiak Revisão, Diagramação

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA Professor: Renato Medeiros EXERCÍCIOS NOTA DE AULA IV Goiânia - 2014 EXERCÍCIOS 1. Uma partícula eletrizada positivamente é

Leia mais

LISTA DE EXERCÍCIOS CAMPO MAGNÉTICO

LISTA DE EXERCÍCIOS CAMPO MAGNÉTICO 1. (Fuvest 96) A figura esquematiza um ímã permanente, em forma de cruz de pequena espessura, e oito pequenas bússolas, colocadas sobre uma mesa. As letras N e S representam, respectivamente, pólos norte

Leia mais

Eduardo Camponogara. DAS-5103: Cálculo Numérico para Controle e Automação. Departamento de Automação e Sistemas Universidade Federal de Santa Catarina

Eduardo Camponogara. DAS-5103: Cálculo Numérico para Controle e Automação. Departamento de Automação e Sistemas Universidade Federal de Santa Catarina Eduardo Camponogara Departamento de Automação e Sistemas Universidade Federal de Santa Catarina DAS-5103: Cálculo Numérico para Controle e Automação 1/48 Sumário Arredondamentos Erros 2/48 Sumário Arredondamentos

Leia mais

8QLYHUVLGDGH)HGHUDOGR3DUDQi

8QLYHUVLGDGH)HGHUDOGR3DUDQi 7tWXOR Movimento Parabólico EMHWLYR Estudar o movimento de projéteis lançados horizontalmente 0DWHULDO Rampa de lançamento, suportes, esferas (de metal e de plástico), nível, anteparo de madeira, papel

Leia mais

sendo as componentes dadas em unidades arbitrárias. Determine: a) o vetor vetores, b) o produto escalar e c) o produto vetorial.

sendo as componentes dadas em unidades arbitrárias. Determine: a) o vetor vetores, b) o produto escalar e c) o produto vetorial. INSTITUTO DE FÍSICA DA UFRGS 1 a Lista de FIS01038 Prof. Thomas Braun Vetores 1. Três vetores coplanares são expressos, em relação a um sistema de referência ortogonal, como: sendo as componentes dadas

Leia mais

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010. Matemática Essencial Extremos de funções reais Departamento de Matemática - UEL - 2010 Conteúdo Ulysses Sodré http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Leia mais

ENERGIA CINÉTICA E TRABALHO

ENERGIA CINÉTICA E TRABALHO ENERGIA CINÉTICA E TRABALHO O que é energia? O termo energia é tão amplo que é diícil pensar numa deinição concisa. Teoricamente, a energia é uma grandeza escalar associada ao estado de um ou mais objetos;

Leia mais

FUNDAÇÃO EDUCACIONAL UNIFICADA CAMPOGRANDENSE (FEUC) FACULDADES INTEGRADAS CAMPO-GRANDENSES (FIC) COORDENAÇÃO DE MATEMÁTICA

FUNDAÇÃO EDUCACIONAL UNIFICADA CAMPOGRANDENSE (FEUC) FACULDADES INTEGRADAS CAMPO-GRANDENSES (FIC) COORDENAÇÃO DE MATEMÁTICA E N A D E 005 LICENCIATURA MATEMÁTICA QUESTÕES RESOLVIDAS I N T R O D U Ç Ã O Estamos apresentando a prova do ENADE aplicada em 005 para os cursos de Licenciatura em Matemática. Este trabalho tem o objetivo

Leia mais

Força Magnética (Força de Lorentz) sobre Carga Lançada em Campo Magnético

Força Magnética (Força de Lorentz) sobre Carga Lançada em Campo Magnético PROESSOR Edney Melo ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO: orça Magnética (orça de Lorentz) sobre Carga Lançada em Campo Magnético magnética, a força magnética tem o sentido de um tapa dado com

Leia mais

NO ESTUDO DE FUNÇÕES

NO ESTUDO DE FUNÇÕES 1 UNIVERSIDADE FEDERAL DO PARANÁ PROGRAMA INSTITUCIONAL DE BOLSAS DE INICIAÇÃO À DOCÊNCIA SEMANA DA MATEMÁTICA 2014 UTILIZAÇÃO DE SOFTWARES GRÁFICOS NO ESTUDO DE FUNÇÕES PIBID MATEMÁTICA 2009 CURITIBA

Leia mais

Lista de Exercício 3 MUV

Lista de Exercício 3 MUV Nome: Curso: Disciplina: FÍSICA I / MECÂNICA CLÁSSICA Lista de Exercício 3 MUV 1) Um móvel, cujo espaço inicial é S0 8m, se desloca a favor da trajetória, em movimento acelerado, com velocidade inicial

Leia mais

UNIDADE 3 MEDIDAS DE POSIÇÃO E DISPERSÃO OBJETIVOS ESPECÍFICOS DE APRENDIZAGEM

UNIDADE 3 MEDIDAS DE POSIÇÃO E DISPERSÃO OBJETIVOS ESPECÍFICOS DE APRENDIZAGEM Unidade 2 Distribuições de Frequências e Representação Gráfica UNIDADE 3 MEDIDAS DE POSIÇÃO E DISPERSÃO OBJETIVOS ESPECÍFICOS DE APRENDIZAGEM Ao finalizar esta Unidade, você deverá ser capaz de: Calcular

Leia mais

INTRODUÇÃO O sistema de coordenadas ao qual estamos acostumados é o sistema de coordenadas

INTRODUÇÃO O sistema de coordenadas ao qual estamos acostumados é o sistema de coordenadas Encontro de Ensino, Pesquisa e Extensão, Presidente Prudente, 22 a 25 de outubro, 2012 17 ESTUDO DAS CÔNICAS USANDO COORDENADAS POLARES Tiago Santos Arruda 1, Bruno Rogério Locatelli dos Santos, Eugenia

Leia mais

UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE MATEMÁTICA, ESTATÍSTICA E COMPUTAÇÃO CIENTÍFICA Matemática Licenciatura. (Números Complexos)

UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE MATEMÁTICA, ESTATÍSTICA E COMPUTAÇÃO CIENTÍFICA Matemática Licenciatura. (Números Complexos) UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE MATEMÁTICA, ESTATÍSTICA E COMPUTAÇÃO CIENTÍFICA Matemática Licenciatura (Números Complexos) Jéssica Roldão de Oliveira Assis RA 160332 Campinas 2014 1 HISTÓRIA

Leia mais

Fundamentos Tecnológicos

Fundamentos Tecnológicos 1 2 Potenciação Fundamentos Tecnológicos Potenciação, radiciação e operações algébricas básicas Prof. Flavio Fernandes Dados um número real positivo a e um número natural n diferente de zero, chama-se

Leia mais

Lista de Exercícios 03

Lista de Exercícios 03 Lista de Exercícios 03 Aplicações das relações e funções no cotidiano Ao lermos um jornal ou uma revista, diariamente nos deparamos com gráficos, tabelas e ilustrações. Estes, são instrumentos muito utilizados

Leia mais

Análise de Arredondamento em Ponto Flutuante

Análise de Arredondamento em Ponto Flutuante Capítulo 2 Análise de Arredondamento em Ponto Flutuante 2.1 Introdução Neste capítulo, chamamos atenção para o fato de que o conjunto dos números representáveis em qualquer máquina é finito, e portanto

Leia mais

Velocidade Média Velocidade Instantânea Unidade de Grandeza Aceleração vetorial Aceleração tangencial Unidade de aceleração Aceleração centrípeta

Velocidade Média Velocidade Instantânea Unidade de Grandeza Aceleração vetorial Aceleração tangencial Unidade de aceleração Aceleração centrípeta Velocidade Média Velocidade Instantânea Unidade de Grandeza Aceleração vetorial Aceleração tangencial Unidade de aceleração Aceleração centrípeta Classificação dos movimentos Introdução Velocidade Média

Leia mais

1) PROBLEMATIZAÇÃO 2, 3

1) PROBLEMATIZAÇÃO 2, 3 1 1) PROBLEMATIZAÇÃO 2, 3 Todos nós elaboramos, desde a infância, uma noção primitiva sobre forças, quase sempre associada ao esforço muscular. Mas não só nós, seres vivos, exercemos forças; elas também

Leia mais

Maia Vest. Denominamos o fator de base e de expoente; é a n-ésima potência de. Portanto, potência é um produto de fatores iguais.

Maia Vest. Denominamos o fator de base e de expoente; é a n-ésima potência de. Portanto, potência é um produto de fatores iguais. Maia Vest Disciplina: Matemática Professor: Adriano Mariano FUNÇÃO EXPONENCIAL Revisão sobre potenciação Potência de expoente natural Sendo a um número real e n um número natural maior ou igual a 2, definimos

Leia mais

APOSTILA 1 Funções e Estatística Básica

APOSTILA 1 Funções e Estatística Básica ' Disciplina de Matemática Aplicada II Curso Técnico em Mecânica Professora Valéria Espíndola Lessa APOSTILA 1 Funções e Estatística Básica 014 FUNÇÕES Noção de Função A ideia de função surgiu de observações

Leia mais

Bacharelado Engenharia Civil

Bacharelado Engenharia Civil Bacharelado Engenharia Civil Disciplina: Física Geral e Experimental I Força e Movimento- Leis de Newton Prof.a: Msd. Érica Muniz Forças são as causas das modificações no movimento. Seu conhecimento permite

Leia mais

EXERCÍCIOS DE REVISÃO PFV - GABARITO

EXERCÍCIOS DE REVISÃO PFV - GABARITO COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 1ª SÉRIE MATEMÁTICA I PROF MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO 1 wwwprofessorwaltertadeumatbr 1) Seja f uma função de N em N definida por f(n) 10 n Escreva

Leia mais

Módulo 2 Unidade 7. Função do 2 grau. Para início de conversa... Imagine você sentado. em um ônibus, indo. para a escola, jogando uma

Módulo 2 Unidade 7. Função do 2 grau. Para início de conversa... Imagine você sentado. em um ônibus, indo. para a escola, jogando uma Módulo 2 Unidade 7 Função do 2 grau Para início de conversa... Imagine você sentado em um ônibus, indo para a escola, jogando uma caneta para cima e pegando de volta na mão. Embora para você a caneta só

Leia mais

Notas de Cálculo Numérico

Notas de Cálculo Numérico Notas de Cálculo Numérico Túlio Carvalho 6 de novembro de 2002 2 Cálculo Numérico Capítulo 1 Elementos sobre erros numéricos Neste primeiro capítulo, vamos falar de uma limitação importante do cálculo

Leia mais

ESTUDO GRÁFICO DOS MOVIMENTOS. Gráfico posição x tempo (x x t)

ESTUDO GRÁFICO DOS MOVIMENTOS. Gráfico posição x tempo (x x t) ESTUDO GRÁFICO DOS MOVIMENTOS No estudo do movimento é bastante útil o emprego de gráficos. A descrição de um movimento a partir da utilização dos gráficos (posição x tempo; velocidade x tempo e aceleração

Leia mais

Cap. 7 - Fontes de Campo Magnético

Cap. 7 - Fontes de Campo Magnético Universidade Federal do Rio de Janeiro Instituto de Física Física III 2014/2 Cap. 7 - Fontes de Campo Magnético Prof. Elvis Soares Nesse capítulo, exploramos a origem do campo magnético - cargas em movimento.

Leia mais

Pró-Reitoria de Graduação Educação Física

Pró-Reitoria de Graduação Educação Física Pró-Reitoria de Graduação Educação Física Trabalho LUCA de LAMEIRA Conclusão ANTUNES de Curso ANÁLISE DOS GOLS QUE SE ORIGINARAM DE BOLAS PARADAS DO CAMPEONATO BRASILEIRO DE FUTEBOL DE CAMPO DE 2011 Artigo

Leia mais

FUNÇÕES E INEQUAÇÕES

FUNÇÕES E INEQUAÇÕES UNIVERSIDADE FEDERAL DO PARANÁ PROGRAMA INSTITUCIONAL DE BOLSAS DE INICIAÇÃO À DOCÊNCIA ANDRÉIA SCHMIDT GEHHANNY ASSIS JAQUELINI ROCHA SIMÃO LARISSA VANESSA DOMINGUES FUNÇÕES E INEQUAÇÕES CURITIBA 2012

Leia mais

Lista de Exercícios 3 Estrutura Condicional

Lista de Exercícios 3 Estrutura Condicional 1 Lista de Exercícios 3 Estrutura Condicional 1. A nota final de um estudante é calculada a partir de três notas atribuídas respectivamente a um trabalho de laboratório, a uma avaliação semestral e a um

Leia mais

Funções algébricas do 1º grau. Maurício Bezerra Bandeira Junior

Funções algébricas do 1º grau. Maurício Bezerra Bandeira Junior Maurício Bezerra Bandeira Junior Definição Chama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma f(x) = ax + b, onde a e b são números reais dados

Leia mais

A função do primeiro grau

A função do primeiro grau Módulo 1 Unidade 9 A função do primeiro grau Para início de conversa... Já abordamos anteriormente o conceito de função. Mas, a fim de facilitar e aprofundar o seu entendimento, vamos estudar algumas funções

Leia mais

Texto 07 - Sistemas de Partículas. A figura ao lado mostra uma bola lançada por um malabarista, descrevendo uma trajetória parabólica.

Texto 07 - Sistemas de Partículas. A figura ao lado mostra uma bola lançada por um malabarista, descrevendo uma trajetória parabólica. Texto 07 - Sistemas de Partículas Um ponto especial A figura ao lado mostra uma bola lançada por um malabarista, descrevendo uma trajetória parabólica. Porém objetos que apresentam uma geometria, diferenciada,

Leia mais

Introdução A tensão plana existe praticamente em todas as estruturas comuns, incluindo prédios máquinas, veículos e aeronaves.

Introdução A tensão plana existe praticamente em todas as estruturas comuns, incluindo prédios máquinas, veículos e aeronaves. - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Vasos de Pressão Introdução

Leia mais

FÍSICA PROF. WILSON QUEDA LIVRE

FÍSICA PROF. WILSON QUEDA LIVRE QUEDA LIVRE 1. (Unifesp 01) Em uma manhã de calmaria, um Veículo Lançador de Satélite (VLS) é lançado verticalmente do solo e, após um período de aceleração, ao atingir a altura de 100 m, sua velocidade

Leia mais

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA O 9 Ọ ANO EM 2014. Disciplina: MaTeMÁTiCa

Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA O 9 Ọ ANO EM 2014. Disciplina: MaTeMÁTiCa Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA O 9 Ọ ANO EM 04 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 A soma das medidas dos catetos de um triângulo retângulo é 8cm

Leia mais

Conteúdo Programático Anual MATEMÁTICA

Conteúdo Programático Anual MATEMÁTICA MATEMÁTICA 1º BIMESTRE 5ª série (6º ano) CALCULANDO COM NÚMEROS NATURAIS 1. Idéias associadas à adição 2. Idéias associadas à subtração 3. Idéias associadas à multiplicação 4. Idéias associadas à divisão

Leia mais

Plano de Aula SOU PAR OU ÍMPAR? TÍTULO: Iniciais. 3º ano. Matemática. Número e Operações/Álgebra e Funções 1 aula (45 min) Educação Presencial

Plano de Aula SOU PAR OU ÍMPAR? TÍTULO: Iniciais. 3º ano. Matemática. Número e Operações/Álgebra e Funções 1 aula (45 min) Educação Presencial Org.: Claudio André - 1 TÍTULO: SOU PAR OU ÍMPAR? Nível de Ensino: Ensino Fundamental/ Anos Iniciais Ano/Semestre de Estudo: 3º ano Componente Curricular: Tema: Duração da Aula: Modalidade de Ensino: Matemática

Leia mais

Soluções das Questões de Física da Universidade do Estado do Rio de Janeiro UERJ

Soluções das Questões de Física da Universidade do Estado do Rio de Janeiro UERJ Soluções das Questões de Física da Universidade do Estado do Rio de Janeiro UERJ º Exame de Qualificação 011 Questão 6 Vestibular 011 No interior de um avião que se desloca horizontalmente em relação ao

Leia mais

PROVA ESCRITA NACIONAL SELEÇÃO PARA A TURMA 2014

PROVA ESCRITA NACIONAL SELEÇÃO PARA A TURMA 2014 PROVA ESCRITA NACIONAL SELEÇÃO PARA A TURMA 2014 Caro professor, cara professora Esta prova é composta por 25 questões de escolha múltipla, com quatro alternativas, e resposta única. Cada questão respondida

Leia mais

PSAEN 2007/08 Primeira Fase - Matemática

PSAEN 2007/08 Primeira Fase - Matemática PSAEN 007/08 Primeira Fase - Matemática : Caio Guimarães, Rodolpho Castro, Victor Faria, Paulo Soares, Iuri Lima Digitação: Caio Guimarães, Júlio Sousa. Comentário da Prova: A prova de matemática desse

Leia mais

APOSTILA TECNOLOGIA MECANICA

APOSTILA TECNOLOGIA MECANICA FACULDADE DE TECNOLOGIA DE POMPEIA CURSO TECNOLOGIA EM MECANIZAÇÃO EM AGRICULTURA DE PRECISÃO APOSTILA TECNOLOGIA MECANICA Autor: Carlos Safreire Daniel Ramos Leandro Ferneta Lorival Panuto Patrícia de

Leia mais

1ª Parte Questões de Múltipla Escolha

1ª Parte Questões de Múltipla Escolha MATEMÁTICA 11 a 1ª Parte Questões de Múltipla Escolha A soma dos cinco primeiros termos de uma PA vale 15 e o produto desses termos é zero. Sendo a razão da PA um número inteiro e positivo, o segundo termo

Leia mais

Matemática Aplicada II

Matemática Aplicada II Matemática Aplicada II 010G Cópia não autorizada. Reservados todos os MATEMÁTICA direitos APLICADA autorais. II 5E Editora Aline Palhares Desenvolvimento de conteúdo, mediação pedagógica e design gráfico

Leia mais

MATEMÁTICA. y Q. (a,b)

MATEMÁTICA. y Q. (a,b) MATEMÁTICA 1. Sejam (a, b), com a e b positivos, as coordenadas de um ponto no plano cartesiano, e r a reta com inclinação m

Leia mais

UTILIZAÇÃO DE TECNOLOGIAS PARA O ENSINO DE MATEMÁTICA

UTILIZAÇÃO DE TECNOLOGIAS PARA O ENSINO DE MATEMÁTICA ISSN 2177-9139 UTILIZAÇÃO DE TECNOLOGIAS PARA O ENSINO DE MATEMÁTICA Natanna Silva Dutra natannabg@hotmail.com Fundação Universidade Federal do Pampa, Campus Bagé, 96413-170 Bagé, RS, Brasil Nathália Cabral

Leia mais