ARA UMA EDUCAÇÃO P OBAL CIDADANIA GL CIDAC

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "ARA UMA EDUCAÇÃO P OBAL CIDADANIA GL CIDAC"

Transcrição

1 l o i c r e t I o t s e f i M M U R P O Ã Ç L C U B O ED L G I N D CID CIDC

2 Este Mifesto foi relizdo com o poio ficeiro d Uião Europei, ms o coteúdo é pes d resposbilidde dos utores, e ão pode ser tomdo como expressão ds posições d Uião Europei

3 EDUCÇÃO PR UM CIDDNI GLOBL Mifesto Iterciol Este Mifesto foi produzido colectivmete por orgizções e educdores/s de diversos píses que creditm que é possível costrução de um mudo diferete, impulsiodo por um educção trsformdor. Cosidermos que é ecessário promover Educção pr um Ciddi Globl escol, o âmbito d educção pr vid. Etedemos como tl um educção que cotribui pr formção de ciddãos e ciddãs resposáveis, comprometidos com justiç e sustetbilidde do Plet, que promove o respeito e vlorizção d diversidde como fote de eriquecimeto humo, defes do meio mbiete e o cosumo resposável, o respeito pelos direitos humos idividuis e colectivos, iguldde de géero, vlorizção do diálogo como istrumeto pr resolução pcífic dos coflitos, prticipção, co-resposbilidde e o compromisso pel costrução de um sociedde just, equittiv e solidári. creditmos que escol: costituí um ctor socil e político imprescidível, represet um espço privilegido pr formção de ciddãs e ciddãos críticos e prticiptivos, cpzes de impulsior s trsformções que queremos promover, tem um ppel fudmetl procur de resposts os desfios colocdos pel oss cotemporeidde. Etedemos que escol deve ter um ppel cetrl: N costrução de um ovo modelo de desevolvimeto que, questiodo o ppel domite do mercdo e do modelo eoliberl, proveite s poteciliddes d globlizção em termos de solidriedde, prticipção e cção comum, de form ccior estrtégis de sustetbilidde e de errdicção d pobrez. N promoção d álise critic dos medi e ds regrs que goverm o sistem mudil d comuicção, redução do digitl divide e crição de forms e cis de iformção mis cessíveis, democráticos e pluris. N costrução coopertiv e em permêci de um étic e de prátics polítics, ecoómics, sociis e culturis que torem possível vivêci em socieddes iterculturis e que sejm fotes de iclusão e coesão. N reflexão sobre como cocilir ivestigção e o progresso d técic com um étic o serviço ds pessos e do Plet. N cosciecilizção dos ciddãos e ds ciddãs sobre ecessidde de modificr os estilos de vid idividuis e colectivos, de lutr pr trvr degrdção do mbiete, s lterções climátics, redução d biodiversidde e pr reividicr o direito uiversl à águ, à limetção e à súde. No crescimeto e mdurecimeto de um sociedde civil vigilte, cpz de deucir e de se mobilizr, que sej cosciete do próprio poder e d form como o pode utilizr pr por fim à guerr e pr promover totlidde dos direitos humos pr todos. N promoção de relções igulitáris de géero que fcilitem iguldde de oportuiddes, co-resposbilidde, superção do sistem ptrircl e oposição os sistems de cohecimeto drocêtricos. No desevolvimeto de forms mis eficzes de democrci, tto directs e prticiptivs como represettivs, tto os cotextos locis como globis. Forms de democrci que fvoreçm relções trspretes e sudáveis com os poderes ecoómicos, recoheçm plurlidde de pesmetos e cções existetes s osss socieddes e o diálogo multilterl etre diversidde de espços políticos que se têm vido firmr em todo o mudo.

4 Coscietes de que os processos eductivos são trvessdos pel complexidde crescete dos processos sociis, ecoómicos e políticos do mudo em que vivemos, cosidermos que escol de hoje cotiu ser orgizd de cordo com um modelo de educção ieficz que em sempre dá respost os desfios d oss cotemporeidde. Cosidermos ecessário questior s tedêcis eductivs ctuis que: FVORECEM um orgizção escolr disciplir e isold do cotexto socil e culturl. PRIVILEGIM cumulção de sberes disciplires frgmetdos e prcilizdos. NÃO VLORIZM s dimesões sociis e relciois d predizgem. SOBREVLORIZM utilizção dos livros escolres, delegdo-lhes frequetemete resposbilidde do processo de esio-predizgem. SUBESTIMM importâci ds liguges udiovisuis e iformátics. ENFTIZM s relções hierárquics rígids bseds os ppéis trdiciois de professor/ (quele que trsmite cohecimetos) e de luo/ (quele que recebe e demostr possuir tis cohecimetos). FVORECEM, cd vez mis, comercilizção d educção que de direito de todos os ciddãos pss ser vist pelos poderes políticos e ecoómicos como um serviço (pgo) prestr os ciddãos. Queremos tmbém slietr que os educdores e s educdors estão viver um situção de crescete perd do recohecimeto do ppel socil e morl, embor s resposbiliddes e s exigêcis que lhes são imposts pel sociedde sejm cd vez miores. firmmos, com bse em experiêcis promovids por diferetes educdores/s e istituições, que Educção pr um Ciddi Globl é um respost possível pr promover um educção trsformdor e um escol bert o mudo, visto que: Vloriz dimesão humizdor e globl d educção, trvés do fometo de vlores de solidriedde, pz, recohecimeto do outro, justiç, iguldde e cuiddos com o Plet. É um propost étic e polític que cocebe o ser humo um perspectiv itegrl (pesr, setir e gir), fudd defes d digidde hum, promoção dos direitos humos, iterdepedêci etre o locl e o globl, iterculturlidde e post democrci e o diálogo. Progride em direcção um bordgem crític e dilógic do processo de predizgem, que tor mis flexíveis os tempos e os espços d escol, que promove locis de reflexão, que estbelece relções mis democrátics os ppéis e s relções etre educdores/s e luos/s. Cosider o cohecimeto como costrução colectiv, vlorizdo o sber de todos os evolvidos o cto eductivo, um espço que estimul diversidde de forms de compreesão d relidde.

5 Covidmos comuidde eductiv o seu cojuto pr que, recohecedo-se oss propost, se jute ós. Espermos que os diferetes ctores eductivos se mobilizem pr questior e modificr o ctul sistem de esio, cosiderdo s peculiriddes dos seus próprios cotextos. Queremos um escol forte, que: EXIJ que o Estdo ssegure o direito à educção, rejeitdo forms berts ou ecoberts de comercilizção do processo eductivo. INCENTIVE um gestão escolr democrátic, prticiptiv e bert que implique o compromisso efectivo de todos os seus membros e d comuidde evolvete. PROMOV espços de ecotro e de prticipção dos diferetes ctores eductivos (luos/s, professores/s, fucioários/s, resposáveis de educção, fmílis, orgizções sociis), oferecedo possibiliddes efectivs e cocrets pr o exercício pleo d ciddi globl. INTRODUZ Educção pr um Ciddi Globl, etedid como um processo de formção trsversl e trsdisciplir, tto s disciplis já existetes como em espços iterdisciplires e de projecto, fvorecedo predizgem trvés d bordgem temátics socilmete relevtes. IMPULSIONE metodologis e prátics ctivs, iterctivs, crítics, coopertivs e prticiptivs, que fvoreçm experimetção, tehm em cot perspectiv sóciofectiv e, sobretudo, que sejm cosotes com s filiddes d Educção pr um Ciddi Globl. PROMOV crição de mteriis didácticos coeretes com os vlores e os pricípios d Educção pr um Ciddi Globl. CPCITE os seus ctores pr álise crític e utilizção ctiv dos meios de comuicção, loge d perspectiv de um mer recepção pssiv e potecido o desevolvimeto de meios de comuicção ltertivos. POSTE formção, tto iicil como cotíu, dos/s educdores/s e outros getes eductivos de todos os íveis de esio, que os hbilite pesr e ctur tedo em cot s dimesões globis e trsversis implícits à Educção pr um Ciddi Globl. FOMENTE costrução de um ciddi globl e de processos de trsformção socil, em colborção com fmílis, orgizções d sociedde civil e movimetos sociis, prtir de um lógic de relções que vlorize e recoheç s diferetes competêcis e respeite especificidde e o ppel de cd um, proveitdo d melhor form os resultdos ds itercções critivs e mobilizdors. PROMOV um mior erizmeto vid locl, o mesmo tempo que um mior teção e compreesão do ível globl. IMPULSIONE coerêci etre os vlores e s proposts, os objectivos e s estrtégis, o discurso e prátic, o coteúdo e form. CONSIDERE educção como um ctividde cridor que, prtido d relidde quotidi, prepr pr liberdde, pr o desevolvimeto idividul e pr o respeito pelo bem comum, ddo espço educdores e educdors comprometidos e críticos pr trblhr em rede com o ituito de promover e cocretizr um movimeto de trsformção d educção, evolvedo tod comuidde eductiv prtir ds sus própris escols. Mudr é difícil, ms é possível, ecessário e urgete. Com s osss opções de hoje costruímos o que será mhã.

PROVA DE MATEMÁTICA - TURMAS DO

PROVA DE MATEMÁTICA - TURMAS DO PROVA DE MATEMÁTICA - TURMAS DO o ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - MARÇO DE 0. ELABORAÇÃO: PROFESSORES ADRIANO CARIBÉ E WALTER PORTO. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Questão 0. (UDESC SC)

Leia mais

Data Tema Objetivos Atividades Recursos

Data Tema Objetivos Atividades Recursos Plno Anul de Atividdes do Pré-Escolr Dt Tem Objetivos Atividdes Recursos Setembro Integrção /dptção ds crinçs -Promover integrção/ (re) dptção ds crinçs á creche; -Proporcionr um mbiente que permit às

Leia mais

Vo t a ç ão TEXTO DO CONGRESSO. PROPOSTA DO GOVERNO / Partidos da Base PROPOSTAS DAS BANCADAS DE OPOSIÇÃO E / OU ATEMPA / SIMPA

Vo t a ç ão TEXTO DO CONGRESSO. PROPOSTA DO GOVERNO / Partidos da Base PROPOSTAS DAS BANCADAS DE OPOSIÇÃO E / OU ATEMPA / SIMPA PROPOSTA DO GOVERNO / Prtidos d Bse PROPOSTAS DAS BANCADAS DE OPOSIÇÃO do Governo (Mensgem Retifictiv) E / OU ATEMPA / SIMPA Vo t ç ão TEXTO DO CONGRESSO Diverss estrtégis pr tingir s mets Emend 1- exclui

Leia mais

A ÁGUA COMO TEMA GERADOR PARA O ENSINO DE QUÍMICA

A ÁGUA COMO TEMA GERADOR PARA O ENSINO DE QUÍMICA A ÁGUA COMO TEMA GERADOR PARA O ENSINO DE QUÍMICA AUTORES: AMARAL, An Pul Mgno; NETO, Antônio d Luz Cost. E-MAIL: mgno_n@yhoo.com.br; ntonioluzneto@gmil.com INTRODUÇÃO Sendo um desfio ensinr químic pr

Leia mais

FUNÇÃO EXPONENCIAL. a 1 para todo a não nulo. a. a. a a. a 1. Chamamos de Função Exponencial a função definida por: f( x) 3 x. f( x) 1 1. 1 f 2.

FUNÇÃO EXPONENCIAL. a 1 para todo a não nulo. a. a. a a. a 1. Chamamos de Função Exponencial a função definida por: f( x) 3 x. f( x) 1 1. 1 f 2. 49 FUNÇÃO EXPONENCIAL Professor Lur. Potêcis e sus proprieddes Cosidere os úmeros ( 0, ), mr, N e, y, br Defiição: vezes por......, ( ), ou sej, potêci é igul o úmero multiplicdo Proprieddes 0 pr todo

Leia mais

FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA. Equações Exponenciais

FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA. Equações Exponenciais FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA Equções Epoeciis... Fução Epoecil..4 Logritmos: Proprieddes 6 Fução Logrítmic. Equções Logrítmics...5 Iequções Epoeciis e Logrítmics.8 Equções Epoeciis 0. (ITA/74)

Leia mais

Classes multisseriadas: desafios e possibilidades

Classes multisseriadas: desafios e possibilidades Clsses multisserids: desfios e possibiliddes An Cristin Silv d Ros* Resumo Pretende-se com este rtigo suscitr reflexões sobre form de orgnizção didático-pedgógic de docentes que tum em clsses multisserids.

Leia mais

PLANO ANUAL DE ATIVIDADES

PLANO ANUAL DE ATIVIDADES ESOLA SEUNDÁRIA DR. JOAQUIM DE ARVALHO, FIGUEIRA DA FOZ PLANO ANUAL DE ATIVIDADES 2015-2016 [Escrev texto] Págin 0 B I B L I O T E A E S O L A R PLANO ANUAL DE TRABALHO/ATIVIDADES A urrículo, litercis

Leia mais

Plano Curricular Plano Curricular Plano Curricular

Plano Curricular Plano Curricular Plano Curricular Áre de formção 523. Eletrónic e Automção Curso de formção Técnico/ de Eletrónic, Automção e Comndo Nível de qulificção do QNQ 4 Componentes de Socioculturl Durção: 775 hors Científic Durção: 400 hors Plno

Leia mais

CÂMARA MUNICIPAL DE FERREIRA DO ZÊZERE

CÂMARA MUNICIPAL DE FERREIRA DO ZÊZERE CAPITULO I VENDA DE LOTES DE TERRENO PARA FINS INDUSTRIAIS ARTIGO l. A lienção, trvés de vend, reliz-se por negocição direct com os concorrentes sendo o preço d vend fixo, por metro qudrdo, pr um ou mis

Leia mais

SOCIEDADE EDUCACIONAL DE SANTA CATARINA INSTITUTO SUPERIOR TUPY

SOCIEDADE EDUCACIONAL DE SANTA CATARINA INSTITUTO SUPERIOR TUPY SOCIEDADE EDUCACIONAL DE SANTA CATARINA INSTITUTO SUPERIOR TUPY IDENTIFICAÇÃO PLANO DE ENSINO Curso: Engenhri de Produção Período/Módulo: 6º Período Disciplin/Unidde Curriculr: Simulção de Sistems de Produção

Leia mais

Sequências Numéricas Progressão Aritmética. Prof.: Joni Fusinato

Sequências Numéricas Progressão Aritmética. Prof.: Joni Fusinato Sequêcis Numérics Progressão Aritmétic Prof.: Joi Fusito joi.fusito@ifsc.edu.br jfusito@gmil.com Sequêci de Fibocci Leordo Fibocci (1170 150) foi um mtemático itlio. Ficou cohecido pel descobert d sequêci

Leia mais

UNIVERSIDADE FEDERAL DO CEARÁ DEPARTAMENTO DE ENGENHARIA AGRÍCOLA HIDRÁULICA APLICADA AD 0195 Prof.: Raimundo Nonato Távora Costa CONDUTOS LIVRES

UNIVERSIDADE FEDERAL DO CEARÁ DEPARTAMENTO DE ENGENHARIA AGRÍCOLA HIDRÁULICA APLICADA AD 0195 Prof.: Raimundo Nonato Távora Costa CONDUTOS LIVRES UNVERSDADE FEDERAL DO CEARÁ DEPARTAMENTO DE ENGENHARA AGRÍCOLA HDRÁULCA APLCADA AD 019 Prof.: Rimudo Noto Távor Cost CONDUTOS LVRES 01. Fudmetos: Os codutos livres e os codutos forçdos, embor tem potos

Leia mais

Professor Mauricio Lutz FUNÇÃO EXPONENCIAL

Professor Mauricio Lutz FUNÇÃO EXPONENCIAL Professor Muricio Lutz REVISÃO SOBRE POTENCIAÇÃO ) Expoete iteiro positivo FUNÇÃO EPONENCIAL Se é u uero rel e é iteiro, positivo, diferete de zero e ior que u, expressão represet o produto de ftores,

Leia mais

As funções exponencial e logarítmica

As funções exponencial e logarítmica As fuções epoecil e logrítmic. Potêcis em Sej um úmero rel positivo, isto é, * +. Pr todo, potêci, de bse e epoete é defiid como o produto de ftores iguis o úmero rel :...... vezes Pr, estbelece-se 0,

Leia mais

ESCOLA SECUNDÁRIA DE CALDAS TAIPAS CURSO PROFISSIONAL DE TÉCNICO DE COMÉRCIO. DISCIPLINA: ORGANIZAR E GERIR A EMPRESA (10º Ano Turma K)

ESCOLA SECUNDÁRIA DE CALDAS TAIPAS CURSO PROFISSIONAL DE TÉCNICO DE COMÉRCIO. DISCIPLINA: ORGANIZAR E GERIR A EMPRESA (10º Ano Turma K) ESCOLA SECUNDÁRIA DE CALDAS TAIPAS CURSO PROFISSIONAL DE TÉCNICO DE COMÉRCIO DISCIPLINA: ORGANIZAR E GERIR A EMPRESA (10º Ano Turm K) PLANIFICAÇÃO ANUAL Diretor do Curso Celso Mnuel Lim Docente Celso Mnuel

Leia mais

construindo agenda 21 na comunidade escolar

construindo agenda 21 na comunidade escolar construindo gend 21 n comunidde escolr Governo do Estdo d Bhi Secretri d Educção Construindo Agend 21 n Comunidde Escolr Bhi Governdor do Estdo d Bhi Jques Wgner Secretário d Educção do Estdo d Bhi Osvldo

Leia mais

Matemática. Módulo 10. Equações Diferenciais. Por

Matemática. Módulo 10. Equações Diferenciais. Por Mtemátic Módulo Equções Difereciis Por George L. Ekol, BSc,MSc. Abril 7 Module Developmet Templte C. ESTRUTURA DO MÓDULO I. INTRODUÇÂO. TÍTULO DO MÓDULO Equções Difereciis. PRÉ-REQUISITOS PARA O CURSO

Leia mais

ESTADO DO MARANHÃO MINISTÉRIO PÚBLICO PROCURADORIA GERAL DE JUSTIÇA a CENTRO DE APOIO OPERACIONAL DE MEIO AMBIENTE, URBANISMO E PATRIMÔNIO CULTURAL

ESTADO DO MARANHÃO MINISTÉRIO PÚBLICO PROCURADORIA GERAL DE JUSTIÇA a CENTRO DE APOIO OPERACIONAL DE MEIO AMBIENTE, URBANISMO E PATRIMÔNIO CULTURAL 1 N O T A T É C N I C A N º. 0 0 3 / 2 0 0 7 Análise ds demnds identificds ns udiêncis públics do Plnejmento Estrtégico. Construção de plnejmento. 1 JUSTIFICATIVA Após relizção de seis udiêncis públics

Leia mais

Método de Exaustão dos Antigos: O Princípio de Eudoxo-Arquimedes

Método de Exaustão dos Antigos: O Princípio de Eudoxo-Arquimedes Método de Exustão dos Atigos: O Pricípio de Eudoxo-Arquimedes Joquim Atóio P. Pito Aluo do Mestrdo em Esio d Mtemátic Número mecográfico: 03037007 Deprtmeto de Mtemátic Pur d Fculdde de Ciêcis d Uiversidde

Leia mais

Plano Curricular Plano Curricular Plano Curricular

Plano Curricular Plano Curricular Plano Curricular Áre de formção 523. Eletrónic e Automção Curso de formção Técnico/ de Eletrónic, Automção e Comndo Nível de qulificção do QNQ 4 Componentes de Socioculturl Durção: 775 hors Científic Durção: 400 hors Plno

Leia mais

Elementos de Análise Financeira Fluxos de Caixa Séries Uniformes de Pagamento

Elementos de Análise Financeira Fluxos de Caixa Séries Uniformes de Pagamento Elemetos de Aálise Ficeir Fluxos de Cix Séries Uiformes de Pgmeto Fote: Cpítulo 4 - Zetgrf (999) Mtemátic Ficeir Objetiv 2ª. Ed. Editorção Editor Rio de Jeiro - RJ Séries de Pgmetos - Defiição Defiição:

Leia mais

SIMULADO DE VERIFICAÇÃO 8º ANOS A E B 11/05

SIMULADO DE VERIFICAÇÃO 8º ANOS A E B 11/05 Educção ftil - Esio Fudmetl - Esio Médio Nome º SMULADO DE VERFCAÇÃO º ANOS A E B /0 NSTRUÇÕES A prov cost de 0 questões. Em cd teste, há ltertivs, sedo corret pes um. Não mrque dus ou mis ltertivs questão,

Leia mais

PLANO DE AÇÃO ESTADUAL DE EDUCAÇÃO EM DIREITOS HUMANOS NA EDUCAÇÃO BÁSICA (versão Preliminar)

PLANO DE AÇÃO ESTADUAL DE EDUCAÇÃO EM DIREITOS HUMANOS NA EDUCAÇÃO BÁSICA (versão Preliminar) PLANO DE AÇÃO ESTADUAL DE EDUCAÇÃO EM DIREITOS HUMANOS NA EDUCAÇÃO BÁSICA (versão Preliminr) PLANO DE AÇÃO ESTADUAL DE EDUCAÇÃO DIREITOS HUMANOS NA EDUCAÇÃO BÁSICA Governo do Estdo de Rorim Secretri Estdul

Leia mais

QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA.

QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. 006 PROVA CONHECIMENTOS ESPECÍFICOS MATEMÁTICA QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetrl do Vestibulr Uificdo Trigoometri

Leia mais

Gabarito - Matemática Grupo G

Gabarito - Matemática Grupo G 1 QUESTÃO: (1,0 ponto) Avlidor Revisor Um resturnte cobr, no lmoço, té s 16 h, o preço fixo de R$ 1,00 por pesso. Após s 16h, esse vlor ci pr R$ 1,00. Em determindo di, 0 pessos lmoçrm no resturnte, sendo

Leia mais

Área de Conhecimento ARTES. Período de Execução. Matrícula. Telefone. (84) 8112-2985 / ramal: 6210

Área de Conhecimento ARTES. Período de Execução. Matrícula. Telefone. (84) 8112-2985 / ramal: 6210 INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE PRÓ-REITORIA DE EXTENSÃO PROGRAMA DE APOIO INSTITUCIONAL À EXTENSÃO PROJETOS DE EXTENSÃO EDITAL 01/014-PROEX/IFRN Os cmpos sombredos

Leia mais

Escola de Engenharia de Lorena - USP Cinética Química Capítulo 01 Introdução a Cinética

Escola de Engenharia de Lorena - USP Cinética Química Capítulo 01 Introdução a Cinética 1.1 - ITODUÇÃO O termo ciétic está relciodo movimeto qudo se pes ele prtir de seu coceito físico. tretto, s reções químics, ão há movimeto, ms sim mudçs de composição do meio reciol, o logo d reção. Termodiâmic

Leia mais

Matemática 1 Professor Paulo Cesar Pfaltzgraff Ferreira. Sumário

Matemática 1 Professor Paulo Cesar Pfaltzgraff Ferreira. Sumário Mtemátic Professor Pulo Cesr Pfltgrff Ferreir i Sumário Uidde Revisão de Tópicos Fudmetis do Esio Médio... 0. Apresetção... 0. Simologi Mtemátic mis usul... 0. Cojutos Numéricos... 0. Operções com Números

Leia mais

{ 2 3k > 0. Num triângulo, a medida de um lado é diminuída de 15% e a medida da altura relativa a esse lado é aumentada

{ 2 3k > 0. Num triângulo, a medida de um lado é diminuída de 15% e a medida da altura relativa a esse lado é aumentada MATEMÁTICA b Sbe-se que o qudrdo de um número nturl k é mior do que o seu triplo e que o quíntuplo desse número k é mior do que o seu qudrdo. Dess form, k k vle: ) 0 b) c) 6 d) 0 e) 8 k k k < 0 ou k >

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear Geometri Alític e Álgebr Lier 8. Sistems Lieres Muitos problems ds ciêcis turis e sociis, como tmbém ds egehris e ds ciêcis físics, trtm de equções que relciom dois cojutos de vriáveis. Um equção do tipo,

Leia mais

A Activar centrará a sua ação em CINCO eixos de intervenção fundamentais:

A Activar centrará a sua ação em CINCO eixos de intervenção fundamentais: ACTIVAR EM 2015 PLANO DE INTERVENÇÃO ANUAL INTRODUÇÃO: A Animção de um território depende do conjunto de tores existentes e de cordo com missão de cd um deles. É fundmentl que exist um efetiv cooperção

Leia mais

Serviços de Acção Social da Universidade de Coimbra

Serviços de Acção Social da Universidade de Coimbra Serviços de Acção Socil d Universidde de Coimbr Serviço de Pessol e Recursos Humnos O que é o bono de fmíli pr crinçs e jovens? É um poio em dinheiro, pgo menslmente, pr judr s fmílis no sustento e n educção

Leia mais

a.cosx 1) (ITA) Se P(x) é um polinômio do 5º grau que satisfaz as condições 1 = P(1) = P(2) = P(3) = P(4) = P(5) e P(6) = 0, então temos:

a.cosx 1) (ITA) Se P(x) é um polinômio do 5º grau que satisfaz as condições 1 = P(1) = P(2) = P(3) = P(4) = P(5) e P(6) = 0, então temos: ) (ITA) Se P(x) é um poliômio do 5º gru que stisfz s codições = P() = P() = P() = P(4) = P(5) e P(6) = 0, etão temos: ) P(0) = 4 b) P(0) = c) P(0) = 9 d) P(0) = N.D.A. ) (UFC) Sej P(x) um poliômio de gru,

Leia mais

Wittgenstein e a importância dos jogos de linguagem na educação infantil*

Wittgenstein e a importância dos jogos de linguagem na educação infantil* Wittgenstein e importânci dos jogos de lingugem n educção infntil* Ivnldo Sntos** Resumo O objetivo desse ensio não é presentr tods s questões discutids por Wittgenstein em sus Investigções filosófics,

Leia mais

64 5 y e log 2. 32 5 z, então x 1 y 1 z é igual a: c) 13 e) 64 3. , respectivamente. Admitindo-se que E 1 foi equivalente à milésima parte de E 2

64 5 y e log 2. 32 5 z, então x 1 y 1 z é igual a: c) 13 e) 64 3. , respectivamente. Admitindo-se que E 1 foi equivalente à milésima parte de E 2 Resolução ds tividdes complementres Mtemátic M Função Logrítmic p. (UFSM-RS) Sejm log, log 6 e log z, então z é igul : ) b) c) e) 6 d) log log 6 6 log z z z z (UFMT) A mgnitude de um terremoto é medid

Leia mais

QUESTÕES DE 01 A 09. Assinale as proposições verdadeiras, some os valores obtidos e marque os resultados na Folha de Respostas.

QUESTÕES DE 01 A 09. Assinale as proposições verdadeiras, some os valores obtidos e marque os resultados na Folha de Respostas. PROVA DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - SETEMBRO DE ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ PROFESSORA MARIA ANTÔNIA C GOUVEIA QUESTÕES DE A 9 Assile

Leia mais

é: y y x y 31 2 d) 18 e) O algarismo das unidades de é igual a: a) 1 b) 3 c) 5 d) 7 e) 9

é: y y x y 31 2 d) 18 e) O algarismo das unidades de é igual a: a) 1 b) 3 c) 5 d) 7 e) 9 0. Dentre s firmtivs bio, ssinle quel que NÃO é verddeir pr todo nturl n: - n = b - n- = - n+ n n c d - n = -- n e - n- = -- n 07. O lgrismo ds uniddes de 00. 7 00. 00 é igul : b c d 7 e 0. O vlor de 6

Leia mais

é: 31 2 d) 18 e) 512 y y x y

é: 31 2 d) 18 e) 512 y y x y 0. Dentre s firmtivs bio, ssinle quel que NÃO é verddeir pr todo nturl n: ) -) n = b) -) n- = -) n+ n n c) ) ) d) -) n = --) n e) -) n- = --) n 07. O lgrismo ds uniddes de 00. 7 00. 00 é igul : ) b) c)

Leia mais

Especifique : (a) tipo de deficiência (b) organização das salas (por idades,...) (a) outro tipo de vinculo

Especifique : (a) tipo de deficiência (b) organização das salas (por idades,...) (a) outro tipo de vinculo Agrupmento Escols do Porto Alto Pré Escolr lunos Estb. De Educção Apoio Domicílios 0-1 1-2 2-3 Alunos em list lunos com NEE Alunos esper () 3 4 5 6 * 3 4 5 3 4 5 6 * Educdores sls Q. QDV único pessol não

Leia mais

Cálculo II. Eliezer Batista Elisa Zunko Toma Márcio Rodolfo Fernandes Silvia Martini de Holanda Janesch

Cálculo II. Eliezer Batista Elisa Zunko Toma Márcio Rodolfo Fernandes Silvia Martini de Holanda Janesch Cálculo II Eliezer Btist Elis Zuko Tom Márcio Rodolfo Ferdes Silvi Mrtii de Hold Jesch ª Edição Floriópolis, Govero Federl Presidete d Repúblic: Dilm V Rousseff Miistro de Educção: Aloízio Mercdte Coordedor

Leia mais

SISTEMAS DE EQUAÇÕES LINEARES

SISTEMAS DE EQUAÇÕES LINEARES SISTEMAS DE EQUAÇÕES LINEARES Um problem fudmetl que ormlmete é ecotrdo descrição mtemátic de feômeos físicos é o d solução simultâe de um cojuto de equções. Trduzido pr liuem mtemátic, tis feômeos pssm

Leia mais

MATEMÁTICA FINANCEIRA

MATEMÁTICA FINANCEIRA VICE-REITORIA DE ENSINO DE GRADUAÇÃO E CORPO DISCENTE COORDENAÇÃO DE EDUCAÇÃO A DISTÂNCIA MATEMÁTICA FINANCEIRA Rio de Jeiro / 007 TODOS OS DIREITOS RESERVADOS À UNIVERSIDADE CASTELO BRANCO UNIDADE I PROGRESSÕES

Leia mais

Unidade 2 Progressão Geométrica

Unidade 2 Progressão Geométrica Uidde Progressão Geométric Seuêci e defiição de PG Fórmul do termo gerl Fução expoecil e PG Juros compostos e PG Iterpolção geométric Som dos termos de um PG Seuêci e defiição de PG Imgie ue você tem dus

Leia mais

Canguru Matemático sem Fronteiras 2010

Canguru Matemático sem Fronteiras 2010 Cnguru Mtemático sem Fronteirs 2010 Durção: 1h30min Destintários: lunos do 9 Ano de Escolridde Nome: Turm: Não podes usr clculdor. Há pens um respost correct em cd questão. As questões estão grupds em

Leia mais

Plano de Trabalho Docente 2014. Ensino Médio

Plano de Trabalho Docente 2014. Ensino Médio Plno de Trblho Docente 2014 Ensino Médio Etec Etec: PROF. MÁRIO ANTÔNIO VERZA Código: 164 Município: PALMITAL Áre de conhecimento: CIÊNCIAS HUMANAS E SUAS TECNOLOGIAS Componente Curriculr: EDUCAÇÃO E CIDADANIA

Leia mais

AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática

AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática 1 NÚMEROS E OPERAÇÕES 1.1 Lingugem Mtemátic AULA 1 1 1.2 Conjuntos Numéricos Chm-se conjunto o grupmento num todo de objetos, bem definidos e discerníveis, de noss percepção ou de nosso entendimento, chmdos

Leia mais

Simbolicamente, para. e 1. a tem-se

Simbolicamente, para. e 1. a tem-se . Logritmos Inicilmente vmos trtr dos ritmos, um ferrment crid pr uilir no desenvolvimento de cálculos e que o longo do tempo mostrou-se um modelo dequdo pr vários fenômenos ns ciêncis em gerl. Os ritmos

Leia mais

O sistema de cotas no Brasil: um estudo de caso na Universidade Estadual do Norte Fluminense -UENF

O sistema de cotas no Brasil: um estudo de caso na Universidade Estadual do Norte Fluminense -UENF O sistem de cots no Brsil: um estudo de cso n Universidde Estdul do Norte Fluminense -UENF Ludmil Gonçlves d Mtt Doutor em Sociologi Polític Professor do Mestrdo em Plnejmento Regionl e Gestão de Ciddes

Leia mais

EQUAÇÃO DO 2 GRAU ( ) Matemática. a, b são os coeficientes respectivamente de e x ; c é o termo independente. Exemplo: x é uma equação do 2 grau = 9

EQUAÇÃO DO 2 GRAU ( ) Matemática. a, b são os coeficientes respectivamente de e x ; c é o termo independente. Exemplo: x é uma equação do 2 grau = 9 EQUAÇÃO DO GRAU DEFINIÇÃO Ddos, b, c R com 0, chmmos equção do gru tod equção que pode ser colocd n form + bx + c, onde :, b são os coeficientes respectivmente de e x ; c é o termo independente x x x é

Leia mais

ADOLESCÊNCIA E AS DROGAS. Dra. Neuza Jordão MÉDICA COORDENADORIA MUNICIPAL DE PREVENÇÃO AS DROGAS COMUDA FUNDADORA DO INSTITUTO IDEAIS

ADOLESCÊNCIA E AS DROGAS. Dra. Neuza Jordão MÉDICA COORDENADORIA MUNICIPAL DE PREVENÇÃO AS DROGAS COMUDA FUNDADORA DO INSTITUTO IDEAIS ADOLESCÊNCIA E AS DROGAS Dra. Neuza Jordão MÉDICA COORDENADORIA MUNICIPAL DE PREVENÇÃO AS DROGAS COMUDA FUNDADORA DO INSTITUTO IDEAIS Coceitos Segudo a OMS, a adolescêcia é um período da vida, que começa

Leia mais

Professora: Profª Roberta Nara Sodré de Souza

Professora: Profª Roberta Nara Sodré de Souza MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICAS INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA-CAMPUS ITAJAÍ Professor: Profª Robert Nr Sodré de Souz Função

Leia mais

o quociente C representa a quantidade de A por unidade de B. Exemplo Se um objecto custar 2, então 10 objectos custam 20. Neste caso temos 20 :10 2.

o quociente C representa a quantidade de A por unidade de B. Exemplo Se um objecto custar 2, então 10 objectos custam 20. Neste caso temos 20 :10 2. Mtemátic I - Gestão ESTG/IPB Resolução. (i).0 : r 0.000.0 00.0 00 0 0.0 00 0 00.000 00 000.008 90 0.000.000 00 000 008 90.00 00 00 00 9 Dividedo = Divisor x Quociete + Resto.0 = x.008 + 0.000. Num divisão

Leia mais

Alternativa A. Alternativa B. igual a: (A) an. n 1. (B) an. (C) an. (D) an. n 1. (E) an. n 1. Alternativa E

Alternativa A. Alternativa B. igual a: (A) an. n 1. (B) an. (C) an. (D) an. n 1. (E) an. n 1. Alternativa E R é o cojuto dos úeros reis. A c deot o cojuto copleetr de A R e R. A T é triz trspost d triz A. (, b) represet o pr ordedo. [,b] { R; b}, ],b[ { R; < < b} [,b[ { R; < b}, ],b] { R; < b}.(ita - ) Se R

Leia mais

07 AVALIAÇÃO DO EFEITO DO TRATAMENTO DE

07 AVALIAÇÃO DO EFEITO DO TRATAMENTO DE 07 AVALIAÇÃO DO EFEITO DO TRATAMENTO DE SEMENTES NA QUALIDADE FISIOLOGICA DA SEMENTE E A EFICIENCIA NO CONTROLE DE PRAGAS INICIAIS NA CULTURA DA SOJA Objetivo Este trblho tem como objetivo vlir o efeito

Leia mais

U04.6. Câmara Municipal da Amadora. Pág. 1 a. 00. Requerimento (Modelo 04.6/CMA/DAU/2009) 01. Documento comprovativo da legitimidade do requerente.

U04.6. Câmara Municipal da Amadora. Pág. 1 a. 00. Requerimento (Modelo 04.6/CMA/DAU/2009) 01. Documento comprovativo da legitimidade do requerente. Câmr Municipl d Amdor Deprtmento de Administrção U04.6 Urbnísitic EMISSÃO DE LICENÇA ESPECIAL OU COMUNICAÇÃO PRÉVIA PARA OBRAS INACABADAS LISTA DE DOCUMENTOS 00. Requerimento (Modelo 04.6/CMA/DAU/2009)

Leia mais

ESTABILIDADE. Pólos Zeros Estabilidade

ESTABILIDADE. Pólos Zeros Estabilidade ESTABILIDADE Pólo Zero Etbilidde Itrodução Um crcterític importte pr um item de cotrole é que ele ej etável. Se um etrd fiit é plicd o item de cotrole, etão íd deverá er fiit e ão ifiit, ito é, umetr em

Leia mais

Ser professor de história em escolas rurais: identidades em construção*

Ser professor de história em escolas rurais: identidades em construção* Ser professor de históri em escols ruris: identiddes em construção* Selv Guimrães Fonsec** Astrogildo Fernndes d Silv Junior** Resumo Este rtigo vis presentr resultdos de investigção cerc ds relções entre

Leia mais

Desenvolvendo novas ferramentas pedagógicas para a formação de gestores de parques nacionais: jogos de papéis e simulação informática.

Desenvolvendo novas ferramentas pedagógicas para a formação de gestores de parques nacionais: jogos de papéis e simulação informática. Desenvolvendo vs ferrments pedgógics pr formção gestores prques ncionis: jogos ppéis e simulção informátic 1 Equipe Jen-Pierre Briot (LIP6 & LES/DI/PUC-Rio) (coorndor) Mrt Irving (EICOS/IP/UFRJ) (vice-coorndor)

Leia mais

1 Assinale a alternativa verdadeira: a) < <

1 Assinale a alternativa verdadeira: a) < < MATEMÁTICA Assinle lterntiv verddeir: ) 6 < 7 6 < 6 b) 7 6 < 6 < 6 c) 7 6 < 6 < 6 d) 6 < 6 < 7 6 e) 6 < 7 6 < 6 Pr * {} temos: ) *, * + e + * + ) + > + + > ) Ds equções (I) e (II) result 7 6 < ( 6 )

Leia mais

ROTAÇÃO DE CORPOS SOBRE UM PLANO INCLINADO

ROTAÇÃO DE CORPOS SOBRE UM PLANO INCLINADO Físic Gerl I EF, ESI, MAT, FQ, Q, BQ, OCE, EAm Protocolos ds Auls Prátics 003 / 004 ROTAÇÃO DE CORPOS SOBRE UM PLANO INCLINADO. Resumo Corpos de diferentes forms deslocm-se, sem deslizr, o longo de um

Leia mais

3. Admitindo SOLUÇÃO: dy para x 1 é: dx. dy 3t. t na expressão da derivada, resulta: Questão (10 pontos): Seja f uma função derivável e seja g x f x

3. Admitindo SOLUÇÃO: dy para x 1 é: dx. dy 3t. t na expressão da derivada, resulta: Questão (10 pontos): Seja f uma função derivável e seja g x f x UIVERSIDADE FEDERAL DE ITAJUBÁ CALCULO e PROVA DE TRASFERÊCIA ITERA, EXTERA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR 9/6/ CADIDATO: CURSO PRETEDIDO: OBSERVAÇÕES: Prov sem cosult. A prov pode ser feit

Leia mais

PLANO ANUAL DE ATIVIDADES Infância. - Pais/ encarregados de educação; - Pessoal docente e não docente; -Direção;

PLANO ANUAL DE ATIVIDADES Infância. - Pais/ encarregados de educação; - Pessoal docente e não docente; -Direção; Infânci ANO LETIVO 2015/2016 1º Período Reunião de pis /encrregdos de educção - Entreg e presentção do Plno Anul de Atividdes; - Entreg de documentção orgnizcionl; - Horários ds tividdes de complemento

Leia mais

Liberdade de expressão na mídia: seus prós e contras

Liberdade de expressão na mídia: seus prós e contras Universidde Estdul de Cmpins Fernnd Resende Serrdourd RA: 093739 Disciplin: CS101- Métodos e Técnics de Pesquis Professor: Armndo Vlente Propost de Projeto de Pesquis Liberdde de expressão n mídi: seus

Leia mais

CENTRO UNIVERSITÁRIO ESTÁCIO RADIAL DE SÃO PAULO SÍNTESE DO PROJETO PEDAGÓGICO DE CURSO 1 MISSÃO DO CURSO

CENTRO UNIVERSITÁRIO ESTÁCIO RADIAL DE SÃO PAULO SÍNTESE DO PROJETO PEDAGÓGICO DE CURSO 1 MISSÃO DO CURSO SÍNTESE DO PROJETO PEDAGÓGICO DE CURSO 1 CURSO: TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL MISSÃO DO CURSO O Curso Superior de Tecnologi em Automção Industril do Centro Universitário Estácio Rdil de São Pulo tem

Leia mais

Progressões Geométricas. Progressões. Aritméticas. A razão é... somada multiplicada. Condição para 3 termos Termo geral. b) 20 c) 40 3.

Progressões Geométricas. Progressões. Aritméticas. A razão é... somada multiplicada. Condição para 3 termos Termo geral. b) 20 c) 40 3. Aritmétics Geométrics A rzão é... somd multiplicd Codição pr termos Termo gerl om dos termos p r p p p q q q q 0) (UNIFEP) e os primeiros qutro termos de um progressão ritmétic são, b, 5, d, o quociete

Leia mais

dados de rotina com filtro, 2011

dados de rotina com filtro, 2011 ddos de rotin com filtro, 2011 ddos de rotin com filtro, 2011, vist d instlção / foto ricrdo bsbum performnce d curdori curdori dniel mttos (rj) pço ds rtes (SP) detlhe: crimbos imgem do folder / fotos

Leia mais

COPEL INSTRUÇÕES PARA CÁLCULO DA DEMANDA EM EDIFÍCIOS NTC 900600

COPEL INSTRUÇÕES PARA CÁLCULO DA DEMANDA EM EDIFÍCIOS NTC 900600 1 - INTRODUÇÃO Ests instruções têm por objetivo fornecer s orientções pr utilizção do critério pr cálculo d demnd de edifícios residenciis de uso coletivo O referido critério é plicável os órgãos d COPEL

Leia mais

Trabalhando-se com log 3 = 0,47 e log 2 = 0,30, pode-se concluir que o valor que mais se aproxima de log 146 é

Trabalhando-se com log 3 = 0,47 e log 2 = 0,30, pode-se concluir que o valor que mais se aproxima de log 146 é Questão 0) Trlhndo-se com log = 0,47 e log = 0,0, pode-se concluir que o vlor que mis se proxim de log 46 é 0),0 0),08 0),9 04),8 0),64 Questão 0) Pr se clculr intensidde luminos L, medid em lumens, um

Leia mais

COLÉGIO NAVAL 2016 (1º dia)

COLÉGIO NAVAL 2016 (1º dia) COLÉGIO NAVAL 016 (1º di) MATEMÁTICA PROVA AMARELA Nº 01 PROVA ROSA Nº 0 ( 5 40) 01) Sej S som dos vlores inteiros que stisfzem inequção 10 1 0. Sendo ssim, pode-se firmr que + ) S é um número divisíel

Leia mais

UMA PROPOSTA DE FERRAMENTA COMPUTACIONAL PARA A VISUALIZAÇÃO DE SISTEMAS LINEARES

UMA PROPOSTA DE FERRAMENTA COMPUTACIONAL PARA A VISUALIZAÇÃO DE SISTEMAS LINEARES UMA PROPOSTA DE FERRAMENTA COMPUTACIONAL PARA A VISUALIZAÇÃO DE SISTEMAS LINEARES Adilso Gustvo do Espírito Sto - dilsogustvo@hotmil.com Cetro Uiversitário de Volt Redod, Sistems de Iformção Av. Pulo Erlei

Leia mais

PROVA DE MATEMÁTICA DA UNICAMP VESTIBULAR 2009 1 a e 2 a Fase RESOLUÇÃO: Professora Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UNICAMP VESTIBULAR 2009 1 a e 2 a Fase RESOLUÇÃO: Professora Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UNICAMP VESTIBULAR 9 e Fse Professor Mri Atôi Gouvei. FASE _ 9 9. N décd de 96,com redução do úmero de bleis de grde porte,como blei zul, s bleis mike tártic pssrm ser o lvo preferêci

Leia mais

a a 3,88965 $140 7 9% 7 $187 7 9% a 5, 03295

a a 3,88965 $140 7 9% 7 $187 7 9% a 5, 03295 Anuiddes equivlentes: $480 + $113 + $149 5 9% 5 VPL A (1, 09) $56, 37 A 5 9% 3,88965 5 9% 5 9% AE = = = = $14, 49 = 3,88965 AE B $140 $620 + $120 + 7 9% 7 VPL B (1, 09) $60, 54 = = = 5, 03295 7 9% 7 9%

Leia mais

AGRUPAMENTO DE ESCOLAS DE FAFE Escola Secundária de Fafe. Plano de Melhoria

AGRUPAMENTO DE ESCOLAS DE FAFE Escola Secundária de Fafe. Plano de Melhoria AGRUPAMENTO DE ESCOLAS DE FAFE Escol Secundári de Ffe Plno de Melhori Avlição Extern ds Escols IGEC Inspeção-Gerl d Educção e Ciênci 7 e 8 de mio de 2012 Introdução O Plno de Melhori que se present result

Leia mais

Rolamentos com uma fileira de esferas de contato oblíquo

Rolamentos com uma fileira de esferas de contato oblíquo Rolmentos com um fileir de esfers de contto oblíquo Rolmentos com um fileir de esfers de contto oblíquo 232 Definições e ptidões 232 Séries 233 Vrintes 233 Tolerâncis e jogos 234 Elementos de cálculo 236

Leia mais

Função Logaritmo - Teoria

Função Logaritmo - Teoria Fução Logritmo - Teori Defiição: O ritmo de um úmero rel positivo, bse IR { } podemos escrever Resumido temos: +, é o úmero rel tl que, equivletemete E: 7 8 8 8 8 7 * { }, IR { } * +, IR + Usdo que fução

Leia mais

Arte e tecnologia na formação continuada de professores de. artes visuais: uma proposta educacional inovadora

Arte e tecnologia na formação continuada de professores de. artes visuais: uma proposta educacional inovadora F i g u Ate e tecnologi n fomção continud de pofessoes de F tes visuis: um popost educcionl inovdo F ii g u Simone Woytecken De Cvlho I An Luiz Ruschel Nunes (Oientdo) II 3 21 - -- Resumo: Este estudo

Leia mais

Noção intuitiva de limite

Noção intuitiva de limite Noção intuitiv de ite Qundo se proim de 1, y se proim de 3, isto é: 3 y + 1 1,5 4 1,3 3,6 1,1 3, 1,05 3,1 1,0 3,04 1,01 3,0 De um modo gerl: Eemplo de um ite básico Qundo tende um vlor determindo, o ite

Leia mais

III Simpósio sobre Gestão Empresarial e Sustentabilidade (SimpGES) Produtos eco-inovadores: produção e consumo"

III Simpósio sobre Gestão Empresarial e Sustentabilidade (SimpGES) Produtos eco-inovadores: produção e consumo 4 e 5 de outubro de 03 Campo Grade-MS Uiversidade Federal do Mato Grosso do Sul RESUMO EXPANDIDO COMPARAÇÃO ENTRE REDES NEURAIS ARTIFICIAIS E REGRESSÃO LINEAR MÚLTIPLA PARA PREVISÃO DE PREÇOS DE HORTALIÇAS

Leia mais

FUNCIONAL ENTORNO ELEMENTOS DE ENTORNO, CONSIDERANDO OS ATRIBUTOS DO LUGAR - MASSAS TOPOGRAFIA #8. fonte imagem: Google Earth

FUNCIONAL ENTORNO ELEMENTOS DE ENTORNO, CONSIDERANDO OS ATRIBUTOS DO LUGAR - MASSAS TOPOGRAFIA #8. fonte imagem: Google Earth FUNCIONL ENTORNO IDENTIFICR RELÇÃO DO EDIFÍCIO COM OS ELEMENTOS DE ENTORNO, CONSIDERNDO OS TRIBUTOS DO LUGR - MSSS EDIFICDS, RELÇÕES DE PROXIMIDDE, DIÁLOGO, INTEGRÇÃO OU UTONOMI O ENTORNO D CSH #9 É COMPOSTO

Leia mais

, então ela é integrável em [ a, b] Interpretação geométrica: seja contínua e positiva em um intervalo [ a, b]

, então ela é integrável em [ a, b] Interpretação geométrica: seja contínua e positiva em um intervalo [ a, b] Interl Deinid Se é um unção de, então su interl deinid é um interl restrit à vlores em um intervlo especíico, dimos, O resultdo é um número que depende pens de e, e não de Vejmos deinição: Deinição: Sej

Leia mais

1 Fórmulas de Newton-Cotes

1 Fórmulas de Newton-Cotes As nots de ul que se seguem são um compilção dos textos relciondos n bibliogrfi e não têm intenção de substitui o livro-texto, nem qulquer outr bibliogrfi. Integrção Numéric Exemplos de problems: ) Como

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA PRIMEIRO SEMESTRE DE 2015 13 de Fevereiro de 2015 Prte I Álgebr Liner 1 Questão: Sejm

Leia mais

1. (6,0 val.) Determine uma primitiva de cada uma das seguintes funções. (considere a mudança de variável u = tan 2

1. (6,0 val.) Determine uma primitiva de cada uma das seguintes funções. (considere a mudança de variável u = tan 2 Istituto Superior Técico Deprtmeto de Mtemátic Secção de Álgebr e Aálise o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I LMAC, MEBiom e MEFT o Sem. 00/ 5/J/0 - v. Durção: h30m RESOLUÇÃO. 6,0 vl. Determie um

Leia mais

INTERPOLAÇÃO. Interpolação

INTERPOLAÇÃO. Interpolação INTERPOLAÇÃO Profa. Luciaa Motera motera@facom.ufms.br Faculdade de Computação Facom/UFMS Métodos Numéricos Iterpolação Defiição Aplicações Iterpolação Liear Equação da reta Estudo do erro Iterpolação

Leia mais

Lista de Exercícios 01 Algoritmos Sequência Simples

Lista de Exercícios 01 Algoritmos Sequência Simples Uiversidde Federl do Prá UFPR Setor de Ciêcis Exts / Deprtmeto de Iformátic DIf Discipli: Algoritmos e Estrutur de Ddos I CI055 Professor: Dvid Meotti (meottid@gmil.com) List de Exercícios 0 Algoritmos

Leia mais

PLANO DE ENFRENTAMENTO DA EPIDEMIA DE AIDS E DAS DST ENTRE A POPULAÇÃO DE GAYS, HSH E TRAVESTIS MATO GROSSO

PLANO DE ENFRENTAMENTO DA EPIDEMIA DE AIDS E DAS DST ENTRE A POPULAÇÃO DE GAYS, HSH E TRAVESTIS MATO GROSSO PLANO DE ENFRENTAMENTO DA EPIDEMIA DE AIDS E DAS DST ENTRE A POPULAÇÃO DE GAYS, HSH E TRAVESTIS MATO GROSSO Objetivo 1: Grntir prioridde técnic, polític e finnceir pr ções de enfrentmento do HIV/DST voltds

Leia mais

Teorema Fundamental do Cálculo - Parte 2

Teorema Fundamental do Cálculo - Parte 2 Universidde de Brsíli Deprtmento de Mtemátic Cálculo Teorem Fundmentl do Cálculo - Prte 2 No teto nterior vimos que, se F é um primitiv de f em [,b], então f()d = F(b) F(). Isto reduz o problem de resolver

Leia mais

O QUE NOS UNE NO TRANSPORTE É A SEGURANÇA

O QUE NOS UNE NO TRANSPORTE É A SEGURANÇA O QUE NOS UNE NO TRANSPORTE É A SEGURANÇA A SEGURANÇA FAZ PARTE DA ESSÊNCIA DA VOLVO Ao lado da qualidade e do respeito ao meio ambiete, a seguraça é um dos valores corporativos que orteiam todas as ações

Leia mais

Edital de Processo Seletivo Nº 21/2015

Edital de Processo Seletivo Nº 21/2015 Editl de Processo Seletivo Nº 21/2015 O SERVIÇO NACIONAL DE APRENDIZAGEM COMERCIAL ADMINISTRAÇÃO REGIONAL NO ESTADO DO PIAUÍ, SENAC-PI, no uso de sus tribuições regimentis, torn público que estão berts

Leia mais

TARIFÁRIO 2016 Operadora Nacional SEMPRE PERTO DE VOCÊ

TARIFÁRIO 2016 Operadora Nacional SEMPRE PERTO DE VOCÊ TARIFÁRIO 2016 Operdor Ncionl SEMPRE PERTO DE VOCÊ 24 HOTÉIS PORTUGAL E BRASIL LAZER E NEGÓCIOS CIDADE, PRAIA E CAMPO Os Hotéis Vil Glé Brsil Rio de Jneiro VILA GALÉ RIO DE JANEIRO 292 qurtos 2 resturntes

Leia mais

Apoio à Decisão. Aula 3. Aula 3. Mônica Barros, D.Sc.

Apoio à Decisão. Aula 3. Aula 3. Mônica Barros, D.Sc. Aul Métodos Esttísticos sticos de Apoio à Decisão Aul Mônic Brros, D.Sc. Vriáveis Aletóris Contínus e Discrets Função de Probbilidde Função Densidde Função de Distribuição Momentos de um vriável letóri

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 13/03/10

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 13/03/10 RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: /0/0 PROFESSOR: CARIBÉ Num cert comuidde, 0% ds pessos estvm desempregds. Foi feit um cmph, que durou 6 meses, pr tetr iserir ests pessos

Leia mais

AVALIAÇÃO TRIMESTRE. DISCIPLINA Matemática ALUNO(A) GABARITO

AVALIAÇÃO TRIMESTRE. DISCIPLINA Matemática ALUNO(A) GABARITO COORDENAÇÃO ENSINO MÉDIO AVALIAÇÃO - 0 TRIMESTRE NOTA UNIDADE(S): CAMBOINHAS PROFESSOR Equie DISCIPLINA Mtemátic SÉRIE/TURMA O /A E B DATA /0/00 NITERÓI SÃO GONÇALO X X ALUNO(A) GABARITO N IMPORTANTE:.

Leia mais

Resumo Executivo. Violência contra a mulher

Resumo Executivo. Violência contra a mulher S T U L s R E K Q F zs B x f b w s X R e R y P Z K O q u A r G J M e z YLU E p z P c o Resumo Executivo iolênci contr mulher estudo revel predominânci de viés policilesco n cobertur noticios do tem Estudo

Leia mais

Ética e justiça na avaliação: a fraude e o copianço no processo ensino/aprendizagem

Ética e justiça na avaliação: a fraude e o copianço no processo ensino/aprendizagem Étic e justiç n vlição: frude e o copinço no processo ensino/prendizgem Crlos Alberto Gomes* Resumo Neste texto present-se um breve reflexão sobre frude n vlição de conhecimentos em contexto escolr e universitário,

Leia mais

Bhaskara e sua turma Cícero Thiago B. Magalh~aes

Bhaskara e sua turma Cícero Thiago B. Magalh~aes 1 Equções de Segundo Gru Bhskr e su turm Cícero Thigo B Mglh~es Um equção do segundo gru é um equção do tipo x + bx + c = 0, em que, b e c são números reis ddos, com 0 Dd um equção do segundo gru como

Leia mais

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5,

x 0 0,5 0,999 1,001 1,5 2 f(x) 3 4 4,998 5, - Limite. - Conceito Intuitivo de Limite Considere função f definid pel guinte epressão: f - - Podemos obrvr que função está definid pr todos os vlores de eceto pr. Pr, tnto o numerdor qunto o denomindor

Leia mais

Resolução Numérica de Sistemas Lineares Parte II

Resolução Numérica de Sistemas Lineares Parte II Cálculo Numérico Resolução Numéric de Sistems Lieres Prte II Prof Jorge Cvlcti jorgecvlcti@uivsfedubr MATERIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG - wwwdscufcgedubr/~cum/ Sistems

Leia mais

Sistema Móvel de Levantamento Terrestre

Sistema Móvel de Levantamento Terrestre Sistem Móvel de Levtmeto Terrestre Sérgio Mdeir Uiversidde de Trás-os-Motes e Alto Douro José Alberto Goçlves Luís Cerqueir Bstos Uiversidde do Porto Sistem Móvel de Levtmeto (SML) - Um defiição Sistem

Leia mais