LISTA DE EXEMPLOS - PROBABILIDADE

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "LISTA DE EXEMPLOS - PROBABILIDADE"

Transcrição

1 LISTA DE EXEMPLOS - PROBABILIDADE EXEMPLO 1 CONVERTENDO UM ARREMESSO LIVRE Ache a probabilidade de que o jogador de basquete da NBA, Reggie Miller, converta um arremesso livre depois de sofrer uma falta. Em um instante de sua carreira, ele converteu 5915 arremessos livres em 6679 tentativas (com base em dados da NBA). O espaço amostral consiste em dois eventos simples: Miller converte o arremesso livre ou não. Como o espaço amostral consiste em eventos que não são igualmente prováveis, não podemos usar a abordagem clássica. Podemos usar a abordagem da frequência relativa com sues resultados passados. Obtemos o seguinte resultado: EXEMPLO 2 GENÓTIPOS Como parte de um estudo dos genótipos AA, Aa, aa e aa, escreve-se cada genótipo individual em um cartão, misturam-se os cartões e seleciona-se um deles aleatoriamente. Qual a probabilidade de que o genótipo selecionado seja o Aa? Como o espaço amostral (AA, Aa, aa, aa), nesse caso, inclui resultados igualmente prováveis, usamos a abordagem clássica para obtermos: EXEMPLO 3 SEXO DE CRIANÇAS Ache a probabilidade de que, quando um casal tem três filhos, exatamente dois deles sejam meninos. Suponha que meninos e meninas sejam igualmente prováveis e que o sexo de uma criança não seja influenciado pelo sexo de qualquer outra criança. O maior obstáculo aqui é identificar corretamente o espaço amostral. Isto envolve mais do que trabalhar com os números 2 e 3 dados nmo enunciado do problema. O espaço amostral consiste em 8 maneiras diferentes pelas quais as três crianças podem ocorrer. Estas maneiras estão listadas na margem. Esses 8 resultados são igualmente prováveis, assim, usamos a Regra 2. Das 8 diferentes possibilidades, 3 correspondem a exatamente 2 meninos, de modo que, Portanto há uma probabilidade igual a 0,375 de que, se um casal tem 3 filhos exatamente dois sejam meninos.

2

3 EXEMPLO 4 DIA DE AÇÃO DE GRAÇAS Se um ano é selecionado aleatoriamente, ache a probabilidade de o Dia de Ação de Graças cair em uma (a) quarta-feira ou (b) em uma quinta-feira. (a) O Dia de Ação de Graças é sempre a quarta quinta-feira do mês de novembro. Assim, é impossível que o Dia de Ação de Graças caia numa quarta-feira. Quando um evento e impossível, dizemos que sua probabilidade é zero (0). (b) É certo que o Dia de Ação de Graças caia numa quinta-feira. Quando um evento ocorre com certeza, dizemos que sua probabilidade é um (1). EXEMPLO 5 SEXO DE RECÉM-NASCIDOS Na verdade, nascem mais meninos que meninas. Em um grupo típico, há 205 recém-nascidos, dos quais 105 são meninos. Se um bebê é escolhido aleatoriamente nesse grupo, qual é a probabilidade de que ele não seja um menino? Como 105 dos 205 bebês são meninos, então 100 são meninas. Logo, EXEMPLO 6 CHANCES Se você aposta 5 dólares no número 13 em uma roleta, sua probabilidade de ganhar é 1/38 e a chance no rateio é dada pelo cassino como 35:1 (a) Ache a chance real contra o resultado 13. (b) Qual seria o seu lucro líquido se você ganhasse apostando no 13? (c) Se o cassino estivesse operando apenas por diversão e a chance no rateio fosse alterada para se igualar à chance real contra o 13, quanto você ganharia se o resultado fosse 13? (a) Com e, obtemos, chances reais contra ou (b) Como as chances no rateio contra o são de, temos:

4 de modo que há um lucro líquido de 35 dólares para cada dólar apostado. Para uma aposta de 5 dólares, o lucro líquido é 175. O apostador vencedor ganharia 175 mais os 5 originais da aposta. Isto é, o apostador vencedor receberia os 5 apostados mais 175. A quantia recebida seria de 180 dólares para um lucro líquido de 175 dólares. (c) Se o cassino estivesse operando por diversão e não por lucro, as chances no rateio seriam iguais às chances reais contra o 13. Se as chances no rateio fossem alteradas de 35:1 para 37:1, seu lucro líquido seria de 37 dólares para cada dólar apostado. Se você apostasse 5, seu lucro líquido seria de 185. (O cassino lucra pagando apenas 175 em vez dos 185 que ele pagaria com um jogo de roleta justo, em vez de favorável ao cassino.) EXEMPLO 7 GENÉTICA MENDELIANA Quando Mendel realizou seu famoso experimento genético com ervilhas, uma prole de mudas consistia em 428 ervilhas verdes e 152 ervilhas amarelas. Com base nesses resultados, estime a probabilidade de se obter uma prole de ervilhas verdes. O resultado está razoavelmente próximo do valor esperado de ¾? Para esse estudo o número total de ervilhas observadas pode se dar pela soma das verdes mais as amarelas Com o resultado obtido é razoável sim dizer que esse valor está próximo de ¾. EXEMPLO 8 REGRA DA ADIÇÃO TESTES DO USO DE MACONHA Considere a tabela abaixo: Resultado do teste positivo (teste indicou a presença de maconha) Resultado do teste negativo (Teste indicou a ausência de maconha) O sujeito realmente usou maconha? Sim Não 119 (positivo verdadeiro) 3 (falso negativo) 24 (falso positivo) 154 (negativo verdadeiro) (a) Supondo que uma pessoa seja selecionada aleatoriamente entre as 300 que foram testadas, ache a probabilidade de ser selecionado um sujeito que teve teste positivo ou usava maconha.

5 Podemos perceber que há 146 sujeitos que tiveram teste positivo com os sujeitos que usavam maconha, tendo o cuidado de contar cada um apenas uma vez. Dividindo o total de 146 pelo total geral de 300, obtemos este resultado: (b) Considere ainda a tabela mostrada acima. Considere a seleção aleatória de 1 dos 300 sujeitos incluídos na tabela acima. Determine se B: obter um sujeito que não usava maconha. Podemos ver que há 157 sujeitos com resultados negativos no teste e que há 178 sujeitos que não usavam maconha. O evento de se obter um sujeito com resultado negativo no teste e o de se obter um sujeito que não usava maconha podem ocorrer ao mesmo tempo (porque há 145 sujeitos que tiveram resultados negativos no teste e não usavam maconha). Como esses eventos se superpõem, eles podem ocorrer ao mesmo tempo, e dizemos que eles não são disjuntos. (c) Supondo que uma pessoa seja selecionada aleatoriamente dentre as 300 pessoas que foram testadas, ache a probabilidade de se selecionar um sujeito que teve resultado negativo no teste ou que não usava maconha. Precisamos encontrar o número total de sujeitos que tiveram resultados negativos no teste ou que não usavam maconha, mas devemos encontrar esse total sem contagem dupla. Obtemos um total de 181. Como181 sujeitos tiveram resultados negativos no teste ou não usavam maconha, e como há 300 sujeitos no total, obtemos: EXEMPLO 9 REGRA DA MULTIPLICAÇÃO TESTES DO USO DE MACONHA Considere a tabela mostrada no exercício anterior. Se dois dos sujeitos incluídos na tabela na tabela são selecionados aleatoriamente sem reposição, ache a probabilidade de que a primeira pessoa selecionada tenha um resultado de teste positivo e a segunda pessoa selecionada tenha um resultado de teste negativo. Primeira seleção: (porque há 143 sujeitos com teste positivo e o número total é 300). Segunda seleção:

6 (depois da primeira seleção de um sujeito com teste positivo, há 299 sujeitos restantes, 157 dos quais têm resultado negativo no teste). Com e, temos: O ponto chave para esse exercício é que temos que ajustar a probabilidade do segundo evento para refletir o resultado do primeiro. Como a seleção do segundo sujeito é feito sem a reposição do primeiro, a segunda probabilidade tem que levar em conta o fato de que a primeira seleção removeu um sujeito que teve positivo, de modo apenas 299 sujeitos estão disponíveis para a segunda seleção, e 157 deles têm teste negativo.

7 EXEMPLO 10 PROBABILIDADE CONDICIONAL TESTE DE DROGAS Com relação a mesma tabela apresentada, ache: (a) Se 1 das 300 pessoas é escolhida aleatoriamente, ache a probabilidade de o teste dar positivo, visto que esta pessoa realmente usou maconha. Queremos, a probabilidade de um teste positivo, visto que esta pessoa usou maconha. Eis aqui o ponto-chave: se consideramos que a pessoa usou maconha, esgtamo lidando apenas com as 122 pessoas da primeira coluna da tabela. Dentre as 122, a19 tiveram teste positivo, de modo que: O mesmo resultado pode ser encontrado usando-se a fórmula dada com a definição de probabilidade condicional. Nos cálculos seguintes, usamos o fato de que 119 das 300 pessoas usaram maconha e o teste deu positivo. Também 122 das 300 pessoas usaram maconha. Assim, b) Se 1 das 300 pessoas é escolhida aleatoriamente, ache a probabilidade de esta pessoa ter usado maconha, visto que o teste deu positivo. Aqui queremos Se considerarmos que o teste deu positivo para a pessoa selecionada, estaremos lidando com as 143 pessoas da primeira linha da tabela. Dentre as 143 pessoas, 119 usaram maconha, de modo que: Novamente, o mesmo resultado pode ser obtido aplicando-se a fórmula da probabilidade condicional: Comparando os resultados das partes (a) e (b), podemos ver que mesmo que. não é o

8 EXEMPLO 11 REGRA DA MULTIPLICAÇÃO COMPLEMENTAR SEXO DE CRIANÇAS Ache a probabilidade de um casal ter pelo menos uma menina entre três crianças. Suponha que meninos e meninas sejam igualmente prováveis e que o sexo de uma criança seja independente do sexo de qualquer outro irmão ou irmã. Passo 1: Use um símbolo para representar o evento desejado. Neste caso, seja A= pelo menos 1 das 3 crianças é menina. Passo 2: Identifique o evento que é complementar de A. = não se obter pelo menos 1 menina entre 3 crianças = todas as 3 crianças são meninos = menino e menino e menino Passo 3: Ache a probabilidade do complementar, Passo 4: Ache calculando Há, portanto, uma probabilidade de 7/8 de que o casal com três crianças tenha pelo menos uma menina.

Regra do Evento Raro p/ Inferência Estatística:

Regra do Evento Raro p/ Inferência Estatística: Probabilidade 3-1 Aspectos Gerais 3-2 Fundamentos 3-3 Regra da Adição 3-4 Regra da Multiplicação: 3-5 Probabilidades por Meio de Simulações 3-6 Contagem 1 3-1 Aspectos Gerais Objetivos firmar um conhecimento

Leia mais

Módulo VIII. Probabilidade: Espaço Amostral e Evento

Módulo VIII. Probabilidade: Espaço Amostral e Evento 1 Módulo VIII Probabilidade: Espaço Amostral e Evento Suponha que em uma urna existam cinco bolas vermelhas e uma branca. Extraindo-se, ao acaso, uma das bolas, é mais provável que esta seja vermelha.

Leia mais

AV2 - MA 12-2012. (a) De quantos modos diferentes posso empilhá-los de modo que todos os CDs de rock fiquem juntos?

AV2 - MA 12-2012. (a) De quantos modos diferentes posso empilhá-los de modo que todos os CDs de rock fiquem juntos? Questão 1. Num porta-cds, cabem 10 CDs colocados um sobre o outro, formando uma pilha vertical. Tenho 3 CDs de MPB, 5 de rock e 2 de música clássica. (a) De quantos modos diferentes posso empilhá-los de

Leia mais

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA (CAp/UERJ) MATEMÁTICA ENSINO MÉDIO - PROF. ILYDIO SÁ CÁLCULO DE PROBABILIDADES PARTE 1

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA (CAp/UERJ) MATEMÁTICA ENSINO MÉDIO - PROF. ILYDIO SÁ CÁLCULO DE PROBABILIDADES PARTE 1 1 INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA (CAp/UERJ) MATEMÁTICA ENSINO MÉDIO - PROF. ILYDIO SÁ CÁLCULO DE PROBABILIDADES PARTE 1 1. Origem histórica É possível quantificar o acaso? Para iniciar,

Leia mais

Eventos independentes

Eventos independentes Eventos independentes Adaptado do artigo de Flávio Wagner Rodrigues Neste artigo são discutidos alguns aspectos ligados à noção de independência de dois eventos na Teoria das Probabilidades. Os objetivos

Leia mais

Soluções Nível 1 5 a e 6 a séries (6º e 7º anos) do Ensino Fundamental

Soluções Nível 1 5 a e 6 a séries (6º e 7º anos) do Ensino Fundamental a e 6 a séries (6º e 7º anos) do Ensino Fundamental 1. (alternativa C) Os números 0,01 e 0,119 são menores que 0,12. Por outro lado, 0,1 e 0,7 são maiores que 0,. Finalmente, 0,29 é maior que 0,12 e menor

Leia mais

MAT 461 Tópicos de Matemática II Aula 3: Resumo de Probabilidade

MAT 461 Tópicos de Matemática II Aula 3: Resumo de Probabilidade MAT 461 Tópicos de Matemática II Aula 3: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 19 de Agosto, 2013 Probabilidade: uma Introdução / Aula 3 1 Probabilidade Discreta: Exemplos

Leia mais

CAPÍTULO 04 NOÇÕES DE PROBABILIDADE

CAPÍTULO 04 NOÇÕES DE PROBABILIDADE CAPÍTULO 0 NOÇÕES DE PROBABILIDADE. ESPAÇO AMOSTRAL É o conjunto de todos os possíveis resultados de um experimento aleatório. No lançamento de uma moeda perfeita (não viciada) o espaço amostral é S =

Leia mais

Exercícios Resolvidos sobre probabilidade total e Teorema de Bayes

Exercícios Resolvidos sobre probabilidade total e Teorema de Bayes Exercícios Resolvidos sobre probabilidade total e Teorema de Bayes Para ampliar sua compreensão sobre probabilidade total e Teorema de Bayes, estude este conjunto de exercícios resolvidos sobre o tema.

Leia mais

Probabilidade. Distribuição Binomial

Probabilidade. Distribuição Binomial Probabilidade Distribuição Binomial Distribuição Binomial (Experimentos de Bernoulli) Considere as seguintes experimentos/situações práticas: Conformidade de itens saindo da linha de produção Tiros na

Leia mais

Bom serviço dentro da garantia Serviço deficiente dentro da garantia Vendedores de determinada marca de pneus 64 16

Bom serviço dentro da garantia Serviço deficiente dentro da garantia Vendedores de determinada marca de pneus 64 16 Lista de Probabilidade Básica com gabarito 1. Considere a experiência que consiste em pesquisar famílias com três crianças, em relação ao sexo das mesmas, segundo a ordem de nascimento. (a)determine o

Leia mais

MATEMÁTICA COMBINATÓRIA: INTRODUÇÃO

MATEMÁTICA COMBINATÓRIA: INTRODUÇÃO INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA 2ª SÉRIE DO ENSINO MÉDIO Prof. Ilydio Pereira de Sá www.magiadamatematica.com MATEMÁTICA COMBINATÓRIA: INTRODUÇÃO Princípio Fundamental da Contagem

Leia mais

Atividade à Distância Avaliativa - Probabilidade. 1 Probabilidade - Operações e Propriedades

Atividade à Distância Avaliativa - Probabilidade. 1 Probabilidade - Operações e Propriedades Universidade Estadual de Santa Cruz UESC Professora: Camila M. L Nagamine Bioestatística Atividade à Distância Avaliativa - Probabilidade Se ouço, esqueço; se vejo, recordo; se faço, aprendo. (Provérbio

Leia mais

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 7

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 7 RACIOCÍNIO LÓGICO AULA 7 TEORIA DAS PROBABILIDADES Vamos considerar os seguintes experimentos: Um corpo de massa m, definida sendo arrastado horizontalmente por uma força qualquer, em um espaço definido.

Leia mais

Genética Básica. Coordenador: Victor Martin Quintana Flores. Exercícios Resolvidos

Genética Básica. Coordenador: Victor Martin Quintana Flores. Exercícios Resolvidos Genética Básica Coordenador: Victor Martin Quintana Flores Exercícios Resolvidos Genética Mendeliana 1- Uma planta de ervilha heterozigota que é alta e amarela, HhAa, é autofertilizada. Qual é a probabilidade

Leia mais

Exercícios Teóricos Resolvidos

Exercícios Teóricos Resolvidos Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Exercícios Teóricos Resolvidos O propósito deste texto é tentar mostrar aos alunos várias maneiras de raciocinar

Leia mais

Professor Mauricio Lutz PROBABILIDADE

Professor Mauricio Lutz PROBABILIDADE PROBABILIDADE Todas as vezes que se estudam fenômenos de observação, cumpre-se distinguir o próprio fenômeno e o modelo matemático (determinístico ou probabilístico) que melhor o explique. Os fenômenos

Leia mais

Estatística e Probabilidade. Aula 4 Cap 03. Probabilidade

Estatística e Probabilidade. Aula 4 Cap 03. Probabilidade Estatística e Probabilidade Aula 4 Cap 03 Probabilidade Estatística e Probabilidade Método Estatístico Estatística Descritiva Estatística Inferencial Nesta aula... aprenderemos como usar informações para

Leia mais

INE 5111 Gabarito da Lista de Exercícios de Probabilidade INE 5111 LISTA DE EXERCÍCIOS DE PROBABILIDADE

INE 5111 Gabarito da Lista de Exercícios de Probabilidade INE 5111 LISTA DE EXERCÍCIOS DE PROBABILIDADE INE 5 LISTA DE EERCÍCIOS DE PROBABILIDADE INE 5 Gabarito da Lista de Exercícios de Probabilidade ) Em um sistema de transmissão de dados existe uma probabilidade igual a 5 de um dado ser transmitido erroneamente.

Leia mais

AULA 6 LÓGICA DOS CONJUNTOS

AULA 6 LÓGICA DOS CONJUNTOS Disciplina: Matemática Computacional Crédito do material: profa. Diana de Barros Teles Prof. Fernando Zaidan AULA 6 LÓGICA DOS CONJUNTOS Intuitivamente, conjunto é a coleção de objetos, que em geral, tem

Leia mais

Espaço Amostral ( ): conjunto de todos os

Espaço Amostral ( ): conjunto de todos os PROBABILIDADE Espaço Amostral (): conjunto de todos os resultados possíveis de um experimento aleatório. Exemplos: 1. Lançamento de um dado. = {1,, 3, 4,, 6}. Doador de sangue (tipo sangüíneo). = {A, B,

Leia mais

Aula 4 Estatística Conceitos básicos

Aula 4 Estatística Conceitos básicos Aula 4 Estatística Conceitos básicos Plano de Aula Amostra e universo Média Variância / desvio-padrão / erro-padrão Intervalo de confiança Teste de hipótese Amostra e Universo A estatística nos ajuda a

Leia mais

Teorema do Limite Central e Intervalo de Confiança

Teorema do Limite Central e Intervalo de Confiança Probabilidade e Estatística Teorema do Limite Central e Intervalo de Confiança Teorema do Limite Central Teorema do Limite Central Um variável aleatória pode ter uma distribuição qualquer (normal, uniforme,...),

Leia mais

ANALISE COMBINATORIA Um pouco de probabilidade

ANALISE COMBINATORIA Um pouco de probabilidade ANALISE COMBINATORIA Um pouco de probabilidade Programa Pró-Ciência Fapesp/IME-USP-setembro de 1999 Antônio L. Pereira -IME USP (s. 234A) tel 818 6214 email:alpereir@ime.usp.br 1 Um carro e dois bodes

Leia mais

Contagem I. Figura 1: Abrindo uma Porta.

Contagem I. Figura 1: Abrindo uma Porta. Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 4 Contagem I De quantos modos podemos nos vestir? Quantos números menores que 1000 possuem todos os algarismos pares?

Leia mais

Capítulo 7 Medidas de dispersão

Capítulo 7 Medidas de dispersão Capítulo 7 Medidas de dispersão Introdução Para a compreensão deste capítulo, é necessário que você tenha entendido os conceitos apresentados nos capítulos 4 (ponto médio, classes e frequência) e 6 (média).

Leia mais

Dois eventos são disjuntos ou mutuamente exclusivos quando não tem elementos em comum. Isto é, A B = Φ

Dois eventos são disjuntos ou mutuamente exclusivos quando não tem elementos em comum. Isto é, A B = Φ Probabilidade Vimos anteriormente como caracterizar uma massa de dados, como o objetivo de organizar e resumir informações. Agora, apresentamos a teoria matemática que dá base teórica para o desenvolvimento

Leia mais

Estatística II Antonio Roque Aula 9. Testes de Hipóteses

Estatística II Antonio Roque Aula 9. Testes de Hipóteses Testes de Hipóteses Os problemas de inferência estatística tratados nas aulas anteriores podem ser enfocados de um ponto de vista um pouco diferente: ao invés de se construir intervalos de confiança para

Leia mais

Escola Secundária c/3º CEB José Macedo Fragateiro. Curso Profissional de Nível Secundário. Componente Técnica. Disciplina de

Escola Secundária c/3º CEB José Macedo Fragateiro. Curso Profissional de Nível Secundário. Componente Técnica. Disciplina de Escola Secundária c/3º CEB José Macedo Fragateiro Curso Profissional de Nível Secundário Componente Técnica Disciplina de Sistemas Digitais e Arquitectura de Computadores 29/21 Módulo 1: Sistemas de Numeração

Leia mais

O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.

O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão. ESTATÍSTICA INDUTIVA 1. CORRELAÇÃO LINEAR 1.1 Diagrama de dispersão O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.

Leia mais

2aula TEORIA DE ERROS I: ALGARISMOS SIGNIFICATIVOS, ARREDONDAMENTOS E INCERTEZAS. 2.1 Algarismos Corretos e Avaliados

2aula TEORIA DE ERROS I: ALGARISMOS SIGNIFICATIVOS, ARREDONDAMENTOS E INCERTEZAS. 2.1 Algarismos Corretos e Avaliados 2aula Janeiro de 2012 TEORIA DE ERROS I: ALGARISMOS SIGNIFICATIVOS, ARREDONDAMENTOS E INCERTEZAS Objetivos: Familiarizar o aluno com os algarismos significativos, com as regras de arredondamento e as incertezas

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Introdução a Probabilidade Existem dois tipos

Leia mais

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Revisão de Probabilidade e Estatística

Universidade Federal do Paraná Departamento de Informática. Reconhecimento de Padrões. Revisão de Probabilidade e Estatística Universidade Federal do Paraná Departamento de Informática Reconhecimento de Padrões Revisão de Probabilidade e Estatística Luiz Eduardo S. Oliveira, Ph.D. http://lesoliveira.net Conceitos Básicos Estamos

Leia mais

MÓDULO 6 INTRODUÇÃO À PROBABILIDADE

MÓDULO 6 INTRODUÇÃO À PROBABILIDADE MÓDULO 6 INTRODUÇÃO À PROBBILIDDE Quando estudamos algum fenômeno através do método estatístico, na maior parte das vezes é preciso estabelecer uma distinção entre o modelo matemático que construímos para

Leia mais

Probabilidade. Definições, Notação, Regra da Adição

Probabilidade. Definições, Notação, Regra da Adição Probabilidade Definições, Notação, Regra da Adição Definições básicas de probabilidade Experimento Qualquer processo de observação ou medida que permita ao pesquisador fazer coleta de informações. Evento

Leia mais

Aula 5 Técnicas para Estimação do Impacto

Aula 5 Técnicas para Estimação do Impacto Aula 5 Técnicas para Estimação do Impacto A econometria é o laboratório dos economistas, que busca reproduzir o funcionamento do mundo de forma experimental, como se faz nas ciências naturais. Os modelos

Leia mais

Aula 4 Conceitos Básicos de Estatística. Aula 4 Conceitos básicos de estatística

Aula 4 Conceitos Básicos de Estatística. Aula 4 Conceitos básicos de estatística Aula 4 Conceitos Básicos de Estatística Aula 4 Conceitos básicos de estatística A Estatística é a ciência de aprendizagem a partir de dados. Trata-se de uma disciplina estratégica, que coleta, analisa

Leia mais

Aula de Exercícios - Variáveis Aleatórias Discretas - Modelos Probabiĺısticos

Aula de Exercícios - Variáveis Aleatórias Discretas - Modelos Probabiĺısticos Aula de Exercícios - Variáveis Aleatórias Discretas - Modelos Probabiĺısticos Organização: Airton Kist Digitação: Guilherme Ludwig Exercício Se X b(n, p), sabendo-se que E(X ) = 12 e σ 2 = 3, determinar:

Leia mais

TESTE QUI - QUADRADO DE UMA AMOSTRA (também chamado TESTE DE ADERÊNCIA ou TESTE DE EFICIÊNCIA DE AJUSTE)

TESTE QUI - QUADRADO DE UMA AMOSTRA (também chamado TESTE DE ADERÊNCIA ou TESTE DE EFICIÊNCIA DE AJUSTE) TESTE QUI - QUADRADO DE UMA AMOSTRA (também chamado TESTE DE ADERÊNCIA ou TESTE DE EFICIÊNCIA DE AJUSTE) O Teste Qui-quadrado de uma amostra é utilizado em pesquisa de marketing para verificar se a distribuição

Leia mais

Aula 11 Esperança e variância de variáveis aleatórias discretas

Aula 11 Esperança e variância de variáveis aleatórias discretas Aula 11 Esperança e variância de variáveis aleatórias discretas Nesta aula você estudará os conceitos de média e variância de variáveis aleatórias discretas, que são, respectivamente, medidas de posição

Leia mais

REPRESENTAÇÃO DE DADOS EM SISTEMAS DE COMPUTAÇÃO AULA 03 Arquitetura de Computadores Gil Eduardo de Andrade

REPRESENTAÇÃO DE DADOS EM SISTEMAS DE COMPUTAÇÃO AULA 03 Arquitetura de Computadores Gil Eduardo de Andrade REPRESENTAÇÃO DE DADOS EM SISTEMAS DE COMPUTAÇÃO AULA 03 Arquitetura de Computadores Gil Eduardo de Andrade O conteúdo deste documento é baseado no livro Princípios Básicos de Arquitetura e Organização

Leia mais

20-10-2014. Sumário. Arquitetura do Universo

20-10-2014. Sumário. Arquitetura do Universo Sumário Das Estrelas ao átomo Unidade temática 1 Diferenças entre medir, medição e medida duma grandeza. Modos de exprimir uma medida. Algarismos significativos: Regras de contagem e operações. Esclarecimento

Leia mais

(a 1 + a 100 ) + (a 2 + a 99 ) + (a 3 + a 98 ) +... + (a 50 + a 51 ).

(a 1 + a 100 ) + (a 2 + a 99 ) + (a 3 + a 98 ) +... + (a 50 + a 51 ). Questão 1. A sequência 0, 3, 7, 10, 14, 17, 21,... é formada a partir do número 0 somando-se alternadamente 3 ou 4 ao termo anterior, isto é: o primeiro termo é 0, o segundo é 3 a mais que o primeiro,

Leia mais

Genética Grupos sanguíneos

Genética Grupos sanguíneos Genética Grupos sanguíneos 1- Em um banco de sangue, existe o seguintes estoque: 12 litros de sangue do tipo A, 7 litros de sangue do tipo B, 3 litros de sangue do tipo AB e 10 litros de sangue do tipo

Leia mais

Associação Educacional Dom Bosco Curso de Engenharia 1º ano

Associação Educacional Dom Bosco Curso de Engenharia 1º ano Formatação condicional utilizando o valor da célula O que é? Algumas vezes é preciso destacar os valores, ou seja, como colocar em vermelho ou entre parênteses, os negativos, e de outra cor os positivos,

Leia mais

PROBABILIDADE Prof. Adriano Mendonça Souza, Dr.

PROBABILIDADE Prof. Adriano Mendonça Souza, Dr. PROBABILIDADE Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM - O intelecto faz pouco na estrada que leva à descoberta, acontece um salto na consciência, chameo de

Leia mais

Exercícios resolvidos sobre Definição de Probabilidade

Exercícios resolvidos sobre Definição de Probabilidade Exercícios resolvidos sobre Definição de Probabilidade Nesta Unidade de estudo, até este ponto você aprendeu definições de probabilidade e viu como os conceitos se aplicam a várias situações. Observe agora

Leia mais

ANEXO F: Conceitos Básicos de Análise Financeira

ANEXO F: Conceitos Básicos de Análise Financeira ANEXO F: Conceitos Básicos de Análise Financeira Juros e Taxas de Juros Tipos de Empréstimos Valor Atual Líquido Taxa Interna de Retorno Cobertura de Manutenção de Dívidas Juros e Taxa de Juros Juro é

Leia mais

A Genética Mendeliana

A Genética Mendeliana MATERIAL DE APOIO A Genética Mendeliana O conceito de um fator hereditário como determinante das características de um indivíduo foi introduzido primeiramente por Gregor Mendel em 1865, embora ele não

Leia mais

CAPÍTULO 2. DEMONSTRAÇÕES FINANCEIRAS, IMPOSTOS, e FLUXO DE CAIXA. CONCEITOS PARA REVISÃO

CAPÍTULO 2. DEMONSTRAÇÕES FINANCEIRAS, IMPOSTOS, e FLUXO DE CAIXA. CONCEITOS PARA REVISÃO Bertolo Administração Financeira & Análise de Investimentos 6 CAPÍTULO 2 DEMONSTRAÇÕES FINANCEIRAS, IMPOSTOS, e FLUXO DE CAIXA. CONCEITOS PARA REVISÃO No capítulo anterior determinamos que a meta mais

Leia mais

Lógica Indutiva. Aula 4. Prof. André Martins

Lógica Indutiva. Aula 4. Prof. André Martins Lógica Indutiva Aula 4 Prof. André Martins É uma bruxa? Lógica Clássica (Dedutiva) Na Lógica Clássica, determinamos a veracidade de proposições a partir de outras proposições que julgamos verdadeiras.

Leia mais

Sistemas Lineares. 2. (Ufsj 2013) Considere o seguinte sistema de equações lineares, nas incógnitas x, y e z:

Sistemas Lineares. 2. (Ufsj 2013) Considere o seguinte sistema de equações lineares, nas incógnitas x, y e z: Sistemas Lineares 1. (Unesp 2013) Uma coleção de artrópodes é formada por 36 exemplares, todos eles íntegros e que somam, no total da coleção, 113 pares de patas articuladas. Na coleção não há exemplares

Leia mais

CAPÍTULO 3 - TIPOS DE DADOS E IDENTIFICADORES

CAPÍTULO 3 - TIPOS DE DADOS E IDENTIFICADORES CAPÍTULO 3 - TIPOS DE DADOS E IDENTIFICADORES 3.1 - IDENTIFICADORES Os objetos que usamos no nosso algoritmo são uma representação simbólica de um valor de dado. Assim, quando executamos a seguinte instrução:

Leia mais

Implementação e avaliação

Implementação e avaliação Seção 3 Implementação e avaliação ESTUDO BÍBLICO Respondendo às mudanças No início de Neemias 4, vemos que algumas pessoas se opuseram ao projeto. Qual foi a resposta de Neemias? (versículo 9) Como Neemias

Leia mais

SISTEMA CLÁSSICO DE REDUÇÃO

SISTEMA CLÁSSICO DE REDUÇÃO Page 1 of 6 SISTEMA CLÁSSICO DE REDUÇÃO Este documento irá ensinar-lhe como pode fazer um desdobramento reduzido, segundo o processo clássico (italiano) para qualquer sistema 5/50, em particular para o

Leia mais

Capítulo 2 Endogamia. Acasalamentos Preferenciais. Introdução

Capítulo 2 Endogamia. Acasalamentos Preferenciais. Introdução Capítulo 2 Endogamia Acasalamentos Preferenciais Introdução No capítulo anterior foi demonstrado que se os acasalamentos forem aleatórios, as populações têm proporções genotípicas equivalentes às calculadas

Leia mais

CAP5: Amostragem e Distribuição Amostral

CAP5: Amostragem e Distribuição Amostral CAP5: Amostragem e Distribuição Amostral O que é uma amostra? É um subconjunto de um universo (população). Ex: Amostra de sangue; amostra de pessoas, amostra de objetos, etc O que se espera de uma amostra?

Leia mais

No cálculo de porcentagem com operações financeiras devemos tomar muito cuidado para verificar sobre quem foi calculada essa porcentagem.

No cálculo de porcentagem com operações financeiras devemos tomar muito cuidado para verificar sobre quem foi calculada essa porcentagem. 1º BLOCO... 2 I. Porcentagem... 2 Relacionando Custo, Venda, Lucro e Prejuízo... 2 Aumentos Sucessivos e Descontos Sucessivos... 3 II. Juros Simples... 3 III. Juros Compostos... 4 2º BLOCO... 6 I. Operadores...

Leia mais

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - APO

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - APO Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-010 - APO 11. O Dia do Trabalho, dia 1º de maio, é o 11º dia do ano quando o ano não é bissexto. No ano de 1958, ano em que o Brasil ganhou,

Leia mais

A probabilidade representa o resultado obtido através do cálculo da intensidade de ocorrência de um determinado evento.

A probabilidade representa o resultado obtido através do cálculo da intensidade de ocorrência de um determinado evento. Probabilidade A probabilidade estuda o risco e a ocorrência de eventos futuros determinando se existe condição de acontecimento ou não. O olhar da probabilidade iniciou-se em jogos de azar (dados, moedas,

Leia mais

Material Teórico - Módulo de Métodos sofisticados de contagem. Princípio das Casas dos Pombos. Segundo Ano do Ensino Médio

Material Teórico - Módulo de Métodos sofisticados de contagem. Princípio das Casas dos Pombos. Segundo Ano do Ensino Médio Material Teórico - Módulo de Métodos sofisticados de contagem Princípio das Casas dos Pombos Segundo Ano do Ensino Médio Prof. Cícero Thiago Bernardino Magalhães Prof. Antonio Caminha Muniz Neto Em Combinatória,

Leia mais

Probabilidade. Multiplicação e Teorema de Bayes

Probabilidade. Multiplicação e Teorema de Bayes robabilidade Multiplicação e Teorema de ayes Regra da Multiplicação Num teste, são aplicadas 2 questões de múltipla escolha. Na primeira questão, as respostas possíveis são V ou F. Na segunda, a, b, c,

Leia mais

Dadas a base e a altura de um triangulo, determinar sua área.

Dadas a base e a altura de um triangulo, determinar sua área. Disciplina Lógica de Programação Visual Ana Rita Dutra dos Santos Especialista em Novas Tecnologias aplicadas a Educação Mestranda em Informática aplicada a Educação ana.santos@qi.edu.br Conceitos Preliminares

Leia mais

O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2

O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2 3.2 O Espaço Nulo de A: Resolvendo Ax = 0 11 O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2 Esta seção trata do espaço de soluções para Ax = 0. A matriz A pode ser quadrada ou retangular. Uma solução imediata

Leia mais

Distribuição Binomial

Distribuição Binomial Distribuição Binomial Exemplo Na manufatura de certo artigo, é sabido que um entre dez artigos é defeituoso. Qual a probabilidade de que uma amostra casual de tamanho quatro contenha: (a) Nenhum defeituoso?

Leia mais

Pindyck & Rubinfeld, Capítulo 15, Mercado de Capitais::REVISÃO

Pindyck & Rubinfeld, Capítulo 15, Mercado de Capitais::REVISÃO Pindyck & Rubinfeld, Capítulo 15, Mercado de Capitais::REVISÃO 1. Uma empresa utiliza tecidos e mão-de-obra na produção de camisas em uma fábrica que foi adquirida por $10 milhões. Quais de seus insumos

Leia mais

Pesquisas e Contagens

Pesquisas e Contagens Reforço escolar M ate mática Pesquisas e Contagens Dinâmica 1 1ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Matemática Ensino Médio 1ª Numérico Aritmético Conjuntos Aluno Primeira Etapa Compartilhar

Leia mais

Introdução à Probabilidade e Estatística

Introdução à Probabilidade e Estatística Professor Cristian F. Coletti Introdução à Probabilidade e Estatística (1 Para cada um dos casos abaixo, escreva o espaço amostral correspondente e conte seus elementos. a Uma moeda é lançada duas vezes

Leia mais

CONCEITOS. Evento: qualquer subconjunto do espaço amostral. Uma primeira idéia do cálculo de probabilidade. Eventos Teoria de conjuntos

CONCEITOS. Evento: qualquer subconjunto do espaço amostral. Uma primeira idéia do cálculo de probabilidade. Eventos Teoria de conjuntos INTRODUÇÃO À PROAILIDADE Exemplos: O problema da coincidência de datas de aniversário O problema da mega sena A teoria das probabilidade nada mais é do que o bom senso transformado em cálculo A probabilidade

Leia mais

BRINCANDO COM GRÁFICOS E MEDINDO A SORTE

BRINCANDO COM GRÁFICOS E MEDINDO A SORTE BRINCANDO COM GRÁFICOS E MEDINDO A SORTE Elizabeth Pastor Garnier SEE/RJ Pedro Carlos Pereira - FAETEC Projeto Fundão IM/UFRJ Os Parâmetros Curriculares Nacionais propõem a introdução do tópico Tratamento

Leia mais

O conceito de probabilidade

O conceito de probabilidade A UA UL LA O conceito de probabilidade Introdução Nesta aula daremos início ao estudo da probabilidades. Quando usamos probabilidades? Ouvimos falar desse assunto em situações como: a probabilidade de

Leia mais

Organizaçãoe Recuperaçãode Informação GSI521. Prof. Dr. Rodrigo Sanches Miani FACOM/UFU

Organizaçãoe Recuperaçãode Informação GSI521. Prof. Dr. Rodrigo Sanches Miani FACOM/UFU Organizaçãoe Recuperaçãode Informação GSI521 Prof. Dr. Rodrigo Sanches Miani FACOM/UFU Aula anterior Organização e Recuperação de Informação(GSI521) Modelo vetorial- Definição Para o modelo vetorial, o

Leia mais

Exercícios Resolvidos sobre Amostragem

Exercícios Resolvidos sobre Amostragem Exercícios Resolvidos sobre Amostragem Observe agora, nestes Exercícios Resolvidos, como alguns parâmetros estatísticos devem ser construídos para formar amostras fidedignas de certas populações ou fenômenos

Leia mais

4) Quais dos seguintes pares de eventos são mutuamente exclusivos:

4) Quais dos seguintes pares de eventos são mutuamente exclusivos: INE 7002 LISTA DE EXERCÍCIOS PROBABILIDADE Lista de Exercícios - Probabilidade 1 1) Lâmpadas que se apresentam em perfeitas condições são ensaiadas quanto ao tempo de vida. Um instrumento é acionado no

Leia mais

Teoria Básica de Oferta e Demanda

Teoria Básica de Oferta e Demanda Teoria Básica de Oferta e Demanda Este texto propõe que você tenha tido um curso introdutório de economia. Mas se você não teve, ou se sua teoria básica de economia está um pouco enferrujada, então este

Leia mais

7- Probabilidade da união de dois eventos

7- Probabilidade da união de dois eventos . 7- Probabilidade da união de dois eventos Sejam A e B eventos de um mesmo espaço amostral Ω. Vamos encontrar uma expressão para a probabilidade de ocorrer o evento A ou o evento B, isto é, a probabilidade

Leia mais

A finalidade dos testes de hipóteses paramétrico é avaliar afirmações sobre os valores dos parâmetros populacionais.

A finalidade dos testes de hipóteses paramétrico é avaliar afirmações sobre os valores dos parâmetros populacionais. Prof. Janete Pereira Amador Introdução Os métodos utilizados para realização de inferências a respeito dos parâmetros pertencem a duas categorias. Pode-se estimar ou prever o valor do parâmetro, através

Leia mais

PLANO DE AULA Autores: Ana Paula Farias Waltrick, Stephanie Caroline Schubert

PLANO DE AULA Autores: Ana Paula Farias Waltrick, Stephanie Caroline Schubert PLANO DE AULA Autores: Ana Paula Farias Waltrick, Stephanie Caroline Schubert 1. DADOS DE IDENTIFICAÇÃO Nível de Ensino: Ensino Médio Ano/Série: 3º ano Disciplina: Biologia Quantidade de aulas: 2 2. TEMA

Leia mais

PROVA DO BANCO DO BRASIL - 2010 - MATEMÁTICA E RACIOCÍNIO LÓGICO RESOLVIDA E COMENTADA Professor Joselias joselias@uol.com.

PROVA DO BANCO DO BRASIL - 2010 - MATEMÁTICA E RACIOCÍNIO LÓGICO RESOLVIDA E COMENTADA Professor Joselias joselias@uol.com. Professor Joselias Abril de2010 MATEMÁTICA 11- Um investidor aplicou certa quantia em um fundo de ações. Nesse fundo, das ações eram da empresa A, eram da empresa B e as restantes, da empresa C. Em um

Leia mais

PERGUNTAS MAIS FREQÜENTES SOBRE VALOR PRESENTE LÍQUIDO (VPL)

PERGUNTAS MAIS FREQÜENTES SOBRE VALOR PRESENTE LÍQUIDO (VPL) PERGUNTAS MAIS FREQÜENTES SOBRE VALOR PRESENTE LÍQUIDO (VPL) Melhor método para avaliar investimentos 16 perguntas importantes 16 respostas que todos os executivos devem saber Francisco Cavalcante(f_c_a@uol.com.br)

Leia mais

Este material traz a teoria necessária à resolução das questões propostas.

Este material traz a teoria necessária à resolução das questões propostas. Inclui Teoria e Questões Inteiramente Resolvidas dos assuntos: Contagem: princípio aditivo e multiplicativo. Arranjo. Permutação. Combinação simples e com repetição. Lógica sentencial, de primeira ordem

Leia mais

Solução da prova da 1 a fase OBMEP 2008 Nível 1

Solução da prova da 1 a fase OBMEP 2008 Nível 1 OBMEP 00 Nível 1 1 QUESTÃO 1 Como Leonardo da Vinci nasceu 91 anos antes de Pedro Américo, ele nasceu no ano 14 91 = 145. Por outro lado, Portinari nasceu 451 anos depois de Leonardo da Vinci, ou seja,

Leia mais

Os gráficos estão na vida

Os gráficos estão na vida Os gráficos estão na vida A UUL AL A Nas Aulas 8, 9 e 28 deste curso você já se familiarizou com o estudo de gráficos. A Aula 8 introduziu essa importante ferramenta da Matemática. A Aula 9 foi dedicada

Leia mais

Nome: N.º Turma: Suficiente (50% 69%) Bom (70% 89%)

Nome: N.º Turma: Suficiente (50% 69%) Bom (70% 89%) Escola E.B. 2,3 Eng. Nuno Mergulhão Portimão Ano Letivo 2012/2013 Teste de Avaliação Escrita de Matemática 9.º ano de escolaridade Duração do Teste: 90 minutos 17 de outubro de 2012 Nome: N.º Turma: Classificação:

Leia mais

Exercícios de Fixação Pseudocódigo e Estruturas Básicas de Controle

Exercícios de Fixação Pseudocódigo e Estruturas Básicas de Controle Disciplina: TCC-00.7 Prog. de Computadores III Professor: Leandro Augusto Frata Fernandes Turma: A- Data: / / Exercícios de Fixação Pseudocódigo e Estruturas Básicas de Controle. Construa um algoritmo

Leia mais

Matemática em Toda Parte II

Matemática em Toda Parte II Matemática em Toda Parte II Episódio: Matemática nas Brincadeiras Resumo O episódio Matemática nas Brincadeiras explora o mundo dos jogos para identificar o uso dos conceitos de combinatória e probabilidade.

Leia mais

1 cartão de crédito mais de 1 cartão de crédito Renda até 10 S.M. 250 80 20 10 a 20 S.M. 100 200 40 20 a 30 S.M. 50 40 60 mais de 30 S.M.

1 cartão de crédito mais de 1 cartão de crédito Renda até 10 S.M. 250 80 20 10 a 20 S.M. 100 200 40 20 a 30 S.M. 50 40 60 mais de 30 S.M. ([HUFtFLRVÃÃ&DStWXORÃÃ Ã Tomou-se uma amostra de 000 pessoas num shopping center com o objetivo de verificar a relação entre o número de cartões de crédito e a renda familiar (em salários mínimos). Os

Leia mais

INTRODUÇÃO À MATEMÁTICA FINANCEIRA

INTRODUÇÃO À MATEMÁTICA FINANCEIRA INTRODUÇÃO À MATEMÁTICA FINANCEIRA SISTEMA MONETÁRIO É o conjunto de moedas que circulam num país e cuja aceitação no pagamento de mercadorias, débitos ou serviços é obrigatória por lei. Ele é constituído

Leia mais

4 Avaliação Econômica

4 Avaliação Econômica 4 Avaliação Econômica Este capítulo tem o objetivo de descrever a segunda etapa da metodologia, correspondente a avaliação econômica das entidades de reservas. A avaliação econômica é realizada a partir

Leia mais

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - EPPGG

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - EPPGG Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-010 - EPPGG 11. Em uma caixa há 1 bolas de mesmo tamanho: 3 brancas, 4 vermelhas e 5 pretas. Uma pessoa, no escuro, deve retirar n bolas

Leia mais

GABARITO LISTAS. 1. Dê 3 exemplos de tradeoffs importantes com que você se depara na vida.

GABARITO LISTAS. 1. Dê 3 exemplos de tradeoffs importantes com que você se depara na vida. DEZ PRINCIPIOS DE ECONOMIA - Lista 1 GABARITO LISTAS 1. Dê 3 exemplos de tradeoffs importantes com que você se depara na vida. Exemplos de tradeoffs incluem tradeoffs em relação ao tempo (como estudar

Leia mais

PROBABILIDADE PROFESSOR: ANDRÉ LUIS

PROBABILIDADE PROFESSOR: ANDRÉ LUIS PROBABILIDADE PROFESSOR: ANDRÉ LUIS 1. Experimentos Experimento determinístico: são aqueles em que o resultados são os mesmos, qualquer que seja o número de ocorrência dos mesmos. Exemplo: Um determinado

Leia mais

O problema do jogo dos discos 1

O problema do jogo dos discos 1 O problema do jogo dos discos 1 1 Introdução Roberto Ribeiro Paterlini Departamento de Matemática da UFSCar Temos aplicado o problema do jogo dos discos em classes de estudantes de Licenciatura em Matemática

Leia mais

Simulado OBM Nível 2

Simulado OBM Nível 2 Simulado OBM Nível 2 Gabarito Comentado Questão 1. Quantos são os números inteiros x que satisfazem à inequação? a) 13 b) 26 c) 38 d) 39 e) 40 Entre 9 e 49 temos 39 números inteiros. Questão 2. Hoje é

Leia mais

5 Equacionando os problemas

5 Equacionando os problemas A UA UL LA Equacionando os problemas Introdução Nossa aula começará com um quebra- cabeça de mesa de bar - para você tentar resolver agora. Observe esta figura feita com palitos de fósforo. Mova de lugar

Leia mais

Utilização do SOLVER do EXCEL

Utilização do SOLVER do EXCEL Utilização do SOLVER do EXCEL 1 Utilização do SOLVER do EXCEL José Fernando Oliveira DEEC FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO MAIO 1998 Para ilustrar a utilização do Solver na resolução de

Leia mais

Unidade 11 - Probabilidade. Probabilidade Empírica Probabilidade Teórica

Unidade 11 - Probabilidade. Probabilidade Empírica Probabilidade Teórica Unidade 11 - Probabilidade Probabilidade Empírica Probabilidade Teórica Probabilidade Empírica Existem probabilidade que são baseadas apenas uma experiência de fatos, sem necessariamente apresentar uma

Leia mais

Álgebra Booleana. Introdução ao Computador 2010/01 Renan Manola

Álgebra Booleana. Introdução ao Computador 2010/01 Renan Manola Álgebra Booleana Introdução ao Computador 2010/01 Renan Manola Histórico George Boole (1815-1864) Considerado um dos fundadores da Ciência da Computação, apesar de computadores não existirem em seus dias.

Leia mais