TEOREMAS LIMITE EM PROBABILIDADE RENATO ASSUNÇÃO DCC - UFMG

Tamanho: px
Começar a partir da página:

Download "TEOREMAS LIMITE EM PROBABILIDADE RENATO ASSUNÇÃO DCC - UFMG"

Transcrição

1 TEOREMAS LIMITE EM PROBABILIDADE RENATO ASSUNÇÃO DCC - UFMG

2 Referência para um estudo aprofundado das questões (e demonstrações das afirmações feitas aqui)

3 LIMITE DE NÚMEROS REAIS Sequência de números reais x n Quando dizemos que x n converge para um limite L? Olhamos para a diferença x n L Queremos que isto vá para zero quando n cresce. Difícil formalizar de modo genérico, para toda e qualquer sequência.

4 EXEMPLO Seja x n = n Vemos que x n 1 0 qdo n Considere agora a seguinte sequência: x n = n se n 10k 2, se n = 10 k Agora, x n 1 0 qdo n e n 10, 100, 1000, 10000, ,... Se n =10, 100, 1000, 10000, ,... teremos x n = 2 Cada vez mais raramente x n se afasta de 1 mas NUNCA teremos x n 1 pequeno para TODO n

5 ESTA CONFUSÃO DEFINIÇÃO RIGOROSA Definição: {x n : n = 1, 2, } converge para L quando n significa que > 0, n 0 ( ), tal que x n L < para todo n > n 0 ( ),

6 CONVERGÊNCIA COM PROBABILIDADE Sequência de variáveis aleatórias S 1, S 2, S 3,... Quando podemos dizer que S n converge? Qual o sentido, o significado, que queremos dar a esta convergência?

7

8

9

10

11

12

13

14 EXEMPLO: SEMPRE AS MOEDAS... Considere jogar uma moeda honesta para cima repetidamente Seja X n = 1 se lançamento n é cara, e X n = 0, se coroa Seja Y n = (X X n )/n Y n é a proporção de caras nos primeiros n lançamentos. O que esperamos ver quando n crescer? Y n ½, certo? Mas a sequência 1,1,1,1,1,1,1,1 é tão provável quanto outra sequência de tamanho 8

15 VAMOS SIMULAR NO COMPUTADOR

16 TRÊS REPETIÇÕES (SEQUÊNCIAS) INDEPENDENTES A curva em preto vai convergir? Provavelmente? Com certeza?

17 UMA V.A. É FORMADA POR DUAS COISAS... Seja X n = 1 se lançamento n é cara, e X n = 0, se coroa Seja Y n = (X X n )/n Y n é a proporção de caras nos primeiros n lançamentos. O que é Y n? É uma V.A. lista de valores possíveis e lista de probabilidades associadas Valores possíveis: 0, 1/n, 2/n,..., (n-1)/n, n/n depende de n Probabilidades associadas: P(Y n = k/n) = P(X X n = k) = Binomial

18 LIMITE DE V.A. Seja Y n = (X X n )/n {Y n : n = 1, 2, } é uma sequência de v.a. s Y n não é independente de Y n+1 Se você me disser que Y 50 = 1/2 então eu sei que Y 51 terá de ser apenas um dos dois valores possíveis: 25/51 ou 26/51 Com que probabilidade isto vai ocorrer? Posso dizer que Y n converge para alguma coisa? Existe o limite ALEATÓRIO lim n Y n Ele vai ser um valor fixo, constante? Aleatório? Existe sempre?

19 CONVERGÊNCIA QUASE CERTA Almost sure convergence Vamos ver em que sentido diremos que {Y n : n = 1, 2, } converge quase certamente para a constante μ quando n Y n μ q.c. se P { lim n Y n μ } = 1 Para entender isto melhor, vamos voltar às moedas em sequência.

20 CONVERGÊNCIA QUASE CERTA Pense na sequência de potencialmente infinitos lançamentos da moeda honesta. Temos várias sequências onde a proporção de caras não converge para ½ quando n cresce. Por exemplo: 1,1,1,1,1,1,1,1,1,1,1,1,1,... 0,0,0,0,0,0,0,0,0,0,0,0,0,... 0,0,0,1,1,1,1,1,1,1,1,1,1,... 0,0,1,0,0,1,0,0,1,0,0,1,0,0,1,... 0,1,0,0,1,0,0,0,1,0,0,0,0,1,...

21 EPPUR SI MUOVE Temos infinitas sequências para as quais a proporção de caras não converge para ½ Todas as sequências são igualmente prováveis. Seja A = o conjunto de todas as sequências de 1 s e 0 s em que a proporção de caras não converge para ½ Podemos mostrar rigorosamente que P( A ) = 0!! A c = { sequências que convergem para ½ }. Então P( A c ) = 1 Temos Y n ½ q.c. pois P { lim n Y n 1/2 } = 1

22 WAIT JUST A LITTLE BIT LONGER

23 CONVERGÊNCIA QUASE CERTA Almost sure convergence, em inglês Deveria ser convergência certa (e não, quase certa) Afinal, P { lim n Y n 1/2 } = 1 Isto é, com probabilidade 1 (com certeza) teremos Y n 1/2 Mas e as infinitas sequências em Y n não converge para ½? Elas tem medida de probabilidade ZERO. São poucas demais, um infinitinho perto de todas as sequências possíveis.

24 CONVERGÊNCIA EM PROBABILIDADE Às vezes, não conseguimos provar que uma sequência aleatória converge quase certamente. Podemos provar um resultado mais fraco. Fixe um ϵ > 0 e bem pequeno. Seja A n = { sequências em que Y n - µ < ϵ } DEFINIÇÃO: Y n ½ em probabilidade se lim n P { A n } = 1 A diferença é que o limite passou para fora da probabilidade.

25 CONVERGÊNCIA Q.C. E EM PROBABILIDADE Convergência q.c.: Y n ½ q.c. se P { lim n Y n 1/2 } = 1 Convergência em probabilidade: Y n ½ em prob. se lim n P { Y n - ½ < ϵ} = 1 Se as v.a. s são i.i.d. então a v.a. X = (X 1 + X X n )/n converge quase certamente para µ = E(X i ) Isto é, com probabilidade 1, teremos X µ Esta é a Lei Forte dos Grandes Números, difícil de demonstrar

26 LEI FRACA DOS GRANDES NÚMEROS Se as v.a. s são i.i.d. então a v.a. X = (X 1 + X X n )/n converge EM PROBABILIDADE para µ = E(X i ) PROVA: Basta aplicar a desigualdade de Tchebyshev Seja σ = SD(X i ). Temos E( X) = E(X i ) = µ e Var( X) = Var(X i )/n = σ 2 /n Então, por Tchebyshev, P X μ > ε Var X = σ2 ε 2 nε2 0 quando n cresce Portanto, X converge EM PROBABILIDADE para µ = E(X i )

27 EXEMPLO DAS DUAS CONVERGÊNCIAS Se uma sequência converge q.c. então ela converge em probabilidade. O inverso pode não ocorrer Consider a sequence {X n } of independent random variables such that P(X n = 1)= 1/n and P(X n = 0)=1 P(X n = 0)=1 1/n. For ε<1, we have P( X n ε)= P(X n =1) = 1/n which converges to 0. Hence, X n 0 in probability. Since n P(X n = 1) = + and the events {X n = 1} are independent, the Borel- Cantelli theorem says that there will be infinite n s such that X n = 1. Hence the sequence {X n } doesn't converge to 0 almost surely.

28 TEOREMA CENTRAL DO LIMITE No caso de v.a. s i.i.d., com probabilidade 1, teremos X µ Para um n finito, X µ, usualmente. Qual o tamanho típico dessa diferença? Qual a distribuição de probabilidade dessa diferença? Como X-µ vai para zero, precisamos dar um zoom nesta diferença. De volta às moedas: X - 0.5

29 TCL Zoom é ampliar ( X-0.5) por um fator que envolve n O que acontece com g(n) * ( X-µ) Mostra-se que, se multiplicarmos ( X-µ) por menos que 2 n, teremos g(n) * ( X-µ) 0. Por exemplo: log(n)/ 2 n 0 Neste sentido, log(n) é menor que 2 n Temos log(n) * ( X - 0.5) 0

30 MENOS QUE 2 n LEVA A ZERO Multiplicando por log(n)^1.2 log(n)^2 também funciona (como nas moedas) mas demora Muito para convergir A zero.

31 TCL Se multiplicarmos ( X-µ) por mais que 2 n teremos que g(n) * ( X-µ) não vai convergir para nada Por exemplo: n/ 2 n Neste sentido, n é maior que 2 n Temos n * ( X - 0.5) não converge

32 MAIS 4 SIMULAÇÕES DE n * ( X - 0.5)

33 SIMULANDO 35 MIL MOEDAS Note a escala, de -200 a 200

34 BOXPLOTS DE 5000 SIMULAÇÕES, A CADA 1000*K

35 TCL 2 n ( X-0.5) converge para N(0, σ 2 = ¼ ) Convergência para uma v.a., não para um valor constante. Não podemos prever EXATAMENTE para onde vai 2 n ( X- ½ ) Mas podemos prever que: não será muito maior que 2σ = 1 não será muito menor que -2σ = -1 terá um formato gaussiano em torno de zero

36 2 n ( X-0.5) N(0, σ 2 = ¼ )

37 2 n ( X-0.5) N(0, σ 2 = ¼ ) Note como a sequência 2 n ( X-0.5) não converge para nenhum valor constante. Cada uma das linhas oscila em torno de zero mas não parece convergir para um valor fixo. Após 35 mil simulações não sabemos onde cada linha vai parar. O que acontece se dobrarmos o número de simulações?

38 COM 70 MIL LANÇAMENTOS DA MOEDA

39 COM 140 MIL LANÇAMENTOS DA MOEDA

40 SIMULANDO MAIS VEZES, ATÉ n=1000 APENAS

41 BOXPLOTS DE 5000 SIMULAÇÕES, A CADA 100*K

42 TCL O TCL é bem geral. Não precisamos lidar apenas com moedas. Sejam X 1, X 2,..., X n,... uma sequência de v.a.s i.i.d. com valor esperado E(X i ) = µ e variância Var(X i ) = σ 2 Então 2 n* ( X-µ) N(0, σ 2 ) em distribuição A distribuição de X i é arbitrária: discreta, contínua, assimétrica ou não. A convergência não é para uma constante. Pode nem existir convergência da sequência 2 n* ( X-µ) O que sabemos é que o número aleatório 2 n* ( X-µ) tem uma distribuição (cada vez mais) parecida com uma N(0, σ 2 )

43 TCL: CASO EM QUE X i ~ N(µ, σ 2 ) Seja X i ~ N(10, 4 2 ) Então 2 n* ( X-10) N(0, 4 2 )

44 VÁRIAS SIMULAÇÕES

45 O QUE SIGNIFICA 2 n* ( X-10) N(0, 4 2 )? Tome um tempo n qualquer Na figura, n= 4000 Olhe as várias simulações dos caminhos No tempo n=4000, qual a distribuição dos * ( X-10) no eixo vertical? Eles seguem uma N(0, 4 2 ).

46 HISTOGRAMA, 1000 VALORES DE *( X-10) Linha azul: Densidade da N(0,4 2 )

47 PROVA DO TCL Função geradora de momentos de v.a. X: M(t) = E(e tx ) Caso discreto: x e tx P(X = x) Caso contínuo: e tx f x dx Exemplos: Binomial: (1-p+pe t ) n Normal: exp(tµ+σ 2 t 2 /2)

48 EM RESUMO... X 1,..., X n são v.a. s i.i.d. com E(X i ) = µ e Var(X i ) = σ 2 X n = (X X n )/n DOIS resultados (teoremas limite) X n µ (v.a. X n converge para a constante µ) Lei dos Grandes Números 2 n ( X- µ) converge para N(0, σ 2 ) v.a. 2 n ( X- µ) converge para a v.a. N(0, σ 2 ) Teorema Central do Limite

49 MANIPULAÇÃO SIMPLES 2 n ( X- µ) converge para N(0, σ 2 ) 2 n ( X- µ) / σ converge para N(0, 1) ( X- µ) / (σ/ 2 n) converge para N(0, 1) Standard Error = SD/sqrt(n)

50 RELEMBRAR N(0,1) Densidade curva de sino Centrada em 0 Área concentrada entre -2 e 2 ( 95% da área entre -2 e 2)

51 TERMINOLOGIA O que é central, o limite ou o teorema? O teorema é central, está no centro dos principais resultados de probab. O limite não centra nada. Var(X n ) = σ 2 /n Standard Error = σ/ 2 n Distribuição da v.a. X n = sampling distribution

52 SLIDES DE PATRICK BREHENY USOS DO TCL

53

54 P( X > 230) =?? A distribuição do colesterol INDIVIDUAL não precisa ser gaussiana. Imagine que seja levemente assimétrica. X i = colesterol do indivíduo i Temos E(X i ) = µ = 211 Var(X i ) = σ 2 = 46 2 SD = 46 X 1,..., X n são v.a. s i.i.d. com E(X i ) = 211 e Var(X i ) = σ 2 = 46 2 Queremos P( X > 230) =??

55 P( X > 230) =?? Usar TCL. Sabemos que 2 n ( X- µ) converge para N(0, σ 2 ) OU AINDA ( X- µ) / (σ/ 2 n) N(0, 1) Truque: manipular X em P( X > 230) até que ( X- µ) / (σ/ 2 n) apareça Manipular SEM ALTERAR O EVENTO X > 230

56 P( X > 230) =?? n=25, µ = 211 e σ 2 = 46 2 P( X > 230) = P( X -211 > ) P( ( X -211)/(46/ 2 25) > ( )/(46/ 2 25) ) Isto é, P( X > 230) = P( ( X -211)/(46/ 2 25) > ) N(0,1)

57 P( X > 230) =?? P( X > 230) = P( ( X -211)/(46/ 2 25) > ) = P(Z > 2.065) Com Z ~ N(0,1), usamos o comando pnorm no R: pnorm(2.065) = = P(Z <= 2.065) Portanto, P(Z > 2.065) = 1 pnorm(2.065) = Leia os demais slides de Patrick Breheny (no site da disciplina)

TEOREMAS LIMITE EM PROBABILIDADE RENATO ASSUNÇÃO DCC - UFMG

TEOREMAS LIMITE EM PROBABILIDADE RENATO ASSUNÇÃO DCC - UFMG TEOREMAS LIMITE EM PROBABILIDADE RENATO ASSUNÇÃO DCC - UFMG Referência para um estudo aprofundado das questões (e demonstrações das afirmações feitas aqui) LIMITE DE NÚMEROS REAIS Sequência de números

Leia mais

Fundamentos de Estatística

Fundamentos de Estatística Fundamentos de Estatística Clássica Workshop Análise de Incertezas e Validação Programa de Verão 2017 Marcio Borges 1 1LABORATÓRIO NACIONAL DE COMPUTAÇÃO CIENTÍFICA mrborges@lncc.br Petrópolis, 9 de Fevereiro

Leia mais

MAT 461 Tópicos de Matemática II Aula 8: Resumo de Probabilidade

MAT 461 Tópicos de Matemática II Aula 8: Resumo de Probabilidade MAT 461 Tópicos de Matemática II Aula 8: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 28 de Agosto, 2013 Probabilidade: uma Introdução / Aula 8 1 Desigualdades de Markov e

Leia mais

Modelagem e Análise de Sistemas de Computação Aula 19

Modelagem e Análise de Sistemas de Computação Aula 19 Modelagem e Análise de Sistemas de Computação Aula 19 Aula passada Intro a simulação Gerando números pseudo-aleatórios Aula de hoje Lei dos grandes números Calculando integrais Gerando outras distribuições

Leia mais

IND 1115 Inferência Estatística Aula 7

IND 1115 Inferência Estatística Aula 7 Conteúdo IND 1115 Inferência Estatística Aula 7 Setembro 2004 Por que a revisão de probabilidades até agora? A importância da distribuição Normal O Mônica Barros mbarros.com 1 mbarros.com 2 Por que uma

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Lei dos Grandes Números e Teorema Central do Limite 02/14 1 / 9 Lei dos Grandes Números Lei

Leia mais

Estatística e Modelos Probabilísticos - COE241

Estatística e Modelos Probabilísticos - COE241 Estatística e Modelos Probabilísticos - COE241 Aula passada Algoritmo para simular uma fila Medidas de interesse Média amostral Aula de hoje Teorema do Limite Central Intervalo de Confiança Variância amostral

Leia mais

Teoria das Filas aplicadas a Sistemas Computacionais. Aula 08

Teoria das Filas aplicadas a Sistemas Computacionais. Aula 08 Teoria das Filas aplicadas a Sistemas Computacionais Aula 08 Universidade Federal do Espírito Santo - Departamento de Informática - DI Laboratório de Pesquisas em Redes Multimidia - LPRM Teoria das Filas

Leia mais

Teoremas de uma, duas e três séries de Kolmogorov

Teoremas de uma, duas e três séries de Kolmogorov Teoremas de uma, duas e três séries de Kolmogorov 13 de Maio de 013 1 Introdução Nestas notas Z 1, Z, Z 3,... é uma sequência de variáveis aleatórias independentes. Buscaremos determinar condições sob

Leia mais

Distribuições de Probabilidade. Distribuição Uniforme Distribuição Exponencial Distribuição Normal

Distribuições de Probabilidade. Distribuição Uniforme Distribuição Exponencial Distribuição Normal Distribuições de Probabilidade Distribuição Uniforme Distribuição Exponencial Distribuição Normal 1 Distribuição Uniforme A distribuição Uniforme atribui uma densidade igual ao longo de um intervalo (a,b).

Leia mais

Distribuições de Probabilidade. Distribuição Normal

Distribuições de Probabilidade. Distribuição Normal Distribuições de Probabilidade Distribuição Normal 1 Distribuição Normal ou Gaussiana A distribuição Normal ou Gaussiana é muito utilizada em análises estatísticas. É uma distribuição simétrica em torno

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Distribuição Normal Motivação: Distribuição

Leia mais

Prof. Eduardo Bezerra. 6 de abril de 2018

Prof. Eduardo Bezerra. 6 de abril de 2018 Distribuições Amostrais Prof. Eduardo Bezerra Inferência Estatística 6 de abril de 2018 Eduardo Bezerra (CEFET/RJ) Distribuições Amostrais 1 / 19 Roteiro 1 2 3 Eduardo Bezerra (CEFET/RJ) Distribuições

Leia mais

Professora Ana Hermínia Andrade. Período

Professora Ana Hermínia Andrade. Período Distribuições de probabilidade Professora Ana Hermínia Andrade Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Período 2016.2 Modelos de distribuição Para

Leia mais

Variáveis Aleatórias Discretas 1/1

Variáveis Aleatórias Discretas 1/1 Variáveis Aleatórias Discretas Professores Eduardo Zambon e Magnos Martinello UFES Universidade Federal do Espírito Santo DI Departamento de Informática CEUNES Centro Universitário Norte do Espírito Santo

Leia mais

Aproximação da binomial pela normal

Aproximação da binomial pela normal Aproximação da binomial pela normal 1 Objetivo Verificar como a distribuição normal pode ser utilizada para calcular, de forma aproximada, probabilidades associadas a uma variável aleatória com distribuição

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte III 23 de Abril de 2012 Introdução Objetivos Ao final deste capítulo você deve ser capaz de: Calcular probabilidades aproximadas

Leia mais

Aproximação da binomial pela normal

Aproximação da binomial pela normal Aproximação da binomial pela normal 1 Objetivo Verificar como a distribuição normal pode ser utilizada para calcular, de forma aproximada, probabilidades associadas a uma variável aleatória com distribuição

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros

UNIVERSIDADE FEDERAL DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros UNIVERSIDADE FEDERAL DA PARAÍBA Variáveis Aleatórias Departamento de Estatística Luiz Medeiros Introdução Como sabemos, características de interesse em diversas áreas estão sujeitas à variação; Essa variabilidade

Leia mais

Inferência para CS Modelos univariados contínuos

Inferência para CS Modelos univariados contínuos Inferência para CS Modelos univariados contínuos Renato Martins Assunção DCC - UFMG 2014 Renato Martins Assunção (DCC - UFMG) Inferência para CS Modelos univariados contínuos 2014 1 / 42 V.A. Contínua

Leia mais

Estatística e Modelos Probabilísticos - COE241

Estatística e Modelos Probabilísticos - COE241 Estatística e Modelos Probabilísticos - COE241 Aula passada Somas aleatórias Aula de hoje Introdução à simulação Geração de números aleatórios Lei dos Grandes Números Simulação de Sistemas Discretos É

Leia mais

Aula de hoje. administração. São Paulo: Ática, 2007, Cap. 3. ! Tópicos. ! Referências. ! Distribuição de probabilidades! Variáveis aleatórias

Aula de hoje. administração. São Paulo: Ática, 2007, Cap. 3. ! Tópicos. ! Referências. ! Distribuição de probabilidades! Variáveis aleatórias Aula de hoje! Tópicos! Distribuição de probabilidades! Variáveis aleatórias! Variáveis discretas! Variáveis contínuas! Distribuição binomial! Distribuição normal! Referências! Barrow, M. Estatística para

Leia mais

DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros

DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros UNIVERSIDADE FEDERAL DA PARAÍBA Variáveis Aleatórias Departamento de Estatística Luiz Medeiros Introdução Como sabemos, características de interesse em diversas áreas estão sujeitas à variação Essa variabilidade

Leia mais

Modelagem e Análise de Sistemas - COS767

Modelagem e Análise de Sistemas - COS767 Modelagem e Análise de Sistemas - COS767 Aula de hoje Introdução à simulação Geração de números aleatórios Lei dos Grandes Números Geração de variáveis aleatórias: método da transformada inversa Simulação

Leia mais

A estacionariedade prova-se de maneira semel- hante.

A estacionariedade prova-se de maneira semel- hante. Se por outro lado (U 1, U 2,...) é IID então mostremos que X n U 1 + + U n tem incrementos independentes e estacionários. De facto, dados n > m temos que X n X m U m+1 + + U n. Tome-se quaisquer n 1

Leia mais

Variância, DP e Desigualdades

Variância, DP e Desigualdades Variância, DP e Desigualdades Renato Martins Assunção DCC - UFMG 2016 Renato Martins Assunção (DCC - UFMG) Variância, DP e Desigualdades 2016 1 / 76 Esperança e Variância Suponha que você VAI SIMULAR uma

Leia mais

Aproximação da binomial pela normal

Aproximação da binomial pela normal Aproximação da binomial pela normal 1 Objetivo Verificar como a distribuição normal pode ser utilizada para calcular, de forma aproximada, probabilidades associadas a uma variável aleatória com distribuição

Leia mais

AULA 17 - Distribuição Uniforme e Normal

AULA 17 - Distribuição Uniforme e Normal AULA 17 - Distribuição Uniforme e Normal Susan Schommer Introdução à Estatística Econômica - IE/UFRJ Distribuições Contínuas Em muitos problemas se torna matematicamente mais simples considerar um espaço

Leia mais

PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADES

PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADES PRINCIPAIS DISTRIBUIÇÕES DE PROBABILIDADES Certas distribuições de probabilidades se encaixam em diversas situações práticas As principais são: se v.a. discreta Distribuição de Bernoulli Distribuição binomial

Leia mais

3 a Lista de PE Solução

3 a Lista de PE Solução Universidade de Brasília Departamento de Estatística 3 a Lista de PE Solução. Se X representa o ganho do jogador, então os possíveis valores para X são,, 0, e 4. Esses valores são, respectivamente, correspondentes

Leia mais

Verificar como a distribuição normal pode ser utilizada para calcular, l de forma aproximada, probabilidades associadas a uma variável aleatória com

Verificar como a distribuição normal pode ser utilizada para calcular, l de forma aproximada, probabilidades associadas a uma variável aleatória com Aproximação da binomial pela normal 1 Objetivo Verificar como a distribuição normal pode ser utilizada para calcular, l de forma aproximada, probabilidades associadas a uma variável aleatória com distribuição

Leia mais

Departamento de Matemática Escola Superior de Tecnologia de Viseu

Departamento de Matemática Escola Superior de Tecnologia de Viseu Distribuições contínuas Departamento de Matemática Escola Superior de Tecnologia de Viseu Distribuição Normal Diz-se que uma variável aleatória X tem distribuição normal, se a sua função densidade de probabilidade

Leia mais

Noções de Simulação. Ciências Contábeis - FEA - Noturno. 2 o Semestre MAE0219 (IME-USP) Noções de Simulação 2 o Semestre / 23

Noções de Simulação. Ciências Contábeis - FEA - Noturno. 2 o Semestre MAE0219 (IME-USP) Noções de Simulação 2 o Semestre / 23 Noções de Simulação Ciências Contábeis - FEA - Noturno 2 o Semestre 2013 MAE0219 (IME-USP) Noções de Simulação 2 o Semestre 2013 1 / 23 Objetivos da Aula Sumário 1 Objetivos da Aula 2 Motivação 3 Geração

Leia mais

Distribuição Normal. Prof. Eduardo Bezerra. (CEFET/RJ) - BCC - Inferência Estatística. 25 de agosto de 2017

Distribuição Normal. Prof. Eduardo Bezerra. (CEFET/RJ) - BCC - Inferência Estatística. 25 de agosto de 2017 padrão - padronização Distribuição Normal Prof. Eduardo Bezerra (CEFET/RJ) - BCC - Inferência Estatística 25 de agosto de 2017 Eduardo Bezerra (CEFET/RJ) Distribuição Normal Março/2017 1 / 32 Roteiro Distribuições

Leia mais

Estimação: (A) Propriedades e Distribuições Amostrais

Estimação: (A) Propriedades e Distribuições Amostrais Estimação: (A) Propriedades e Distribuições Amostrais Wagner H. Bonat Fernando P. Mayer Elias T. Krainski Universidade Federal do Paraná Departamento de Estatística Laboratório de Estatística e Geoinformação

Leia mais

Modelos Lineares Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite. Professora Ariane Ferreira

Modelos Lineares Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite. Professora Ariane Ferreira Distribuições de Probabilidades Distribuição Normal Teorema Central do Limite Professora Ariane Ferreira Modelos Probabilísticos de v.a. continuas Distribuição de Probabilidades 2 IPRJ UERJ Ariane Ferreira

Leia mais

Probabilidade IV. Ulisses U. dos Anjos. Departamento de Estatística Universidade Federal da Paraíba. Período

Probabilidade IV. Ulisses U. dos Anjos. Departamento de Estatística Universidade Federal da Paraíba. Período Probabilidade IV Ulisses U. dos Anjos Departamento de Estatística Universidade Federal da Paraíba Período 2014.2 Ulisses Umbelino (DE-UFPB) Probabilidade IV Período 2014.2 1 / 20 Sumário 1 Apresentação

Leia mais

Avaliação e Desempenho Aula 5

Avaliação e Desempenho Aula 5 Avaliação e Desempenho Aula 5 Aula passada Revisão de probabilidade Eventos e probabilidade Independência Prob. condicional Aula de hoje Variáveis aleatórias discretas e contínuas PMF, CDF e função densidade

Leia mais

Variável Aleatória Contínua:

Variável Aleatória Contínua: Distribuição Contínua Normal Luiz Medeiros de Araujo Lima Filho Departamento de Estatística UFPB Variável Aleatória Contínua: Assume valores num intervalo de números reais. Não é possível listar, individualmente,

Leia mais

Solução dos Exercícios - Capítulos 1 a 3

Solução dos Exercícios - Capítulos 1 a 3 Capítulo 9 Solução dos Exercícios - Capítulos a 3 9. Capítulo. a Como o valor se refere aos pacientes estudados, e não a todos os pacientes, esse é o valor de uma estatística amostral. b Estatística amostral

Leia mais

EST012 - Estatística Econômica I Turma A - 1 o Semestre de 2019 Lista de Exercícios 3 - Variável aleatória

EST012 - Estatística Econômica I Turma A - 1 o Semestre de 2019 Lista de Exercícios 3 - Variável aleatória Exercício 1. Considere uma urna em que temos 4 bolas brancas e 6 bolas pretas. Vamos retirar, ao acaso, 3 bolas, uma após a outra e sem reposição. Sejam X: o número de bolas brancas e Y : o número de bolas

Leia mais

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Distribuição Geométrica 08/14 1 / 13

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Distribuição Geométrica 08/14 1 / 13 Probabilidade I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Distribuição Geométrica 08/14 1 / 13 Distribuição Geométrica Considere novamente uma sequência

Leia mais

Aula 4. Aula de hoje. Aula passada

Aula 4. Aula de hoje. Aula passada Aula 4 Aula passada Função de distribuição Bernoulli Sequência de v.a. Binomial, Geométrica, Zeta Valor esperado Variância Distribuição conjunta Independência de v.a. Aula de hoje Valor esperado condicional

Leia mais

2. Distribuições amostrais

2. Distribuições amostrais 2. Distribuições amostrais USP-ICMC-SME 203 USP-ICMC-SME () 2. Distribuições amostrais 203 / 22 Amostra aleatória Notação. X: variável aleatória (v.a.). f(x; θ): função densidade de probabilidade (X contínua)

Leia mais

MAB-515 Avaliação e Desempenho (DCC/UFRJ)

MAB-515 Avaliação e Desempenho (DCC/UFRJ) MAB-515 Avaliação e Desempenho (DCC/UFRJ) Aula 6: Desigualdades, Limites e 1 Normalização Desigualdade de Chebyshev Lei dos Grandes Números 2 3 Normalização Sumário Normalização Desigualdade de Chebyshev

Leia mais

Variáveis Aleatórias Bidimensionais &Teoremas de Limite 1/22

Variáveis Aleatórias Bidimensionais &Teoremas de Limite 1/22 all Variáveis Aleatórias Bidimensionais & Teoremas de Limite Professores Eduardo Zambon e Magnos Martinello UFES Universidade Federal do Espírito Santo DI Departamento de Informática CEUNES Centro Universitário

Leia mais

Capítulo 3. Introdução à Probabilidade E à Inferência Estatística

Capítulo 3. Introdução à Probabilidade E à Inferência Estatística Capítulo 3 Introdução à Probabilidade E à Inferência Estatística definições e propriedades: Propriedade 5: A probabilidade condicional reflete como a probabilidade de um evento pode mudar se soubermos

Leia mais

( x) = a. f X. = para x I. Algumas Distribuições de Probabilidade Contínuas

( x) = a. f X. = para x I. Algumas Distribuições de Probabilidade Contínuas Probabilidade e Estatística I Antonio Roque Aula Algumas Distribuições de Probabilidade Contínuas Vamos agora estudar algumas importantes distribuições de probabilidades para variáveis contínuas. Distribuição

Leia mais

Sumário. 2 Índice Remissivo 11

Sumário. 2 Índice Remissivo 11 i Sumário 1 Principais Distribuições Contínuas 1 1.1 Distribuição Uniforme................................. 1 1.2 A Distribuição Normal................................. 2 1.2.1 Padronização e Tabulação

Leia mais

Uma estatística é uma característica da amostra. Ou seja, se

Uma estatística é uma característica da amostra. Ou seja, se Estatística Uma estatística é uma característica da amostra. Ou seja, se X 1,..., X n é uma amostra, T = função(x 1,..., X n é uma estatística. Exemplos X n = 1 n n i=1 X i = X 1+...+X n : a média amostral

Leia mais

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano PROBABILIDADE E ESTATÍSTICA Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 7 11/2014 Variáveis Aleatórias Variáveis Aleatórias Probabilidade e Estatística 3/41 Variáveis Aleatórias Colete

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte II 26 de Novembro de 2013 Distribuição Contínua Uniforme Média e Variância Objetivos Ao final deste capítulo você deve ser capaz

Leia mais

Distribuição Normal. Diz-se que uma variável aleatória X tem distribuição normal, se a sua função densidade de probabilidade for dada por:

Distribuição Normal. Diz-se que uma variável aleatória X tem distribuição normal, se a sua função densidade de probabilidade for dada por: Distribuições contínuas Departamento de Matemática Escola Superior de Tecnologia de Viseu Distribuição Normal Diz-se que uma variável aleatória X tem distribuição normal, se a sua função densidade de probabilidade

Leia mais

TE802 Processos Estocásticos em Engenharia. Valores Esperados de Somas de Variáveis Aleatórias Notes. PDF da Soma de Duas Variáveis Aleatórias.

TE802 Processos Estocásticos em Engenharia. Valores Esperados de Somas de Variáveis Aleatórias Notes. PDF da Soma de Duas Variáveis Aleatórias. TE802 Processos Estocásticos em Engenharia Somas de Variáveis Aleatórias 25 de abril de 2016 Valores Esperados de Somas de Variáveis Aleatórias Seja W n = X 1 + + X n, E[W n ] = E[X 1 ] + E[X 2 ] + + E[X

Leia mais

Cálculo das Probabilidades I

Cálculo das Probabilidades I Cálculo das Probabilidades I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Função Geradora de Momentos 10/13 1 / 19 Calculamos algumas características da

Leia mais

Variáveis Aleatórias

Variáveis Aleatórias Variáveis Aleatórias Definição: Uma variável aleatória v.a. é uma função que associa elementos do espaço amostral a valores numéricos, ou seja, X : Ω A, em que A R. Esquematicamente As variáveis aleatórias

Leia mais

Estatística e Modelos Probabilísticos - COE241

Estatística e Modelos Probabilísticos - COE241 Estatística e Modelos Probabilísticos - COE241 Aula passada Análise da dados através de gráficos Introdução a Simulação Aula de hoje Introdução à simulação Geração de números aleatórios Lei dos Grandes

Leia mais

TE802 Processos Estocásticos em Engenharia. Valores Esperados de Somas de Variáveis Aleatórias. TE802 Somas de Variáveis Aleatórias

TE802 Processos Estocásticos em Engenharia. Valores Esperados de Somas de Variáveis Aleatórias. TE802 Somas de Variáveis Aleatórias TE802 Processos Estocásticos em Engenharia Somas de Variáveis Aleatórias 27 de setembro de 2017 Valores Esperados de Somas de Variáveis Aleatórias Seja W n = X 1 + + X n, E[W n ] = E[X 1 ] + E[X 2 ] +

Leia mais

) a sucessão definida por y n

) a sucessão definida por y n aula 05 Sucessões 5.1 Sucessões Uma sucessão de números reais é simplesmente uma função x N R. É conveniente visualizar uma sucessão como uma sequência infinita: (x(), x(), x(), ). Neste contexto é usual

Leia mais

Estatística e Modelos Probabilísticos - COE241

Estatística e Modelos Probabilísticos - COE241 Estatística e Modelos Probabilísticos - COE241 Aula passada Análise da dados através de gráficos Introdução a Simulação Aula de hoje Introdução à simulação Geração de números aleatórios Lei dos Grandes

Leia mais

A figura 5.1 ilustra a densidade da curva normal, que é simétrica em torno da média (µ).

A figura 5.1 ilustra a densidade da curva normal, que é simétrica em torno da média (µ). Capítulo 5 Distribuição Normal Muitas variáveis aleatórias contínuas, tais como altura, comprimento, peso, entre outras, podem ser descritas pelo modelo Normal de probabilidades. Este modelo é, sem dúvida,

Leia mais

Capítulo 5 Distribuições de probabilidade normal Pearson Prentice Hall. Todos os direitos reservados.

Capítulo 5 Distribuições de probabilidade normal Pearson Prentice Hall. Todos os direitos reservados. Capítulo 5 Distribuições de probabilidade normal slide 1 Descrição do capítulo 5.1 Introdução à distribuição normal e distribuição normal padrão 5.2 Distribuições normais: encontrando probabilidades 5.3

Leia mais

Variáveis Aleatórias - VA

Variáveis Aleatórias - VA Variáveis Aleatórias - VA cc ck kc kk 0 1 2 1/4 1/2 Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM - Introdução Se entende por VA ou V. indicadoras uma lista de valores

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística stica Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Inferência Estatística stica e Distribuições Amostrais Inferência Estatística stica O objetivo

Leia mais

Lista de Exercícios - V.A.s Discretas

Lista de Exercícios - V.A.s Discretas Lista de Exercícios - V.A.s Discretas Renato Assunção - DCC, UFMG 207 Esta lista de exercícios visa ao aprendizado de algumas das características das principais distribuições de probabilidade discretas.

Leia mais

Prof. Eduardo Bezerra. 15 de setembro de 2017

Prof. Eduardo Bezerra. 15 de setembro de 2017 Distribuições Amostrais Prof. Eduardo Bezerra Inferência Estatística 15 de setembro de 2017 Eduardo Bezerra (CEFET/RJ) Distribuições Amostrais 1 / 28 Roteiro Distribuições amostrais 1 Distribuições amostrais

Leia mais

VARIÁVEIS ALEATÓRIAS

VARIÁVEIS ALEATÓRIAS UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EXATAS DEPARTAMENTO DE ESTATÍSTICA VARIÁVEIS ALEATÓRIAS Joaquim H Vianna Neto Relatório Técnico RTE-03/013 Relatório Técnico Série Ensino Variáveis

Leia mais

Distribuições amostrais

Distribuições amostrais Distribuições amostrais Tatiene Correia de Souza / UFPB tatiene@de.ufpb.br October 14, 2014 Souza () Distribuições amostrais October 14, 2014 1 / 23 Distribuição Amostral Objetivo Estender a noção de uma

Leia mais

SUMÁRIOS DE VARIÁVEIS ALEATÓRIAS CONTINUAS

SUMÁRIOS DE VARIÁVEIS ALEATÓRIAS CONTINUAS 4 SUMÁRIOS DE VARIÁVEIS ALEATÓRIAS CONTINUAS Em muitos problemas de probabilidade que requerem o uso de variáveis aleatórias, uma completa especificação da função de densidade de probabilidade ou não está

Leia mais

Teorema do Limite Central

Teorema do Limite Central Teorema do Limite Central Prof. Eduardo Bezerra Inferência Estatística 24 de março de 2018 Eduardo Bezerra (CEFET/RJ) Distribuições Amostrais 1 / 12 Roteiro Definição 1 Definição 2 Eduardo Bezerra (CEFET/RJ)

Leia mais

Aproximação da Distribuição Binomial pela Distribuição Normal

Aproximação da Distribuição Binomial pela Distribuição Normal Aproximação da Distribuição Binomial pela Distribuição Normal Uma das utilidades da distribuição normal é que ela pode ser usada para fornecer aproximações para algumas distribuições de probabilidade discretas.

Leia mais

5 a Lista de PE Solução

5 a Lista de PE Solução Universidade de Brasília Departamento de Estatística 5 a Lista de PE Solução. Sejam X A e X B o números de jogos que o time ganha contra times da classe A e da classe B respectivamente. Claramente X A

Leia mais

Estatística Aplicada II. } Revisão: Probabilidade } Propriedades da Média Amostral

Estatística Aplicada II. } Revisão: Probabilidade } Propriedades da Média Amostral Estatística Aplicada II } Revisão: Probabilidade } Propriedades da Média Amostral 1 Aula de hoje } Tópicos } Revisão: } Distribuição de probabilidade } Variáveis aleatórias } Distribuição normal } Propriedades

Leia mais

COS767 - Modelagem e Análise Aula 3 - Simulação

COS767 - Modelagem e Análise Aula 3 - Simulação COS767 - Modelagem e Análise Aula 3 - Simulação Validando resultados da simulação Média e variância amostral Teorema do Limite Central Intervalo de confiança Organizando as execuções da simulação Verificando

Leia mais

Reviso de Teoria da Medida e Elementos Bsicos de Probabilidade

Reviso de Teoria da Medida e Elementos Bsicos de Probabilidade Reviso de Teoria da Medida e Elementos Bsicos de Probabilidade Roberto Imbuzeiro Oliveira 9 de Março de 2009 Resumo Esta lista cobre o básico do básico sobre espaços e distribuições de probabilidade. Pouco

Leia mais

AULA 8. DISTRIBUIÇÕES DE VARIÁVEIS CONTÍNUAS Uniforme, Exponencial e Normal 19/05/2017

AULA 8. DISTRIBUIÇÕES DE VARIÁVEIS CONTÍNUAS Uniforme, Exponencial e Normal 19/05/2017 AULA 8 DISTRIBUIÇÕES DE VARIÁVEIS CONTÍNUAS Uniforme, Exponencial e Normal 19/05/2017 As funções de distribuição (acumulada) e de densidade para v.a. contínuas = =. Se a densidade f(x)for continua no seu

Leia mais

Inferência Estatistica

Inferência Estatistica Inferência Estatistica Ricardo Ehlers ehlers@icmc.usp.br Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Modelos e Inferência Um modelo é uma simplificação da realidade (e alguns

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Desigualdades 02/14 1 / 31

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Desigualdades 02/14 1 / 31 Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Desigualdades 02/14 1 / 31 Um teorema de grande importância e bastante utilidade em probabilidade

Leia mais

Cap. 6 Variáveis aleatórias contínuas

Cap. 6 Variáveis aleatórias contínuas Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 004 Cap. 6 Variáveis aleatórias contínuas APOIO: Fundação de Apoio

Leia mais

Conteúdo Teórico: 04 Esperança

Conteúdo Teórico: 04 Esperança ACH2053 Introdução à Estatística Conteúdo Teórico: 04 Esperança Marcelo de Souza Lauretto Sistemas de Informação EACH www.each.usp.br/lauretto Referência: Morris DeGroot, Mark Schervish. Probability and

Leia mais

BIOESTATÍSTICA. Parte 3 Variáveis Aleatórias

BIOESTATÍSTICA. Parte 3 Variáveis Aleatórias BIOESTATÍSTICA Parte 3 Variáveis Aleatórias Aulas Teóricas de 29/03/2011 a 26/04/2011 3.1. Conceito de Variável Aleatória. Função de Distribuição Variáveis aleatórias Uma variável aleatória pode ser entendida

Leia mais

Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal

Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Modelos Probabilísticos Teóricos Discretos e Contínuos Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Distribuição de Probabilidades A distribuição de probabilidades de uma variável aleatória:

Leia mais

Processos Estocásticos. Luiz Affonso Guedes

Processos Estocásticos. Luiz Affonso Guedes Processos Estocásticos Luiz Affonso Guedes Sumário Modelos Probabilísticos Discretos Uniforme Bernoulli Binomial Hipergeométrico Geométrico Poisson Contínuos Uniforme Normal Tempo de Vida Exponencial Gama

Leia mais

Módulo III: Processos de Poisson, Gaussiano e Wiener

Módulo III: Processos de Poisson, Gaussiano e Wiener Módulo III: Processos de Poisson, Gaussiano e Wiener Wamberto J. L. Queiroz Universidade Federal de Campina Grande-UFCG Departamento de Engenharia Elétrica Processos Estocásticos Campina Grande - PB Módulo

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Variáveis Aleatórias Ao descrever um espaço

Leia mais

Distribuições de probabilidade

Distribuições de probabilidade Distribuições de probabilidade Distribuições contínuas Carla Henriques, Nuno Bastos e Cristina Lucas Departamento de Matemática Escola Superior de Tecnologia de Viseu. Henriques, N. Bastos e C. Lucas (DepMAT)

Leia mais

Fundamentos Estatı sticos para Cie ncia dos Dados Ajuste de distribuic o es

Fundamentos Estatı sticos para Cie ncia dos Dados Ajuste de distribuic o es Fundamentos Estatı sticos para Cie ncia dos Dados Ajuste de distribuic o es Renato Martins Assunc a o DCC, UFMG - 2015 Plano do tópico Vamos aprender a verificar se uma amostra segue uma certa distribuição

Leia mais

Experiência para o qual o modelo probabilístico é adequado. Efeito. Causas. Prof. Lorí Viali, Dr.

Experiência para o qual o modelo probabilístico é adequado. Efeito. Causas. Prof. Lorí Viali, Dr. Prof. Lorí Viali, Dr. viali@pucrs.br http://www.pucrs.br/~viali Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.ufrgs.br/~viali/ Determinístico Sistema Real Causas Efeito Probabilístico X Causas Efeito

Leia mais

Teorema do Limite Central

Teorema do Limite Central Teorema do Limite Central Bacharelado em Economia - FEA - Noturno 1 o Semestre 2014 MAE0219 (IME-USP) Teorema do Limite Central 1 o Semestre 2014 1 / 47 Objetivos da Aula Sumário 1 Objetivos da Aula 2

Leia mais

ESTATÍSTICA I Variáveis Aleatórias Variáveis Aleatórias Discretas. Helena Penalva 2006/2007

ESTATÍSTICA I Variáveis Aleatórias Variáveis Aleatórias Discretas. Helena Penalva 2006/2007 ESTATÍSTICA I Variáveis Aleatórias 1 Definição: A uma função X de domínio Ω com valores em Ñ X:Ω Ñ, ω X(ω)=x, chamamos variável aleatória (v.a.) em Ω. Ao contradomínio da função X, designaremos por V X

Leia mais

Modelagem e Análise de Sistemas de Computação Aula 20

Modelagem e Análise de Sistemas de Computação Aula 20 Modelagem e Análise de Sistemas de Computação Aula 20 Aula passada Lei dos grandes números Calculando integrais Gerando outras distribuições Método da transformada inversa Aula de hoje Simulando uma fila

Leia mais

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Variáveis Aleatórias Contínuas

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Variáveis Aleatórias Contínuas Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo Variáveis Aleatórias Contínuas Professora Renata Alcarde Piracicaba abril 2014 Renata Alcarde Estatística Geral 24 de Abril de 2014

Leia mais

Teorema Central do Limite: exemplificações utilizando o Método de Monte Carlo

Teorema Central do Limite: exemplificações utilizando o Método de Monte Carlo Teorema Central do Limite: exemplificações utilizando o Método de Monte Carlo Fernando Lang da Silveira IF-UFRGS O Teorema Central do Limite (TCL) afirma que a soma (S) de N variáveis aleatórias independentes

Leia mais

4.1. ESPERANÇA x =, x=1

4.1. ESPERANÇA x =, x=1 4.1. ESPERANÇA 139 4.1 Esperança Certamente um dos conceitos mais conhecidos na teoria das probabilidade é a esperança de uma variável aleatória, mas não com esse nome e sim com os nomes de média ou valor

Leia mais

Experimento Aleatório

Experimento Aleatório Probabilidades 1 Experimento Aleatório Experimento aleatório (E) é o processo pelo qual uma observação é ob;da. Exemplos: ü E 1 : Jogar uma moeda 3 vezes e observar o número de caras ob;das; ü E 2 : Lançar

Leia mais

Aula 5. Aula de hoje. Aula passada. Limitante da união Método do primeiro momento Lei dos grandes números (fraca e forte) Erro e confiança

Aula 5. Aula de hoje. Aula passada. Limitante da união Método do primeiro momento Lei dos grandes números (fraca e forte) Erro e confiança Aula 5 Aula passada Valor esperado codicioal Espaço amostral cotíuo, fução desidade Limitates para probabilidade Desigualdades de Markov, Chebyshev, Cheroff with high probability Aula de hoje Limitate

Leia mais

1.1.1 Distribuição binomial

1.1.1 Distribuição binomial 2 CAPÍTULO 1. INTRODUÇÃO 1.1.1 Distribuição binomial Em teoria das probabilidades e na estatística a distribuição binomial é a distribuição de probabilidade do número de sucessos em uma seqüência de n

Leia mais