EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

Tamanho: px
Começar a partir da página:

Download "EQUAÇÕES DIFERENCIAIS ORDINÁRIAS"

Transcrição

1 69 EQUAÇÕES DIFERENCIAIS ORDINÁRIAS Rafael de Freitas Manço (UNI-FACEF) Antônio Acra Freiria (UNI-FACEF) INTRODUÇÃO Nas mais diversas áreas das ciências as equações diferenciais aparecem em situações práticas. A idéia é de que é possível matematizar problemas reais e solucioná-los. Para isso precisamos criar um modelo matemático, onde devem ser identificadas as variáveis responsáveis por mudanças desse modelo e criar hipóteses razoáveis sobre o sistema. Esse modelo matemático muitas vezes é uma equação diferencial. A origem e a resolução de equações diferenciais ordinárias, num certo sentido, começaram assim que a relação inversa entre diferenciação e integração foi assumida, com o desenvolvimento do cálculo diferencial e integral no século XVII por Gottfried Leibniz ( ) e Isaac Newton ( ). Mas a maior parte das equações diferenciais ordinárias não pode ser facilmente reduzida à simples quadraturas, exigindo substituições e algoritmos sofisticados para uma resolução. Durante anos muitos matemáticos se esforçaram para resolver diversos tipos particulares de equações. Por isso há vários métodos de soluções e o que funciona para uma pode não funcionar para outra. Equações diferenciais são o coração da análise e do cálculo, e um dos ramos mais importantes da Matemática. MODELAGEM MATEMÁTICA São os modelos que auxiliam a descrição de fenômenos físicos e nos ajudam a compreender e interpretar os fenômenos do cotidiano.

2 70 O conceito de modelagem matemática é algo muito discutido e, cada autor a define de maneira diferente, mas se apóiam na idéia de que é possível matematizar problemas reais e solucioná-los através da interpretação de suas respostas, utilizando a linguagem da realidade. Bassanezi (006, p.0) afirma que o modelo matemático é um conjunto de símbolos e relações matemáticas que representam de alguma forma o objeto estudado. É importante diferenciar o conceito de modelo e modelagem matemática, onde o primeiro é resultado do último, ou seja, encontra-se um modelo matemático após a conclusão do processo de modelagem matemática. Segundo Bassanezi, Modelagem Matemática é um processo dinâmico utilizado para a obtenção e validação de modelos matemáticos. É uma forma de abstração e generalização com a finalidade de previsão de tendências. A modelagem consiste, essencialmente, na arte de transformar situações da realidade em problemas matemáticos cujas soluções devem ser interpretadas na linguagem usual. A modelagem é eficiente a partir do momento que nos conscientizamos que estamos sempre trabalhando com aproximações da realidade. Ainda segundo Bassanezi (006, p.0), é de extrema relevância que um modelo matemático possua linguagem precisa, exata, sem provocar falsas interpretações. EQUAÇÕES DIFERENCIAIS Uma equação que contém as derivadas ou diferenciais de uma ou mais variáveis dependentes, em relação a uma ou mais variáveis independentes, é chamada de equação diferencial (E.D). Quando estão envolvidas apenas duas variáveis, de maneira que só pode ocorrer derivadas em relação a uma variável, a equação é chamada de equação diferencial ordinária (E.D.O).

3 71 Uma equação diferencial ordinária para y( é uma equação envolvendo derivadas de y( com relação à variável independente x. Uma solução de uma E.D.O é uma função f definida em algum intervalo I, que, quando substituída na equação diferencial, reduz a equação a uma identidade, f é chamada de solução para a equação no intervalo. A ordem da derivada de maior ordem em uma equação diferencial é, por definição, a ordem da equação. Uma equação diferencial é chamada de linear quando pode ser escrita na forma: n n 1 d y d y d y an ( + a 1(... a1( a0 ( y g( n n = n 1 dx dx d Observe que as equações diferenciais lineares são caracterizadas por duas propriedades: A variável dependente y e todas as suas derivadas são do primeiro grau, isto é, a potência de cada termo envolvendo y é 1. Cada coeficiente depende apenas da variável independente x. x EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM Como definimos anteriormente a ordem de uma equação diferencial é a ordem da derivada de maior ordem na equação. Podemos então representar uma equação diferencial de primeira ordem da seguinte maneira: f ( x, y, y') = 0 Também podemos escrevê-lá da seguinte forma: dy = dx f ( x, y,)

4 7 PROBLEMA DE VALOR INICIAL Na prática, uma equação diferencial ocorre com uma ou mais condições. Por exemplo, se estivermos interessados em resolver a equação diferencial de primeira ordem: dy = dx f ( x, y,) sujeita à condição inicial y ( x ) y 0 = 0 o problema é chamado de problema de valor inicial. Em termos geométricos, estamos procurando uma solução para a equação diferencial, denifida em algum intervalo I tal que o gráfico da solução passe por um ponto x, ). ( 0 y0 Vamos começar com a mais simples de todas as equações de primeira ordem, que é a chamada equação de variáveis separáveis. EQUAÇÃO SEPARÁVEL Uma equação diferencial da forma d d y = x g( h( y) é chamada separável ou tem variáveis separáveis. A equação pode ser escrita assim: h ) h ( y) d = g( y d x O método de solução consiste em integrar ambos os lados de ( y) d y = g( x d x para assim encontrar uma família de soluções. h( y) dy = g( x dx + h( y) d = g( d c, em que c é completamente arbitrária. y x )

5 73 APLICAÇÕES DAS EQUAÇÕES DIFERENCIAIS DE PRIMEIRA ORDEM primeira ordem. Vamos ver agora algumas aplicações das equações diferenciais de RESFRIAMENTO DE UM CORPO AQUECIDO A lei de resfriamento de Newton diz que a taxa de variação de temperatura T(t) de um corpo em resfriamento é proporcional à diferença entre a temperatura do corpo e a temperatura constante do ambiente. Pode-se representar isto através de uma equação: T = K( TC TA ) t onde : T : variação de temperatura sofrida pelo corpo; K : representa um coeficiente de proporcionalidade, que dependerá da superfície exposta, do calor específico do corpo e também é função de características do meio ambiente; T C : Temperatura inicial do corpo; T A: Temperatura ambiente; t : Intervalo de tempo. A equação dt dt = K( T C TA ) T = K( TC TA ) t pode ser escrita na forma diferencial como: Notemos que esta equação é separável; portanto: dt T T A = kdt O coeficiente k depende de diversos fatores tais como: Superfície exposta Calor específico do corpo Características do meio

6 74 Esses fatores influenciam o resfriamento de um corpo e para tornar isto mais claro, observemos algumas figuras (1 a 6) e gráficos coletados em diferentes situações, durante a atividade experimental. Os dados representados nestes gráficos foram coletados pelos alunos da CEFET-RS

7 7 Comparando as Figuras 1 e pode-se verificar a influência do meio externo no resfriamento de um corpo. Nas duas situações temos o mesmo volume de liquido, ml de água, resfriados em um mesmo recipiente, porém um deles imerso em ar e outro e outro em água. Verifica-se que o resfriamento ocorrido com o tubo de ensaio imerso em água foi mais rápido. Já nas figura e 3 verifica-se a influência das condições de temperatura do meio externo no resfriamento. Variou-se a temperatura do meio, constatando-se que o resfriamento ocorre mais rapidamente a uma temperatura externa mais baixa. As figuras 4 e mostram os dados coletados para volumes iguais, 00 ml, de um mesmo liquido em recipientes de tamanhos diferentes. Verificase, neste caso, que a superfície exposta do corpo interfere na rapidez do resfriamento. Constata-se que, quanto maior for a superfície exposta do corpo, mais rápido será seu resfriamento. Podemos verificar, comparando as figuras 4 e 6, a influência do volume do corpo na rapidez de resfriamento, percebe-se que quanto maior o volume envolvido, menor será a rapidez de resfriamento. Ainda há problemas de resfriamento que recaem em problemas de valor inicial. Consideremos por exemplo um bolo retirado do forno, a uma temperatura inicial de 300 F. Três minutos depois, sua temperatura passa para 00 F.Quanto tempo levará para sua temperatura chegar a 70 F, se a temperatura do meio ambiente em que ele foi colocado for de exatamente 70 F? Sendo T A =70 devemos então resolver o problema de valor inicial: dt dt = k( T 70), T ( 0) = 300 e, determinar o valor de k para que T ( 3) = 00. Separando-se as variáveis, temos: dt = kdt ln T 70 = kt + c T T 70 = 70 + ce kt.

8 76 temos k = 0, Aplicando a condição inicial T ( 0) = 300 temos c = 30, e de T ( 3) = 00 Então, T ( t) 0,19018t = e e à medida que t 30 temos T = 70. DECAIMENTO RADIOATIVO A proporção de carbono-14 presente na matéria orgânica viva é constante. Porém na matéria orgânica morta a quantidade de C-14 diminui com o tempo, a uma taxa proporcional à quantidade existente. Se chamarmos essa quantidade de Q, teremos que a variação de Q por unidade de tempo é proporcional a Q : Q = kq t Porém, falando em termos de variação instantânea: dq dt = kq variáveis : Podemos resolver esta equação diferencial por separação de dq Q = kdt ln Q = kt + c Q = ce kt Levando-se em conta a condição inicial Q ( t = 0) = Q0 temos: Q = 0 Q e kt carbono-14. Este resultado constitui a base do processo de datação do ESCOAMENTO DE LIQUIDO DE UM TANQUE Considere o problema do líquido se escoando de um tanque através de uma pequena abertura na base.

9 77 Verifica-se por observação que, quando o líquido escorre livremente, sob ação da parte superior do líquido a velocidade de escoamento é proporcional a gy, sendo y a altura do liquido acima do orifício. Assim, o volume de liquido que se escoa pelo orifício de área A, por unidade de tempo, será KA gy. A constante de proporcionalidade k depende dos detalhes da configuração do orifício e do tanque, como um todo, mas é, em geral, da ordem da unidade. Suponha que S (v) seja a área da seção transversal do tanque numa altura y. Num tempo dt, a diferença de nível do liquido que se escoa é dy. Então o volume do líquido que saiu do tanque é igual a KA gy dt ; é também igual a S( y) dy, uma vez que esse é o volume deixado vago conforme o nível cai. Assim, KA gy = S ( y) dy dt Considere o líquido contido no interior de um funil de semi-ângulo α. O funil inicialmente se enche até uma altura h e o líquido se escoa através de um tubo de raio a. Aqui a seção transversal do funil é um circulo de raio ytg (α ) ; logo S (y) é simplesmente igual a π ( ytg α).

10 78 Analogamente, A é igual a π a². Com esses valores a equação dy KA gy = S ( y) se torna: dt Integrando vem: 3 dy ka² g k π a² gy = π ( ytg α)² ou dt = y dy. dt tg² α ka² g t = tg² α y + C = ( h y ), pois y = h, quando t = 0. Esta última equação é a relação desejada entre y e t. tg² α t = k h 1 a² g O tanque estará vazio quando y = 0, e isso ocorrerá após um tempo. Concluímos que o volume do líquido que se encontra inicialmente no funil é proporcional a h ( htgα)² ; o tempo para esvaziar o funil será proporcional a isso; será inversamente proporcional ao tamanho do orifício, isto é, a a², e à velocidade média de escoamento, isto é gh.

11 79 REFERÊNCIAS BIBLIOGRÁFICAS Curle, N. Equações Diferenciais Aplicadas.Tradução de Maria Cristina Bonomi Farufi. 1.ed. São Paulo: Edgard Blucher, Ed. da Universidade de São Paulo, p. Dennis G. Zill, Michael R. Cullen.Equações Diferenciais.Tradução de Antonio Zumpano. 3. ed. São Paulo: Pearson, p. Figueiredo, D.G e Neves, A.F Equações Diferenciais Aplicadas. 3ed. Rio de Janeiro: IMPA p. Ladeira, L.A.C. Álgebra Linear e Equações Diferenciais ICMC-USP, 004.

Lei de resfriamento de Newton

Lei de resfriamento de Newton Lei de resfriamento de Newton C E N T R O D E C I Ê N C I A S T E C N O L Ó G I C A S D E P A R T A M E N T O D E F Í S I C A P R O F : J O R G E P A S S I N H O Objetivos: Desenvolver um modelo de simulação

Leia mais

Equações Diferenciais Ordinárias

Equações Diferenciais Ordinárias Equações Diferenciais Ordinárias Uma equação diferencial é uma equação que relaciona uma ou mais funções (desconhecidas com uma ou mais das suas derivadas. Eemplos: ( t dt ( t, u t d u ( cos( ( t d u +

Leia mais

Exercícios Complementares 5.2

Exercícios Complementares 5.2 Exercícios Complementares 5.2 5.2A Veri que se a função dada é ou não solução da edo indicada: (a) y = 2e x + xe x ; y 00 + 2y 0 + y = 0: (b) x = C e 2t + C 2 e 3t ; :: x 0 : x + 6x = 0: (c) y = ln x;

Leia mais

Capítulo 5: Aplicações da Derivada

Capítulo 5: Aplicações da Derivada Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f

Leia mais

Equações Diferenciais

Equações Diferenciais Equações Diferenciais EQUAÇÕES DIFERENCIAS Em qualquer processo natural, as variáveis envolvidas e suas taxas de variação estão interligadas com uma ou outras por meio de princípios básicos científicos

Leia mais

Diferenciais Ordinárias (EDO)

Diferenciais Ordinárias (EDO) Resolução Numérica de Equações Diferenciais Ordinárias (EDO) Ivanovitch Medeiros Dantas da Silva Universidade Federal do Rio Grande do Norte Departamento de Engenharia de Computação e Automação DCA0399

Leia mais

por séries de potências

por séries de potências Seção 23: Resolução de equações diferenciais por séries de potências Até este ponto, quando resolvemos equações diferenciais ordinárias, nosso objetivo foi sempre encontrar as soluções expressas por meio

Leia mais

Física. Questão 1. Questão 2. Avaliação: Aluno: Data: Ano: Turma: Professor:

Física. Questão 1. Questão 2. Avaliação: Aluno: Data: Ano: Turma: Professor: Avaliação: Aluno: Data: Ano: Turma: Professor: Física Questão 1 (Unirio 2000) Um aluno pegou um fina placa metálica e nela recortou um disco de raio r. Em seguida, fez um anel também de raio r com um fio

Leia mais

Introdução ao estudo de equações diferenciais

Introdução ao estudo de equações diferenciais Matemática (AP) - 2008/09 - Introdução ao estudo de equações diferenciais 77 Introdução ao estudo de equações diferenciais Introdução e de nição de equação diferencial Existe uma grande variedade de situações

Leia mais

Guia de aulas: Equações diferenciais. Prof. Carlos Vidigal Profª. Érika Vidigal

Guia de aulas: Equações diferenciais. Prof. Carlos Vidigal Profª. Érika Vidigal Guia de aulas: Equações diferenciais Prof. Carlos Vidigal Profª. Érika Vidigal 1º Semestre de 013 Índice 1.Introdução... 3. Equações Diferenciais de 1ª Ordem... 7.1. Equações Diferenciais Separáveis...

Leia mais

Resolvendo problemas com logaritmos

Resolvendo problemas com logaritmos A UA UL LA Resolvendo problemas com logaritmos Introdução Na aula anterior descobrimos as propriedades dos logaritmos e tivemos um primeiro contato com a tábua de logarítmos. Agora você deverá aplicar

Leia mais

FUNÇÃO DE 1º GRAU. = mx + n, sendo m e n números reais. Questão 01 Dadas as funções f de IR em IR, identifique com um X, aquelas que são do 1º grau.

FUNÇÃO DE 1º GRAU. = mx + n, sendo m e n números reais. Questão 01 Dadas as funções f de IR em IR, identifique com um X, aquelas que são do 1º grau. FUNÇÃO DE 1º GRAU Veremos, a partir daqui algumas funções elementares, a primeira delas é a função de 1º grau, que estabelece uma relação de proporcionalidade. Podemos então, definir a função de 1º grau

Leia mais

Exercícios Teóricos Resolvidos

Exercícios Teóricos Resolvidos Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Exercícios Teóricos Resolvidos O propósito deste texto é tentar mostrar aos alunos várias maneiras de raciocinar

Leia mais

TRANSFERÊNCIA DE CALOR POR RESFRIAMENTO RADIAL EM SUCOS DILUÍDO E CONCENTRADO

TRANSFERÊNCIA DE CALOR POR RESFRIAMENTO RADIAL EM SUCOS DILUÍDO E CONCENTRADO TRANSFERÊNCIA DE CALOR POR RESFRIAMENTO RADIAL EM SUCOS DILUÍDO E CONCENTRADO Rosana Araújo Cruz 1 (PVIC), Anna Carolina O. Martins 1 (PVIC), Rosilayne M. Oliveira Trindade 1 (PVIC), Thaís Rodrigues de

Leia mais

APLICAÇÕES DA DERIVADA

APLICAÇÕES DA DERIVADA Notas de Aula: Aplicações das Derivadas APLICAÇÕES DA DERIVADA Vimos, na seção anterior, que a derivada de uma função pode ser interpretada como o coeficiente angular da reta tangente ao seu gráfico. Nesta,

Leia mais

HIDRÁULICA BÁSICA RESUMO

HIDRÁULICA BÁSICA RESUMO HIDRÁULICA BÁSICA RESUMO Antonio Marozzi Righetto 1. Hidráulica é o ramo da ciência que trata das condições físicas da água em condições de repouso e em movimento. 2. Um volume de água aprisionado em um

Leia mais

Aula 9 Plano tangente, diferencial e gradiente

Aula 9 Plano tangente, diferencial e gradiente MÓDULO 1 AULA 9 Aula 9 Plano tangente, diferencial e gradiente Objetivos Aprender o conceito de plano tangente ao gráfico de uma função diferenciável de duas variáveis. Conhecer a notação clássica para

Leia mais

3.4 O Princípio da Equipartição de Energia e a Capacidade Calorífica Molar

3.4 O Princípio da Equipartição de Energia e a Capacidade Calorífica Molar 3.4 O Princípio da Equipartição de Energia e a Capacidade Calorífica Molar Vimos que as previsões sobre as capacidades caloríficas molares baseadas na teoria cinética estão de acordo com o comportamento

Leia mais

A Equação de Bernoulli

A Equação de Bernoulli Aula 4 A equação de Bernoulli Objetivos O aluno deverá ser capaz de: Descrever a dinâmica de escoamento de um fluido. Deduzir a Equação de Bernoulli. Aplicar a Equação de Bernoulli e a Equação da Continuidade

Leia mais

RESOLUÇÃO DE EQUAÇÕES DIFERENCIAIS ORDINÁRIAS DE ORDEM 2 HOMOGÊNEAS, COM COEFICIENTES CONSTANTES

RESOLUÇÃO DE EQUAÇÕES DIFERENCIAIS ORDINÁRIAS DE ORDEM 2 HOMOGÊNEAS, COM COEFICIENTES CONSTANTES Pontifícia Universidade Católica do Rio Grande do Sul Faculdade de Matemática Equações Diferenciais RESOLUÇÃO DE EQUAÇÕES DIFERENCIAIS ORDINÁRIAS DE ORDEM HOMOGÊNEAS, COM COEFICIENTES CONSTANTES FORMA

Leia mais

Válvulas controladoras de vazão

Válvulas controladoras de vazão Generalidades Válvula controladora de vazão variável Válvula de controle de vazão variável com retenção integrada Métodos de controle de vazão Válvula de controle de vazão com pressão compensada temperatura

Leia mais

A abordagem do assunto será feita inicialmente explorando uma curva bastante conhecida: a circunferência. Escolheremos como y

A abordagem do assunto será feita inicialmente explorando uma curva bastante conhecida: a circunferência. Escolheremos como y 5 Taxa de Variação Neste capítulo faremos uso da derivada para resolver certos tipos de problemas relacionados com algumas aplicações físicas e geométricas. Nessas aplicações nem sempre as funções envolvidas

Leia mais

GRADUAÇÃO FGV 2005 PROVA DISCURSIVA DE MATEMÁTICA

GRADUAÇÃO FGV 2005 PROVA DISCURSIVA DE MATEMÁTICA GRADUAÇÃO FGV 005 PROVA DISCURSIVA DE MATEMÁTICA PREENCHA AS QUADRÍCULAS ABAIXO: NOME DO CANDIDATO: NÚMERO DE INSCRIÇÃO: Assinatura 1 Você receberá do fiscal este caderno com o enunciado de 10 questões,

Leia mais

INSTITUTO TECNOLÓGICO

INSTITUTO TECNOLÓGICO PAC - PROGRAMA DE APRIMORAMENTO DE CONTEÚDOS. ATIVIDADES DE NIVELAMENTO BÁSICO. DISCIPLINAS: MATEMÁTICA & ESTATÍSTICA. PROFº.: PROF. DR. AUSTER RUZANTE 1ª SEMANA DE ATIVIDADES DOS CURSOS DE TECNOLOGIA

Leia mais

INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS RESPOSTA DE ELEMENTOS PRIMÁRIOS

INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS RESPOSTA DE ELEMENTOS PRIMÁRIOS INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS RESPOSTA DE ELEMENTOS PRIMÁRIOS Introdução As características dinâmicas de um instrumento de medição podem ser determinadas estudando-se o sistema físico, e escrevendo-se

Leia mais

O estado no qual um ou mais corpos possuem a mesma temperatura e, dessa forma, não há troca de calor entre si, denomina-se equilíbrio térmico.

O estado no qual um ou mais corpos possuem a mesma temperatura e, dessa forma, não há troca de calor entre si, denomina-se equilíbrio térmico. 4. CALORIMETRIA 4.1 CALOR E EQUILÍBRIO TÉRMICO O objetivo deste capítulo é estudar a troca de calor entre corpos. Empiricamente, percebemos que dois corpos A e B, a temperaturas iniciais diferentes, ao

Leia mais

CSE-020 Revisão de Métodos Matemáticos para Engenharia

CSE-020 Revisão de Métodos Matemáticos para Engenharia CSE-020 Revisão de Métodos Matemáticos para Engenharia Engenharia e Tecnologia Espaciais ETE Engenharia e Gerenciamento de Sistemas Espaciais L.F.Perondi Engenharia e Tecnologia Espaciais ETE Engenharia

Leia mais

Determine, em graus kelvins, o módulo da variação entre a maior e a menor temperatura da escala apresentada.

Determine, em graus kelvins, o módulo da variação entre a maior e a menor temperatura da escala apresentada. TERMOMETRIA ESCALAS TERMOMÉTRICAS 1. (Uerj 2015) No mapa abaixo, está representada a variação média da temperatura dos oceanos em um determinado mês do ano. Ao lado, encontra-se a escala, em graus Celsius,

Leia mais

Faculdade Sagrada Família

Faculdade Sagrada Família AULA 12 - AJUSTAMENTO DE CURVAS E O MÉTODO DOS MÍNIMOS QUADRADOS Ajustamento de Curvas Sempre que desejamos estudar determinada variável em função de outra, fazemos uma análise de regressão. Podemos dizer

Leia mais

Fração como porcentagem. Sexto Ano do Ensino Fundamental. Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antonio Caminha M.

Fração como porcentagem. Sexto Ano do Ensino Fundamental. Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antonio Caminha M. Material Teórico - Módulo de FRAÇÕES COMO PORCENTAGEM E PROBABILIDADE Fração como porcentagem Sexto Ano do Ensino Fundamental Autor: Prof. Francisco Bruno Holanda Revisor: Prof. Antonio Caminha M. Neto

Leia mais

PROVA DO VESTIBULAR ESAMC-2003-1 RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA M A T E M Á T I C A

PROVA DO VESTIBULAR ESAMC-2003-1 RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA M A T E M Á T I C A PROVA DO VESTIBULAR ESAMC-- RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA M A T E M Á T I C A Q. O valor da epressão para = é : A, B, C, D, E, ( (,..., ( ( RESPOSTA: Alternativa A. Q. Sejam A

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva nos pontos onde e Vamos determinar a reta tangente à curva nos pontos de abscissas

Leia mais

LISTA 3 - Prof. Jason Gallas, DF UFPB 10 de Junho de 2013, às 14:26. Jason Alfredo Carlson Gallas, professor titular de física teórica,

LISTA 3 - Prof. Jason Gallas, DF UFPB 10 de Junho de 2013, às 14:26. Jason Alfredo Carlson Gallas, professor titular de física teórica, Exercícios Resolvidos de Física Básica Jason Alfredo Carlson Gallas, professor titular de física teórica, Doutor em Física pela Universidade udwig Maximilian de Munique, Alemanha Universidade Federal da

Leia mais

O FORNO A VÁCUO TIPOS E TENDÊNCIA 1

O FORNO A VÁCUO TIPOS E TENDÊNCIA 1 O FORNO A VÁCUO TIPOS E TENDÊNCIA 1 João Carmo Vendramim 2 Marco Antonio Manz 3 Thomas Heiliger 4 RESUMO O tratamento térmico de ligas ferrosas de média e alta liga já utiliza há muitos anos a tecnologia

Leia mais

3 Propriedades Coligativas

3 Propriedades Coligativas 3 Propriedades Coligativas 1 Introdução É bastante comum as pessoas adicionarem sal à água que será utilizada no cozimento de alimentos. Com a adição de sal de cozinha, a água demora mais tempo para entrar

Leia mais

7.0 PERMEABILIDADE DOS SOLOS

7.0 PERMEABILIDADE DOS SOLOS 7.0 PERMEABILIDADE DOS SOLOS 7.1 Introdução A permeabilidade é a propriedade que o solo apresenta de permitir o escoamento da água através s dele. O movimento de água através s de um solo é influenciado

Leia mais

Guia de Atividades para explorar a Resolução Analítica de Equações Diferenciais Ordinárias a partir de situações-problema

Guia de Atividades para explorar a Resolução Analítica de Equações Diferenciais Ordinárias a partir de situações-problema Guia de Atividades para explorar a Resolução Analítica de Equações Diferenciais Ordinárias a partir de situações-problema Nestas atividades temos como objetivo abordar a resolução analítica de equações

Leia mais

Análise de Arredondamento em Ponto Flutuante

Análise de Arredondamento em Ponto Flutuante Capítulo 2 Análise de Arredondamento em Ponto Flutuante 2.1 Introdução Neste capítulo, chamamos atenção para o fato de que o conjunto dos números representáveis em qualquer máquina é finito, e portanto

Leia mais

Modelos matemáticos que descrevem o crescimento populacional: aplicados e contextualizados aos dados do município de Osório

Modelos matemáticos que descrevem o crescimento populacional: aplicados e contextualizados aos dados do município de Osório Modelos matemáticos que descrevem o crescimento populacional: aplicados e contextualizados aos dados do município de Osório Bruna Pagani Pugens 1 Juarez Ferri da Silva 1 Rosa da Rocha Fernandes 1 Darlan

Leia mais

Além do Modelo de Bohr

Além do Modelo de Bohr Além do Modelo de Bor Como conseqüência do princípio de incerteza de Heisenberg, o conceito de órbita não pode ser mantido numa descrição quântica do átomo. O que podemos calcular é apenas a probabilidade

Leia mais

APLICAC OES - EDO s DE 1a. ORDEM

APLICAC OES - EDO s DE 1a. ORDEM APLICAÇÕES - EDO s DE 1 ạ ORDEM 2 1. Dinâmica Populacional (Modelo Malthusiano) O modelo mais simples de crescimento populacional é aquele em que se supõe que a taxa de crescimento de uma população dy

Leia mais

Uma e.d.o. de segunda ordem é da forma

Uma e.d.o. de segunda ordem é da forma Equações Diferenciais de Ordem Superior Uma e.d.o. de segunda ordem é da forma ou então d 2 y ( dt = f t, y, dy ) 2 dt y = f(t, y, y ). (1) Dizemos que a equação (1) é linear quando a função f for linear

Leia mais

Figura 2.1: Carro-mola

Figura 2.1: Carro-mola Capítulo 2 EDO de Segunda Ordem com Coeficientes Constantes 2.1 Introdução - O Problema Carro-Mola Considere um carro de massa m preso a uma parede por uma mola e imerso em um fluido. Colocase o carro

Leia mais

Definição. A expressão M(x,y) dx + N(x,y)dy é chamada de diferencial exata se existe uma função f(x,y) tal que f x (x,y)=m(x,y) e f y (x,y)=n(x,y).

Definição. A expressão M(x,y) dx + N(x,y)dy é chamada de diferencial exata se existe uma função f(x,y) tal que f x (x,y)=m(x,y) e f y (x,y)=n(x,y). PUCRS FACULDADE DE ATEÁTICA EQUAÇÕES DIFERENCIAIS PROF. LUIZ EDUARDO OURIQUE EQUAÇÔES EXATAS E FATOR INTEGRANTE Definição. A diferencial de uma função de duas variáveis f(x,) é definida por df = f x (x,)dx

Leia mais

Introdução ao Estudo da Corrente Eléctrica

Introdução ao Estudo da Corrente Eléctrica Introdução ao Estudo da Corrente Eléctrica Num metal os electrões de condução estão dissociados dos seus átomos de origem passando a ser partilhados por todos os iões positivos do sólido, e constituem

Leia mais

APLICAÇÕES DE EQUAÇÕES 1ª. ORDEM

APLICAÇÕES DE EQUAÇÕES 1ª. ORDEM APLICAÇÕES DE EQUAÇÕES 1ª. ORDEM Decaimento radioativo Resultados experimentais mostram que elementos radioativos desintegram a uma taxa proporcional à quantidade presente do elemento. Se Q = Q(t) é a

Leia mais

CAPÍTULO 6 Termologia

CAPÍTULO 6 Termologia CAPÍTULO 6 Termologia Introdução Calor e Temperatura, duas grandezas Físicas bastante difundidas no nosso dia-a-dia, e que estamos quase sempre relacionando uma com a outra. Durante a explanação do nosso

Leia mais

TESTES REFERENTES A PARTE 1 DA APOSTILA FUNDAMENTOS DA CORROSÃO INDIQUE SE AS AFIRMAÇÕES A SEGUIR ESTÃO CERTAS OU ERRADAS

TESTES REFERENTES A PARTE 1 DA APOSTILA FUNDAMENTOS DA CORROSÃO INDIQUE SE AS AFIRMAÇÕES A SEGUIR ESTÃO CERTAS OU ERRADAS TESTES REFERENTES A PARTE 1 DA APOSTILA FUNDAMENTOS DA CORROSÃO INDIQUE SE AS AFIRMAÇÕES A SEGUIR ESTÃO CERTAS OU ERRADAS 1) Numa célula eletroquímica a solução tem que ser um eletrólito, mas os eletrodos

Leia mais

36 a Olimpíada Brasileira de Matemática Nível Universitário Primeira Fase

36 a Olimpíada Brasileira de Matemática Nível Universitário Primeira Fase 36 a Olimpíada Brasileira de Matemática Nível Universitário Primeira Fase Problema 1 Turbo, o caracol, está participando de uma corrida Nos últimos 1000 mm, Turbo, que está a 1 mm por hora, se motiva e

Leia mais

(c) 2a = b. (c) {10,..., 29}

(c) 2a = b. (c) {10,..., 29} 11 Atividade extra UNIDADE CONJUTOS Fascículo 4 Matemática Unidade 11 Conjuntos Exercı cio 11.1 Sejam os conjuntos A = {a, 7, 0} e B = {0, 1, b}, tal que os conjuntos A e B sejam iguais. Qual é a relação

Leia mais

CA 6 - Apropriar-se de conhecimentos da Física para, em situações problema, interpretar, avaliar ou planejar intervenções científico-tecnológicas.

CA 6 - Apropriar-se de conhecimentos da Física para, em situações problema, interpretar, avaliar ou planejar intervenções científico-tecnológicas. COMPETÊNCIAS E HABILIDADES CADERNO 8 PROF.: Célio Normando CA 6 - Apropriar-se de conhecimentos da Física para, em situações problema, interpretar, avaliar ou planejar intervenções científico-tecnológicas.

Leia mais

www.enemdescomplicado.com.br

www.enemdescomplicado.com.br Exercícios de Física Gravitação Universal 1-A lei da gravitação universal de Newton diz que: a) os corpos se atraem na razão inversa de suas massas e na razão direta do quadrado de suas distâncias. b)

Leia mais

CALOR SENSÍVEL: CALORIMETRIA

CALOR SENSÍVEL: CALORIMETRIA CALOR SENSÍVEL: CALORIMETRIA Experimento!!! O estudo deste assunto inicia-se com a realização de um experimento. O guia experimental utilizado está disponível em: http://www.cefetrs.tche.br/~denise/caloretemperatura/caloretemp_atividade.pdf

Leia mais

O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.

O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão. ESTATÍSTICA INDUTIVA 1. CORRELAÇÃO LINEAR 1.1 Diagrama de dispersão O comportamento conjunto de duas variáveis quantitativas pode ser observado por meio de um gráfico, denominado diagrama de dispersão.

Leia mais

A MODELAGEM MATEMÁTICA NA MELHORIA DO ENSINO

A MODELAGEM MATEMÁTICA NA MELHORIA DO ENSINO A MODELAGEM MATEMÁTICA NA MELHORIA DO ENSINO (1) José Hélio Henrique de Lacerda; (2) Maria Claudia Coutinho Henrique; (3) Davis Matias Oliveira. (1) Universidade Estadual da Paraíba, heliohlacerda@gmail.com

Leia mais

Aula 6 Derivadas Direcionais e o Vetor Gradiente

Aula 6 Derivadas Direcionais e o Vetor Gradiente Aula 6 Derivadas Direcionais e o Vetor Gradiente MA211 - Cálculo II Marcos Eduardo Valle Departamento de Matemática Aplicada Instituto de Matemática, Estatística e Computação Científica Universidade Estadual

Leia mais

BACHARELADO EM ENGENHARIA ELÉTRICA Disciplina: Instrumentação Eletrônica Prof.: Dr. Pedro Bertemes Filho

BACHARELADO EM ENGENHARIA ELÉTRICA Disciplina: Instrumentação Eletrônica Prof.: Dr. Pedro Bertemes Filho Definição: Termoresistores (RTD) São metais condutores que variam sua resistência ôhmica com a temperatura (dado que sua geometria é bem definida e conhecida). Equação: R T R n a T a T 2 a T n 0 1 1 Onde:

Leia mais

3º Experimento 1ª Parte: Lei de Ohm

3º Experimento 1ª Parte: Lei de Ohm 3º Experimento 1ª Parte: Lei de Ohm 1. Objetivos: Verificar a lei de Ohm. Determinar a resistência elétrica através dos valores de tensão e corrente. 2. Teoria: No século passado, George Ohm enunciou:

Leia mais

Liquido saturado é aquele que está numa determinada temperatura e pressão eminente de iniciar a transformação para o estado vapor.

Liquido saturado é aquele que está numa determinada temperatura e pressão eminente de iniciar a transformação para o estado vapor. Módulo IV Propriedades de Substâncias Puras: Relações P-V-T e Diagramas P-V, P-T e T-V, Título, Propriedades Termodinâmicas, Tabelas Termodinâmicas, Energia Interna, Entalpia, Calores Espercíficos c v

Leia mais

Eventos independentes

Eventos independentes Eventos independentes Adaptado do artigo de Flávio Wagner Rodrigues Neste artigo são discutidos alguns aspectos ligados à noção de independência de dois eventos na Teoria das Probabilidades. Os objetivos

Leia mais

INTRODUÇÃO AO ESTUDO DE EQUAÇÕES DIFERENCIAIS

INTRODUÇÃO AO ESTUDO DE EQUAÇÕES DIFERENCIAIS INTRODUÇÃO AO ESTUDO DE EQUAÇÕES DIFERENCIAIS Terminologia e Definições Básicas No curso de cálculo você aprendeu que, dada uma função y f ( ), a derivada f '( ) d é também, ela mesma, uma função de e

Leia mais

11.1 EQUAÇÃO GERAL DOS BALANÇOS DE ENERGIA. Acúmulo = Entrada Saída + Geração Consumo. Acúmulo = acúmulo de energia dentro do sistema

11.1 EQUAÇÃO GERAL DOS BALANÇOS DE ENERGIA. Acúmulo = Entrada Saída + Geração Consumo. Acúmulo = acúmulo de energia dentro do sistema 11 BALANÇOS DE ENERGIA EM PROCESSOS FÍSICOS E QUÍMICOS Para utilizar adequadamente a energia nos processos é preciso que sejam entendidos os princípios básicos envolvidos na geração, utilização e transformação

Leia mais

Mecânica dos Fluidos. Unidade 1- Propriedades Básicas dos Fluidos

Mecânica dos Fluidos. Unidade 1- Propriedades Básicas dos Fluidos Mecânica dos Fluidos Unidade 1- Propriedades Básicas dos Fluidos Quais as diferenças fundamentais entre fluido e sólido? Fluido é mole e deformável Sólido é duro e muito Sólido é duro e muito pouco deformável

Leia mais

Karine Nayara F. Valle. Métodos Numéricos de Euler e Runge-Kutta

Karine Nayara F. Valle. Métodos Numéricos de Euler e Runge-Kutta Karine Nayara F. Valle Métodos Numéricos de Euler e Runge-Kutta Professor Orientador: Alberto Berly Sarmiento Vera Belo Horizonte 2012 Karine Nayara F. Valle Métodos Numéricos de Euler e Runge-Kutta Monografia

Leia mais

Controle II. Estudo e sintonia de controladores industriais

Controle II. Estudo e sintonia de controladores industriais Controle II Estudo e sintonia de controladores industriais Introdução A introdução de controladores visa modificar o comportamento de um dado sistema, o objetivo é, normalmente, fazer com que a resposta

Leia mais

TRANSFORMADORES. P = enrolamento do primário S = enrolamento do secundário

TRANSFORMADORES. P = enrolamento do primário S = enrolamento do secundário TRANSFORMADORES Podemos definir o transformador como sendo um dispositivo que transfere energia de um circuito para outro, sem alterar a frequência e sem a necessidade de uma conexão física. Quando existe

Leia mais

MD Sequências e Indução Matemática 1

MD Sequências e Indução Matemática 1 Sequências Indução Matemática Renato Martins Assunção assuncao@dcc.ufmg.br Antonio Alfredo Ferreira Loureiro loureiro@dcc.ufmg.br MD Sequências e Indução Matemática 1 Introdução Uma das tarefas mais importantes

Leia mais

Prof. Graça. Circuitos elétricos CC

Prof. Graça. Circuitos elétricos CC 01 Prof. Graça Circuitos elétricos CC Circuitos elétricos de CC Conteúdo Circuitos Equivalentes Princípio da Superposição Elementos Lineares egras de Kirchoff Divisor de tensão Circuito de várias malhas

Leia mais

Aquecimento Global: uma visão crítica sobre o movimento ambiental mais discutido de todos os tempos

Aquecimento Global: uma visão crítica sobre o movimento ambiental mais discutido de todos os tempos Aquecimento Global: uma visão crítica sobre o movimento ambiental mais discutido de todos os tempos Amanda Cristina Graf Alves, 6º período Desde o lançamento do polêmico filme A verdade inconveniente do

Leia mais

DILATAÇÃO TÉRMICA. A figura mostra uma barra metálica, em duas temperaturas diferentes: Verifica-se, experimentalmente, que:

DILATAÇÃO TÉRMICA. A figura mostra uma barra metálica, em duas temperaturas diferentes: Verifica-se, experimentalmente, que: DILATAÇÃO TÉRMICA Uma variação de temperatura pode alterar o valor das grandezas de um corpo, tais como: a pressão de um gás, cor e um metal, a resistência elétrica de um condutor de eletricidade, a altura

Leia mais

Associação Catarinense das Fundações Educacionais ACAFE PARECER RECURSO DISCIPLINA FÍSICA

Associação Catarinense das Fundações Educacionais ACAFE PARECER RECURSO DISCIPLINA FÍSICA 26) Sejam as seguintes grandezas físicas: 1 Massa 2 Energia Cinética 3 Frequência I4 Temperatura alternativa correta que indica as grandezas cuja definição depende do tempo, é: 1 e 3 B 1 e 4 C 3 e 4 D

Leia mais

Questão 46. alternativa A

Questão 46. alternativa A Questão 46 Um garoto, brincando com seu autorama, resolve analisar o movimento do carrinho durante um ciclo, ao longo da trajetória pontilhada ABDEFA. Os trechos AB, D, DE e FA medem 40,00 cm cada um e

Leia mais

Aula 2 TRANSFORMADORES I. Prof. Dr. Maurício Salles mausalles@usp.br USP/POLI/PEA

Aula 2 TRANSFORMADORES I. Prof. Dr. Maurício Salles mausalles@usp.br USP/POLI/PEA Aula 2 TRANSFORMADORES I Prof. Dr. Maurício Salles mausalles@usp.br USP/POLI/PEA Aula 2 TRANSFORMADORES Utilização do transformador Princípio de funcionamento do transformador (ideal e real) Transformador

Leia mais

INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS TRANSFORMADAS DE LAPLACE

INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS TRANSFORMADAS DE LAPLACE INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS TRANSFORMADAS DE LAPLACE Preliminares No estudo de sistemas de controle, e comum usar-se diagramas de blocos, como o da figura 1. Diagramas de blocos podem ser utilizados

Leia mais

Dois eventos são disjuntos ou mutuamente exclusivos quando não tem elementos em comum. Isto é, A B = Φ

Dois eventos são disjuntos ou mutuamente exclusivos quando não tem elementos em comum. Isto é, A B = Φ Probabilidade Vimos anteriormente como caracterizar uma massa de dados, como o objetivo de organizar e resumir informações. Agora, apresentamos a teoria matemática que dá base teórica para o desenvolvimento

Leia mais

Estatística II Antonio Roque Aula 9. Testes de Hipóteses

Estatística II Antonio Roque Aula 9. Testes de Hipóteses Testes de Hipóteses Os problemas de inferência estatística tratados nas aulas anteriores podem ser enfocados de um ponto de vista um pouco diferente: ao invés de se construir intervalos de confiança para

Leia mais

Lentes. Parte I. www.soexatas.com Página 1

Lentes. Parte I. www.soexatas.com Página 1 Parte I Lentes a) é real, invertida e mede cm. b) é virtual, direta e fica a 6 cm da lente. c) é real, direta e mede cm. d) é real, invertida e fica a 3 cm da lente. 1. (Ufg 013) Uma lente convergente

Leia mais

Equações Diferenciais Ordinárias

Equações Diferenciais Ordinárias Capítulo 8 Equações Diferenciais Ordinárias Vários modelos utilizados nas ciências naturais e exatas envolvem equações diferenciais. Essas equações descrevem a relação entre uma função, o seu argumento

Leia mais

Projeto rumo ao ita. Química. Exercícios de Fixação. Exercícios Propostos. Termodinâmica. ITA/IME Pré-Universitário 1. 06. Um gás ideal, com C p

Projeto rumo ao ita. Química. Exercícios de Fixação. Exercícios Propostos. Termodinâmica. ITA/IME Pré-Universitário 1. 06. Um gás ideal, com C p Química Termodinâmica Exercícios de Fixação 06. Um gás ideal, com C p = (5/2)R e C v = (3/2)R, é levado de P 1 = 1 bar e V 1 t = 12 m³ para P 2 = 12 bar e V 2 t = 1m³ através dos seguintes processos mecanicamente

Leia mais

MODELO MALTHUSIANO APLICADO AO CRESCIMENTO POPULACIONAL DO MUNICÍPIO DE MANOEL VIANA/RS

MODELO MALTHUSIANO APLICADO AO CRESCIMENTO POPULACIONAL DO MUNICÍPIO DE MANOEL VIANA/RS ISSN 2177-9139 MODELO MALTHUSIANO APLICADO AO CRESCIMENTO POPULACIONAL DO MUNICÍPIO DE MANOEL VIANA/RS Juliano Silveira Meira juliano.meira@hotmail.com Gabriel de Oliveira Soares - gobigabriel@hotmail.com

Leia mais

Texto 07 - Sistemas de Partículas. A figura ao lado mostra uma bola lançada por um malabarista, descrevendo uma trajetória parabólica.

Texto 07 - Sistemas de Partículas. A figura ao lado mostra uma bola lançada por um malabarista, descrevendo uma trajetória parabólica. Texto 07 - Sistemas de Partículas Um ponto especial A figura ao lado mostra uma bola lançada por um malabarista, descrevendo uma trajetória parabólica. Porém objetos que apresentam uma geometria, diferenciada,

Leia mais

Sistemas Lineares. Módulo 3 Unidade 10. Para início de conversa... Matemática e suas Tecnologias Matemática

Sistemas Lineares. Módulo 3 Unidade 10. Para início de conversa... Matemática e suas Tecnologias Matemática Módulo 3 Unidade 10 Sistemas Lineares Para início de conversa... Diversos problemas interessantes em matemática são resolvidos utilizando sistemas lineares. A seguir, encontraremos exemplos de alguns desses

Leia mais

Ajuste de Curvas. Ajuste de Curvas

Ajuste de Curvas. Ajuste de Curvas Ajuste de Curvas 2 AJUSTE DE CURVAS Em matemática e estatística aplicada existem muitas situações em que conhecemos uma tabela de pontos (x; y). Nessa tabela os valores de y são obtidos experimentalmente

Leia mais

PUCRS FAMAT Exemplos de Equações Diferenciais Parciais- Prof. Eliete

PUCRS FAMAT Exemplos de Equações Diferenciais Parciais- Prof. Eliete PUCRS FAMAT Exemplos de Equações Diferenciais Parciais- Prof. Eliete Equação diferencial parcial (EDP) é a uma equação que envolve duas ou mais variáveis independentes ( x, y,z,t, K ) e derivadas parciais

Leia mais

ESTUDO DA CINÉTICA DE REDUÇÃO DO AZUL DE METILENO

ESTUDO DA CINÉTICA DE REDUÇÃO DO AZUL DE METILENO ESTUDO DA CINÉTICA DE REDUÇÃO DO AZUL DE METILENO Glauber Silva Godoi Aula 15 META Desenvolver no aluno a capacidade de extrair informações a partir de ensaios em espectrofotômetro. OBJETIVOS Ao fi nal

Leia mais

Métodos Numéricos 2010-11. Exame 11/07/11

Métodos Numéricos 2010-11. Exame 11/07/11 ESCOLA SUPERIOR DE BIOTECNOLOGIA Métodos Numéricos 2010-11 Exame 11/07/11 Parte Teórica Duração: 30 minutos Atenção: Teste sem consulta. Não é permitido o uso da máquina de calcular. Não esquecer de indicar

Leia mais

Exercícios Adicionais

Exercícios Adicionais Exercícios Adicionais Observação: Estes exercícios são um complemento àqueles apresentados no livro. Eles foram elaborados com o objetivo de oferecer aos alunos exercícios de cunho mais teórico. Nós recomendamos

Leia mais

Nível é a altura do conteúdo de um reservatório que pode ser sólido ou líquido. Os três tipos básicos de medição de nível são: a) direto b) indireto

Nível é a altura do conteúdo de um reservatório que pode ser sólido ou líquido. Os três tipos básicos de medição de nível são: a) direto b) indireto 4 NÍVEL Nível é a altura do conteúdo de um reservatório que pode ser sólido ou líquido. Os três tipos básicos de medição de nível são: a) direto b) indireto 4.1 Medição Direta É a medição que tomamos como

Leia mais

28 de agosto de 2015. MAT140 - Cálculo I - Derivação Impĺıcita e Derivadas de Ordem Superior

28 de agosto de 2015. MAT140 - Cálculo I - Derivação Impĺıcita e Derivadas de Ordem Superior MAT140 - Cálculo I - Derivação Impĺıcita e Derivadas de Ordem Superior 28 de agosto de 2015 Derivação Impĺıcita Considere o seguinte conjunto R = {(x, y); y = 2x + 1} O conjunto R representa a reta definida

Leia mais

Curvas em coordenadas polares

Curvas em coordenadas polares 1 Curvas em coordenadas polares As coordenadas polares nos dão uma maneira alternativa de localizar pontos no plano e são especialmente adequadas para expressar certas situações, como veremos a seguir.

Leia mais

Potenciação no Conjunto dos Números Inteiros - Z

Potenciação no Conjunto dos Números Inteiros - Z Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente

Leia mais

APOSTILA TECNOLOGIA MECANICA

APOSTILA TECNOLOGIA MECANICA FACULDADE DE TECNOLOGIA DE POMPEIA CURSO TECNOLOGIA EM MECANIZAÇÃO EM AGRICULTURA DE PRECISÃO APOSTILA TECNOLOGIA MECANICA Autor: Carlos Safreire Daniel Ramos Leandro Ferneta Lorival Panuto Patrícia de

Leia mais

Problemas de Valor Inicial para Equações Diferenciais Ordinárias

Problemas de Valor Inicial para Equações Diferenciais Ordinárias Problemas de Valor Inicial para Equações Diferenciais Ordinárias Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática Aplicada - Mestrados

Leia mais

TERMOMETRIA TERMOLOGIA. Escalas Termométricas. Dilatação Superficial. Dilatação Linear. A = Ao. β. t. L = Lo. α. t

TERMOMETRIA TERMOLOGIA. Escalas Termométricas. Dilatação Superficial. Dilatação Linear. A = Ao. β. t. L = Lo. α. t TERMOMETRIA TERMOLOGIA Temperatura grandeza escalar associada ao grau de vibração térmica das partículas de um corpo. Equilíbrio térmico corpos em contato com diferentes temperaturas trocam calor, e após

Leia mais

Numa turma de 26 alunos, o número de raparigas excede em 4 o número de rapazes. Quantos rapazes há nesta turma?

Numa turma de 26 alunos, o número de raparigas excede em 4 o número de rapazes. Quantos rapazes há nesta turma? GUIÃO REVISÕES Equações e Inequações Equações Numa turma de 6 alunos, o número de raparigas ecede em 4 o número de rapazes. Quantos rapazes há nesta turma? O objectivo do problema é determinar o número

Leia mais

MATEMÁTICA PROVA DO VESTIBULAR ESAMC-2003-2 RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA. 26. A expressão numérica ( ) RESOLUÇÃO:

MATEMÁTICA PROVA DO VESTIBULAR ESAMC-2003-2 RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA. 26. A expressão numérica ( ) RESOLUÇÃO: PROVA DO VESTIULAR ESAMC-003- RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA MATEMÁTICA 3 3 3 6. A epressão numérica ( ) 3.( ).( ).( ) equivale a: A) 9 ) - 9 C) D) - E) 6 3 3 3 3 ( ).( ).( ).(

Leia mais

= F cp. mv 2. G M m G M. b) A velocidade escalar V também é dada por: V = = 4π 2 R 2 = R T 2 =. R 3. Sendo T 2 = K R 3, vem: K = G M V = R.

= F cp. mv 2. G M m G M. b) A velocidade escalar V também é dada por: V = = 4π 2 R 2 = R T 2 =. R 3. Sendo T 2 = K R 3, vem: K = G M V = R. FÍSICA Um satélite com massa m gira em torno da Terra com velocidade constante, em uma órbita circular de raio R, em relação ao centro da Terra. Represente a massa da Terra por M e a constante gravitacional

Leia mais

4. A FUNÇÃO AFIM. Uma função f: R R chama-se afim quando existem números reais a e b tais que f(x) = ax + b para todo x R. Casos particulares

4. A FUNÇÃO AFIM. Uma função f: R R chama-se afim quando existem números reais a e b tais que f(x) = ax + b para todo x R. Casos particulares 38 4. A FUNÇÃO AFIM Uma função f: R R chama-se afim quando existem números reais a e b tais que f(x) = ax + b para todo x R. Casos particulares 1) A função identidade fr : Rdefinida por f(x) = x para todo

Leia mais

Curso de Instrumentista de Sistemas. Fundamentos de Controle. Prof. Msc. Jean Carlos

Curso de Instrumentista de Sistemas. Fundamentos de Controle. Prof. Msc. Jean Carlos Curso de Instrumentista de Sistemas Fundamentos de Controle Prof. Msc. Jean Carlos Ações de controle em malha fechada Controle automático contínuo em malha fechada Ação proporcional A característica da

Leia mais

AULAS 14, 15 E 16 Análise de Regressão Múltipla: Problemas Adicionais

AULAS 14, 15 E 16 Análise de Regressão Múltipla: Problemas Adicionais 1 AULAS 14, 15 E 16 Análise de Regressão Múltipla: Problemas Adicionais Ernesto F. L. Amaral 20 e 22 de abril e 04 de maio de 2010 Métodos Quantitativos de Avaliação de Políticas Públicas (DCP 030D) Fonte:

Leia mais