Sistemas Dinâmicos e Controlo

Tamanho: px
Começar a partir da página:

Download "Sistemas Dinâmicos e Controlo"

Transcrição

1 Sistemas Dinâmicos e Controlo José Dores Costa Escola Náutica Infante D. Henrique 003

2 Ao leitor, Estas folhas constituem um resumo das matérias que fazem parte dos programas das disciplinas na área do controlo de sistemas do departamento de Radiotecnia da ENIDH. Fundamentalmente, são uma colectânea revista dos apontamentos dispersos que elaborei desde 988. Estes apontamentos foram sendo escritos e revistos ao longo das aulas e são, portanto, uma simples sebenta que serve de guia e orientação para o estudo das matérias que considero mais importantes. A sua leitura não substitui a consulta e o estudo atento da bibliografia apresentada. Inicialmente destinados ao curso de bacharelato, decidi incluir agora algumas matérias que são ministradas do curso de licenciatura. Os apontamentos estão divididos em duas partes: na Primeira, incluem-se os primeiros seis capítulos que constituem, grosso modo, o programa da componente teórica da disciplina de Sistemas de Controlo do curso de bacharelato; a Segunda Parte, formada pelos capítulos 7, 8 e 9, destina-se a apoiar a disciplina de Sistemas Dinâmicos e Controlo do curso de licenciatura. Os capítulos a 6 referem os aspectos principais da teoria clássica do controlo; os restantes constituem uma introdução à moderna Teoria do Controlo. Esta Segunda Parte não é autónoma porque faz referência a matérias que são expostas no curso de bacharelato. Consciente das limitações, apresento as minhas desculpas pelas omissões que detectarão e peço a vossa indulgência para a apresentação e para a paginação destes apontamentos. Apesar disso, espero que os leitores encontrem nestes apontamentos as linhas mestras para o primeiro contacto, simples, com a teoria do controlo e, também, que deles tirem proveito para obterem boas classificações. José Dores Costa "Entendamo-nos bem. A Ciência não tem, nem pode ter, como objectivo descrever a realidade tal como ela é. Aquilo a que ela aspira é a construir quadros racionais de interpretação e previsão; a legitimidade de tais quadros dura enquanto durar o seu acordo com os resultados da observação e da experimentação. Bento de Jesus Caraça, Conceitos Fundamentais da Matemática. 4

3 ÍNDICE CAPÍTULO... 8 INTRODUÇÃO... 8 CAPÍTULO... MODELOS MATEMÁTICOS DOS SISTEMAS CONTÍNUOS.... EQUAÇÕES DIFERENCIAIS.... EQUAÇÃO DIFERENCIAL DE ª ORDEM EQUAÇÃO DIFERENCIAL DE ª ORDEM EXEMPLOS DE SISTEMAS DE ª ORDEM PRINCÍPIO DA SOBREPOSIÇÃO MODELO DE ESTADO RESUMO... 3 CAPÍTULO TRANSFORMADA DE LAPLACE INTRODUÇÃO TRANSFORMADA DE LAPLACE FUNÇÃO DE TRANSFERÊNCIA DIAGRAMAS DE BLOCOS DIAGRAMA DE BLOCOS EM CADEIA FECHADA DECOMPOSIÇÃO EM FRACÇÕES PARCIAIS CONVOLUÇÃO RESPOSTA EM FREQUÊNCIA DIAGRAMAS DE BODE ASSÍNTOTAS DOS DIAGRAMAS DA AMPLITUDE DETERMINAÇÃO EXPERIMENTAL DE G(jω) CONSTRUÇÃO DE UMA ESCALA LOGARÍTMICA RESUMO ANEXO Resumo das Propriedades da Transformada de Laplace ANEXO Tabela de Transformada de Laplace ANEXO Circuitos com amplificadores operacionais e funções de transferência... 7 CAPÍTULO ESTABILIDADE INTRODUÇÃO CRITÉRIO DE ROUTH-HURWITZ

4 4.3 LUGAR GEOMÉTRICO DAS RAÍZES (DIAGRAMA DE EVANS) Condição de Módulo e Condição de Ângulo Regras de Construção CRITÉRIO DE NYQUIST ESTABILIDADE RELATIVA Margem de Ganho Margem de Fase RESUMO CAPÍTULO CARACTERÍSTICAS DOS SISTEMAS EM CADEIA FECHADA INTRODUÇÃO EXACTIDÃO RELAÇÃO ENTRE A ESTABILIDADE E A EXACTIDÃO SENSIBILIDADE RESUMO CAPÍTULO COMPENSAÇÃO INTRODUÇÃO COMPENSADORES DE AVANÇO DE FASE COMPENSADORES DE ATRASO DE FASE COMPENSADORES MISTOS PROJECTO DOS COMPENSADORES REGULADORES INDUSTRIAIS Regulador proporcional (P) Regulador proporcional e integral (PI) Regulador proporcional e derivativo (PD) Regulador proporcional, integral e derivativo (PID) AJUSTE DOS REGULADORES INDUSTRIAIS Ensaio em cadeia aberta Máxima sensibilidade (ensaio em cadeia fechada) COMPENSAÇÃO EM PARALELO RESUMO... CAPÍTULO MODELOS DE ESTADO INTRODUÇÃO MODELOS DE ESTADO SOLUÇÃO DA EQUAÇÃO DE ESTADO DIAGRAMAS DE BLOCOS FUNÇÕES DE TRANSFERÊNCIA

5 7.6 OBSERVABILIDADE E CONTROLABILIDADE TRANSFORMAÇÃO DE SEMELHANÇA RESUMO CAPÍTULO PROJECTO DO CONTROLO INTRODUÇÃO RECTROACÇÃO LINEAR DAS VARIÁVEIS DE ESTADO RECONSTRUÇÃO DO ESTADO RESUMO CAPÍTULO CONTROLO DIGITAL INTRODUÇÃO REPRESENTAÇÃO DE VARIÁVEIS DISCRETAS DISCRETIZAÇÃO DO MODELO DE ESTADO MODELO DE ESTADO DISCRETO TRANSFORMADA Z TRANSFORMADA Z INVERSA ESTABILIDADE RESPOSTA EM FREQUÊNCIA MODELOS DE ESTADO E FUNÇÕES DE TRANSFERÊNCIA CONTROLO DOS SISTEMAS AMOSTRADOS RESUMO... 7 BIBLIOGRAFIA

6 CAPÍTULO INTRODUÇÃO PRIMEIRA PARTE Os sistemas com comando automático são utilizados em inúmeros equipamentos, desde os mais sofisticados, como os da indústria aeroespacial, até nos mais vulgares electrodomésticos. A moderna tecnologia tornou possível que equipamentos cada vez mais complexos e fiáveis substituam o homem nas tarefas mais cansativas, mais monótonas e mais exigentes, com elevado desempenho. A ideia do controlo está associada á actividade humana: os nossos sentidos fornecem indicações ao cérebro que por sua vez controla os músculos para que uma dada tarefa saia a nosso contento. Por exemplo, ao serrar uma tábua, a trajectória do corte é continuamente controlada pelo cérebro a partir da imagem fornecida pelos olhos. (Ninguém, de bom senso, serra uma tábua ou conduz um carro de olhos fechados!). São conhecidas as máquinas usadas nas indústrias metalomecânica, automóvel e construção naval, por exemplo, que cortam segundo uma trajectória previamente definida; estas máquinas têm sensores, circuitos de controlo e actuadores que substituem os olhos, o cérebro e os músculos humanos, respectivamente; diz-se então que é uma máquina com controlo de corte automático. É usual referir o regulador de velocidade das máquinas de vapor, inventado em 788 por Matthew Boulton e James Watt, como um dos primeiros sistemas que se destinou a substituir o homem no controlo de uma máquina. Desde então, o desenvolvimento de sistemas de controlo automático acompanhou a evolução industrial. O projecto dos sistemas que controlam os equipamentos que executam tarefas de grande complexidade exige a utilização de métodos matemáticos precisos. A organização destes métodos deu origem ao aparecimento da teoria do controlo. Esta teoria ganhou forma já neste século, principalmente no período compreendido entre as duas grandes guerras mundiais e desenvolveu-se muito rapidamente no pós-guerra para satisfazer as necessidades das indústrias bélica e aeroespacial. Mais recentemente, o desenvolvimento da electrónica digital e dos computadores permitiram a aplicação de novos métodos de controlo e, consequentemente, deu novo desenvolvimento à teoria do controlo. Estes apontamentos são uma introdução à teoria do controlo; referem-se, principalmente, os métodos de análise dos sistemas e os métodos de projecto (síntese) dos sistemas de controlo, segundo a teoria clássica. Apresentam-se, também, os fundamentos da moderna teoria do controlo. 8

7 O problema do controlo pode ser colocado considerando, por exemplo, que se pretende manter um navio com um rumo constante. Para cumprir este desejo pode-se colocar o navio no rumo pretendido e fixar-se o leme. Todavia, esta solução não é satisfatória porque não tem em conta os desvios que serão provocados, por exemplo, pelo vento e pelas correntes. Para manter o navio com o rumo desejado, torna-se necessário, pelo menos de tempos a tempos, comparar o rumo real com o pretendido e, caso haja desvio na trajectória, actuar-se no leme para se efectuar a correcção do rumo. Com base neste exemplo, o problema geral do controlo consiste em responder às duas seguintes questões: ) Perante um desvio, qual deve ser a acção correctiva que repõe o sistema na trajectória pretendida? ) De entre várias possibilidades, qual deve ser a escolhida? A resposta, na maior parte dos casos, não é simples. A solução clássica do problema consiste em estabelecer uma relação entre o desvio (ou erro), a acção correctiva (ou variável de controlo) e as características físicas e económicas do sistema a controlar, o que nem sempre é fácil. Note-se que, considerando o exemplo anterior, o movimento do leme está fisicamente limitado e que a mesma variação do ângulo do leme produz efeitos diferentes conforme sejam a velocidade do navio e a sua carga. A solução complica-se ainda mais quando se têm em conta factores económicos, como sejam, por exemplo, o consumo de combustível e o tempo do percurso. A acção correctiva, isto é, o controlo, para ser eficaz, deve ter em conta as características físicas do sistema porque são estas que vão determinar a resposta dinâmica (é mais fácil controlar um pequeno barco do que um navio de grande porte) e, por isso, a resposta dinâmica é estudada a partir do modelo matemático do sistema. Referimos três conceitos que nos acompanharão ao longo deste estudo: sistema, modelo matemático e controlo. De um modo geral, um sistema é um conjunto complexo de elementos interactuantes. É um conjunto complexo porque pode ser dividido em subsistemas interligados entre si. Os sistemas e os subsistemas são descritos por modelos matemáticos que, no caso geral, são equações diferenciais. Através do modelo matemático é possível estudar o comportamento dinâmico do sistema, isto é, a sua resposta temporal. Finalmente, o controlo a aplicar dependerá do comportamento dinâmico do sistema. Estes apontamentos iniciam-se com o estudo dos modelos matemáticos dos sistemas com base nos quais se caracterizará o comportamento dinâmico. Na realidade, estas duas questões estão interligadas e serão estudadas conjuntamente. Este é o objecto da análise dos sistemas. 9

8 Como se verá, sistemas de natureza diferente (eléctricos, mecânicos, termodinâmicos, etc) podem ser governados por equações diferenciais formalmente semelhantes e, portanto, as respostas dinâmicas são também semelhantes. Esta situação é notável e facilita grandemente a análise dos sistemas. Independentemente da natureza física do sistema, o controlo poderá ser do mesmo tipo quando se consideram sistemas com modelos matemáticos formalmente iguais. Seguidamente, estudar-se-á o projecto do controlo. Para isso é necessário medir, comparar e processar o erro. Estas acções podem ser feitas continuamente, no tempo, ou por amostragem. Ambos os casos serão objecto do nosso estudo. O processamento do erro é feito segundo uma lei de controlo que é definida tendo em conta o comportamento dinâmico do sistema e as especificações a que o sistema total (com o sistema de controlo incluído) deve obedecer. Nesta disciplina, o estudo resume-se aos sistemas determinísticos, de parâmetros concentrados, contínuos ou discretos e invariantes no tempo. Esta caracterização obedece à classificação dos sistemas que se apresenta na Fig... SISTEMAS estocásticos determinísticos parâmetros distribuídos parâmetros concentrados contínuos discretos não lineares lineares Fig..: Classificação dos sistemas. variantes no tempo invariantes no tempo As definições dos sistemas da Fig.. são, resumidamente, as seguintes: Estocásticos: as variáveis do sistema são descritas probabilisticamente. Determinísticos: as variáveis do sistema seguem leis determinísticas, isto é, têm valores precisos. Parâmetros distribuídos: os modelos são equações diferenciais às derivadas parciais. Parâmetros concentrados: os modelos são equações diferenciais ordinárias. 0

9 Contínuos: as variáveis variam continuamente no tempo. Discretos: as variáveis só são significativas em instantes bem determinados; são descritos por equações às diferenças. Lineares: aplica-se o princípio da sobreposição das acções. Invariantes no tempo: as características do sistema não variam com o tempo; são descritos por equações (diferenciais) com coeficientes constantes. Esta classificação é uma procura de sistematização e não deve ser entendida como uma fórmula rígida; conforme as simplificações adoptadas, o mesmo sistema pode ser considerado de modo diverso. Um sistema pode ter múltiplas entradas e saídas (MIMO - Multiple Input, Multiple Output), uma única entrada e uma única saída (SISO - Single Input, Single Output) ou as combinações, SIMO e MISO. Os sistemas mais simples são os SISO e, por isso, são os únicos considerados neste estudo. E, por ser um estudo introdutório, estudaremos apenas os sistemas lineares e invariantes no templo (SLIT). No capítulo estudam-se os modelos matemáticos dos sistemas contínuos, no domínio do tempo. Referem-se as equações diferenciais lineares e ordinárias e os modelos de estado. No capítulo 3 estuda-se a aplicação da transformada de Laplace e estudam-se os modelos matemáticos no domínio da frequência complexa. Apresentam-se os sistemas em cadeia aberta e fechada, determinam-se as funções de transferência e as respostas em frequência. No capítulo 4 estuda-se a estabilidade e referem-se diferentes métodos de análise deste problema. Apresenta-se o critério de Routh-Hurwitz, o diagrama de Evans e o método de Nyquist. No capítulo 5 analisam-se as características dos sistemas em cadeia fechada, em particular, refere-se a exactidão e a sensibilidade e a relação com a estabilidade. No capítulo 6 estuda-se o problema do controlo clássico e os métodos de compensação. Referem-se os reguladores industriais. Os capítulos 7, 8 e 9 constituem a segunda parte do curso que é normalmente ministrado em disciplinas da licenciatura. No capítulo 7 faz-se uma introdução à moderna teoria do controlo baseada nos modelos de estado. O capítulo 8 é dedicado ao projecto do controlo e no capítulo 9 estudam-se os sistemas com controlo digital.

10 CAPÍTULO MODELOS MATEMÁTICOS DOS SISTEMAS CONTÍNUOS. EQUAÇÕES DIFERENCIAIS O estudo do comportamento dinâmico dos sistemas é feito a partir do modelo matemático. No geral, este modelo é um conjunto de equações diferenciais que relacionam as variáveis de saída com as entradas do sistema. Como exemplo, considere-se o circuito eléctrico da Fig..(a). Este circuito pode ser considerado como o sistema SISO da Fig..(b) cuja entrada é a tensão V I e cuja saída é a tensão v C. S R V I (a) i C v C V I circuito RC (b) v C (c) Fig..: Circuito RC; (a) esquema; (b) representação por um bloco SISO; (c) diagramas temporais.

11 Estudar o comportamento dinâmico do circuito da Fig..(a) é responder á seguinte questão: qual é a evolução de v C, no tempo, após o fecho do interruptor S? A resposta é obtida através da resolução da equação diferencial que rege o circuito (o modelo matemático do circuito): d V RC v I = C + vc dt (.) A equação (.) é uma equação diferencial ordinária linear na qual as grandezas que são variáveis no tempo estão representadas com letras minúsculas. Com V I constante e admitindo, por exemplo, que o condensador estava inicialmente descarregado, isto é, v C (0)=0, a solução de (.) é v = V ( e ) (.) C I t RC d Como i = C v, a corrente no circuito é d tc V i I R e trc = (.3) Os diagramas temporais de v C e de i estão representados na Fig..(c); RC é a constante de tempo do circuito e para τ=rc é v C (τ) 0,63V I. Faremos, agora, uma breve revisão da resolução das equações diferenciais de parâmetros constantes. Generalizando, um sistema linear com entrada x(t) e saída y(t), invariante e de parâmetros concentrados, pode ser representado por uma equação diferencial com a forma d Kyt K y d y d n y dx d x d m x 0 ( ) + + K Kn = axt a a a t t t n 0 ( ) m d d d dt dt dt m (.4) onde m n e a i e K j são constantes reais. O sistema diz-se de ª, ª,...,nª ordem, se a equação diferencial que o modela for de ª, ª,...,nª ordem, respectivamente. a) Equações homogéneas. Se a entrada x e as suas derivadas são nulas (.4) é uma equação homogénea e a resposta do sistema depende apenas das condições iniciais e dos componentes do sistema. Consideremos a equação homogénea de (.4): 3

12 Kyt K y n d d y d y 0 ( ) + + K Kn = 0 dt n dt dt Substituindo em (.5) o operador derivada por uma variável s (s d d t característica (.5) ) obtém-se a equação K + K s+ K s K s = (.6) 0 n n 0 A solução de (.5) depende das raízes de (.6). Se a equação (.6) tem n raízes distintas s i, com i=,,..., n, o integral de (.5) será dado por yt ( ) = Ae st + Ae s t Ae n s n t (.7) em que A, A...A n são constantes de primitivação. Se (.6) tiver raízes múltiplas, cada solução s j de multiplicidade α dá origem a uma parcela y j (t) de y(t) com a forma y j ( t) = α α s jt ( b t + b t b ) e α (.8) em que b, b...b α são constantes de primitivação Se (.6) tiver raízes complexas, a cada par de raízes conjugadas s j =r±jω corresponde uma parcela y j (t) de y(t) com a forma j rt y ( t) = B cos( ω t + ϕ) e (.9) em que B e ϕ são números reais, resultantes das constantes de primitivação. As constantes de primitivação das equações (.7), (.8) e (.9) são determinadas conhecendo alguns pontos de y(t) (condições fronteira), ou conhecendo o valor de y(0) e as suas derivadas em t=0 (as condições iniciais). b) Equações não homogéneas. Considere-se a equação diferencial d Kyt K y d y d n y 0 () + + K Kn = axt t t t n 0 () d d d (.0) 4

13 O integral de (.0) pode ser obtido somando a solução da equação homogénea de (.0), que se designa por solução livre, com a solução particular imposta pela entrada x. Esta solução particular designa-se por solução forçada e é do mesmo tipo de x. Sendo y l a solução livre e y f a solução forçada, a solução total será y(t)=y l (t)+y f (t) (.) Uma vez obtida a equação (.), determinam-se as constantes de integração através das condições fronteira ou das iniciais.. EQUAÇÃO DIFERENCIAL DE ª ORDEM. Uma equação diferencial de primeira ordem, tal como (.), pode ser escrita na forma geral, yt () xt () = τ d + yt () dt (.) Admite-se que a condição inicial é y(0)=y 0 e que x=e é constante. O integral de (.) será calculado tendo em conta (.); para isso, determinaremos primeiro a solução livre de (.) e posteriormente a solução forçada. A equação homogénea é 0 = τ d y() t + yt () (.3) dt A partir de (.3) escreve-se a equação característica 0= τs + (.4) cuja raiz é s =. De acordo com (.7), a solução livre de (.) é τ yl ()= t t Ae τ (.5) A solução forçada, ou particular, de (.), y f, depende de x e deve verificar (.). Como x é constante, y f também é constante e, de (.), conclui-se que y f =E (.6) Tendo em conta (.), (.5) e (.6), a solução completa de (.) é 5

14 t y()= t Ae τ + E (.7) Finalmente, a constante de integração, A, é determinada a partir (.7), tendo em conta que a condição inicial verifica esta equação: y( 0) = Y0 = A + E (.8) pelo que, A=Y 0 -E (.9) Substituindo (.9) em (.7) obtém-se o resultado final t t y( t) = Y e τ + E e τ 0 (.0) Se, em (.0) for Y 0 =0, E=V I e τ=rc, o resultado obtido é igual a (.). A solução (.0) da equação diferencial de primeira ordem (.) é independente do sistema físico e só a constante de tempo, τ, muda porque depende dos componentes do sistema..3 EQUAÇÃO DIFERENCIAL DE ª ORDEM. Uma equação diferencial de ª ordem pode ser representada por d Kyt K y d y 0 () + + K = xt () dt dt (.) O integral de (.) pode ser calculado pelo processo que usámos no parágrafo anterior: calcula-se primeiro a solução livre, depois calcula-se a solução forçada e aplica-se (.). Finalmente determinam-se as constantes de primitivação. Para se calcular a solução livre de (.) recorre-se à equação característica Ks 0 + Ks + Ks = 0 (.) As soluções de (.) são, genericamente,, = β ± β ω0 s (.3) com 6

15 β = K K e ω 0 0 = K K (.4) Admitindo que β e ω 0 não são negativos, as soluções (.3) podem ser : - reais e distintas, se β ω 0 - reais e iguais (raiz dupla), se β = ω 0 - complexas conjugadas se, β < ω 0 - imaginárias puras, se β =0. Cada par de raízes (.3) dá origem a diferentes soluções livres, de acordo com (.7), (.8) e (.9). É interessante referir que se β < ω 0 existirá um regime periódico que, de acordo com (.9), é [] l βt y ( t) = B cos( ω t + ϕ) e (.5) com ω = ω 0 β (.6) Determinaremos a solução forçada de (.) para o caso de uma entrada constante x=e. Neste caso, y f é constante e E yf ()= t K0 (.7) Admitindo que a solução livre é dada por (.5), a solução completa é E y( t) = + B cos( ω t + ϕ) e K 0 βt (.8) Para o cálculo de B e de ϕ admitiremos que as condições iniciais são nulas, isto é, y(0)=0 e dy dt ( 0) = 0 ; nesta condição, de (.8) obtém-se E B = K0 cosϕ (.9) β ϕ = arctan (.30) ω Atendendo a que tan β ϕ + =, de (.30) resulta = +, pelo que cos ϕ cosϕ ω 7

16 E β B = + (.3) K ω 0 Tendo em conta (.3), a solução completa de (.) é dada por y( t) = E K 0 e β t β ω + cos( ω t + ϕ) (.3) No caso particular de β=0, tendo em conta (.6) e (.30), conclui-se de (.3) que E y( t) = ( cos( ω0 t) ) (.33) K 0 e a solução de (.) é eternamente oscilante. β Na Fig.. representam-se as curvas características de y(t) para diferentes valores de ξ = ω0 para x=e e constante. e Fig..: Respostas típicas de um sistema de ª ordem. Note-se que só existem oscilações periódicas para ξ <, ou seja, quando as raízes da equação característica são complexas; para ξ 0 todas as curvas tendem para um valor estacionário E/K 0 e para ξ = 0 o valor máximo de y é o dobro daquele valor. A Fig.. mostra que para ξ < a frequência das oscilações aumenta quando ξ diminui e o mesmo se passa com o valor máximo de y(t). 8

17 Comparando os sistemas de primeira com os de segunda ordem, conclui-se que estes últimos têm um comportamento mais complicado porque podem apresentar respostas diferentes em função das soluções da equação característica. Os coeficientes das parcelas de (.) dependem do sistema e são constantes nos sistemas invariantes. Todavia, na prática estes coeficientes dependem das condições de funcionamento (da temperatura, por exemplo) e variam com o uso (desgaste). Desta forma, as raízes da equação característica podem ser significativamente alteradas e, com a mesma entrada, o sistema pode vir a dar respostas de tipo diferente. Quando a equação característica tem raízes complexas diz-se que o sistema tem modos oscilatórios. A frequência das oscilações é igual à parte imaginária das raízes. A parte real introduz amortecimento nas oscilações; se a parte real é negativa o amortecimento é positivo e a resposta tende para um valor estacionário (resposta forçada); se a parte real é positiva, o amortecimento é negativo, a amplitude das oscilações tenderá para infinito e o sistema é instável (a estabilidade será estudada num próximo capítulo, mas apela-se aqui para o senso comum). Para ξ=, existe uma raiz dupla, s =s = - β, e o integral de (.), para a entrada x(t)=e, é βt ( ( βt + e ) E y( t) = ) K 0 (.34) Os sistemas de segunda ordem têm, frequentemente, respostas oscilatórias do tipo representado na Fig..3. Por este motivo, esta resposta é caracterizada, de seguida, com mais pormenor. Com ξ< e fazendo Y E =E/K 0, a resposta y(t) é β t β y( t) = Y + cos( ω + ϕ) E e t (.35) ω Na equação (.35), β é designado por factor de amortecimento. O parâmetro ξ é designado por coeficiente de amortecimento ou factor de amortecimento reduzido. De acordo com a Fig..3, y atinge um máximo Y M quando t=t p. Este valor máximo pode ser determinado derivando (.35) e igualando a zero o resultado. Desta operação resulta tan( ωt + ϕ) = tanϕ (.36) o que é equivalente a ωt+ ϕ = ϕ + nπ, n=,,... (.37) 9

18 Fig..3: Resposta de um sistema de segunda ordem com ξ<. O primeiro máximo obtém-se para n= e resulta t p =π/ω. Substituindo este resultado em (.35) obtém-se YM = y( tp) = YE( + e βπ ω ) (.38) A sobreelevação é M P =Y M -Y E βπ ω M P = YEe (.39) ou, tomando como unidade o valor final Y E, MP YE = e βπ ω 00 (%) (.40) Tendo em conta (.6), (.39), e (.40), M P e t p podem ser escritos em termos do coeficiente de amortecimentoξ : MP = YE e ξπ ξ (.4) t p = ω0 π ξ (.4) 0

19 O período das oscilações amortecidas, T, é π T = = t p = ω ω0 π ξ (.43) De (.4) a (.43) podem ser retiradas algumas conclusões:. A sobreelevação aumenta quando ξ diminui.. A frequência das oscilações, /T, aumenta quando ξ diminui. 3. A frequência das oscilações é máxima quando ξ=0 e, nesse caso, é igual a ω 0 /π. 4. Quando β=0 as oscilações não são amortecidas e M P =Y E. 5. A frequência das oscilações amortecidas, ω, é sempre menor do que a frequência das oscilações não amortecidas, ω 0. A resposta da Fig..3 pode, também, ser caracterizada pelos seguintes intervalos de tempo: t a - tempo de atraso: o tempo necessário para que y(t) atinja metade do valor final (y(t a )=Y E /). t c - tempo de crescimento: o tempo necessário para que y(t) atinja o valor final (y(t c )=Y E ). t s - tempo de estabelecimento: o tempo necessário para que y(t) atinja, praticamente, o valor final, isto é, y(t s ) = Y E ± εy E, em que ε representa o erro admitido (% ou 5%, por exemplo). Na prática, t s corresponde à duração do regime transitório. Para se ter uma estimativa da duração do regime transitório, pode-se considerar t=nt p com n=,,3,... ; tendo em conta (.40) resulta e βt = e βt pn M = Y E P n n =,,3,... (.44) A partir de (.44), pode-se calcular n para que a resposta y(t) esteja próximo do valor final Y E com um erro inferior ε: n M P ε n =,,3,... (.45) YE o que é equivalente a logε n n =,,3,... log( M Y ) P E (.46) Note-se que através de (.46) obtém-se uma resposta aproximada; por exemplo, com uma sobreelevação de 5%, o desvio ε=% é atingido ao fim de t p, aproximadamente (n,06).

20 Estudaram-se os sistemas de primeira e de segunda ordem através da resolução clássica das respectivas equações diferenciais. A solução geral foi obtida considerando a soma da solução livre com a solução forçada. A solução livre compreende os termos exponenciais que tendem para zero quando o tempo tende para infinito e que dão origem ao regime transitório do sistema. Quando o regime transitório se anula, o sistema atinge o regime forçado, ou estacionário, em que a resposta é apenas dominada pela entrada. Nos sistemas de primeira ordem pode-se admitir que se atinge o regime forçado quando t 5τ. Como veremos, os sistemas lineares de ordem superior á segunda podem ser decompostos em subsistemas de ª e/ou de ª ordem. Por este facto eles não são agora estudados. Os sistemas de ordem superior serão analisados nos capítulos seguintes por processos que são mais simples do que a resolução directa das equações diferenciais..4 EXEMPLOS DE SISTEMAS DE ª ORDEM. A seguir, apresentaremos sistemas mecânicos e eléctricos que são exemplos de sistemas de segunda ordem. a) Sistema mecânico de translação Na Fig..4 representa-se um sistema deste tipo, frequentemente designado por sistema de massa-mola-atrito: x é a força que desloca a massa M, F a representa o atrito de escorregamento, K é a constante elástica da mola e y é o deslocamento. De acordo com a lei de Newton, a força aplicada, x, é igual à soma das forças resistentes: a força acelerativa, que é proporcional à aceleração, a força de atrito, que é proporcional à velocidade e a força da mola que é proporcional ao deslocamento. O equilíbrio entre as forças é dado pela equação (.47): d x M y d = + F y a + Ky dt dt (.47) (Por comodidade, no restante texto usam-se letras minúsculas para representar as grandezas que são variáveis do tempo; assim, escreve-se x e y em vez de x(t) e y(t), respectivamente). A equação (.47) é formalmente equivalente a (.) e o estudo do comportamento dinâmico do sistema da Fig..4 pode ser feito a partir de (.) com K 0 =K, K =F a e K =M. O coeficiente de amortecimento é ξ = Fa KM (.48)

21 e o comportamento dinâmico do sistema (o tipo da resposta y), na zona elástica da mola, é o representado na Fig... Fig..4: Sistema mecânico de translação. b) Sistema mecânico de rotação Os sistemas de rotação são semelhantes aos de translação, considerando o deslocamento angular e os binários em vez do deslocamento linear e das forças, respectivamente. Na Fig..5 representa-se um sistema deste tipo. O binário T é aplicado a um corpo com um coeficiente de inércia J que é sustentado por uma ligação elástica representada pela mola com coeficiente K F a representa o atrito viscoso. O binário aplicado (ou binário motor), T, é igual à soma dos binários resistentes: o binário acelerador, que é proporcional à aceleração, o binário de atrito, que é proporcional à velocidade e o binário resistente que é proporcional ao deslocamento angular θ. Fig..5: Sistema mecânico de rotação. 3

22 A equação que rege o movimento rotativo é d θ dθ T = J + Fa + Kθ dt dt (.49) A equação (.49) é formalmente equivalente a (.) e o estudo do comportamento do sistema da Fig..5 pode ser feito pelo processo que foi seguido para a equação (.), com y substituído por θ. c) Circuito R, L, C, série Um exemplo de um sistema eléctrico de segunda ordem é o circuito da Fig..6. De acordo com a lei das malhas, a tensão da fonte é igual à soma das tensões em cada um dos componentes. d v dv u = LC + RC + v dt dt i R L (.50) u C v Fig..6: Circuito R, L, C série. A equação (.50) é, também, formalmente equivalente a (.) e o estudo do comportamento do circuito da Fig..6 pode ser feito através do processo que foi descrito para esta equação. A equação característica de (.50) é 0 = LCs + RCs + (.5) R As soluções de (.5) são dadas por (.3) fazendo β= e ω0 =. L LC Se R=0, o circuito da Fig..6 comporta-se como um oscilador com frequência igual ω 0 /π e a tensão no condensador tem a forma da curva da Fig.. com ξ=0. Para uma tensão u contínua, admitindo condições iniciais nulas, isto é, v=0 e i=0, com β<ω 0, a tensão no condensador é dada por (.3), com as necessárias substituições. Os três sistemas anteriores são todos modelados pela mesma equação diferencial de segunda ordem e só mudam os coeficientes de (.) e as grandezas físicas em jogo. Este facto deu 4

5 Transformadas de Laplace

5 Transformadas de Laplace 5 Transformadas de Laplace 5.1 Introdução às Transformadas de Laplace 4 5.2 Transformadas de Laplace definição 5 5.2 Transformadas de Laplace de sinais conhecidos 6 Sinal exponencial 6 Exemplo 5.1 7 Sinal

Leia mais

EXERCÍCIOS RESOLVIDOS

EXERCÍCIOS RESOLVIDOS ENG JR ELETRON 2005 29 O gráfico mostrado na figura acima ilustra o diagrama do Lugar das Raízes de um sistema de 3ª ordem, com três pólos, nenhum zero finito e com realimentação de saída. Com base nas

Leia mais

Modelagem no Domínio do Tempo. Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1

Modelagem no Domínio do Tempo. Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1 Carlos Alexandre Mello 1 Modelagem no Domínio da Frequência A equação diferencial de um sistema é convertida em função de transferência, gerando um modelo matemático de um sistema que algebricamente relaciona

Leia mais

Resposta Transitória de Circuitos com Elementos Armazenadores de Energia

Resposta Transitória de Circuitos com Elementos Armazenadores de Energia ENG 1403 Circuitos Elétricos e Eletrônicos Resposta Transitória de Circuitos com Elementos Armazenadores de Energia Guilherme P. Temporão 1. Introdução Nas últimas duas aulas, vimos como circuitos com

Leia mais

Resumo. Sinais e Sistemas Transformada de Laplace. Resposta ao Sinal Exponencial. Transformada de Laplace

Resumo. Sinais e Sistemas Transformada de Laplace. Resposta ao Sinal Exponencial. Transformada de Laplace Resumo Sinais e Sistemas Transformada de aplace lco@ist.utl.pt Instituto Superior Técnico Definição da transformada de aplace. Região de convergência. Propriedades da transformada de aplace. Sistemas caracterizados

Leia mais

Caracterização temporal de circuitos: análise de transientes e regime permanente. Condições iniciais e finais e resolução de exercícios.

Caracterização temporal de circuitos: análise de transientes e regime permanente. Condições iniciais e finais e resolução de exercícios. Conteúdo programático: Elementos armazenadores de energia: capacitores e indutores. Revisão de características técnicas e relações V x I. Caracterização de regime permanente. Caracterização temporal de

Leia mais

ANÁLISE LINEAR DE SISTEMAS

ANÁLISE LINEAR DE SISTEMAS ANÁLISE LINEAR DE SISTEMAS JOSÉ C. GEROMEL DSCE / Faculdade de Engenharia Elétrica e de Computação UNICAMP, CP 6101, 13083-970, Campinas, SP, Brasil, geromel@dsce.fee.unicamp.br Campinas, Janeiro de 2007

Leia mais

p. 1/2 Resumo Especificação de Filtros Filtro de Butterworth Filtro de Chebyshev Filtros de Primeira Ordem Filtros de Segunda Ordem

p. 1/2 Resumo Especificação de Filtros Filtro de Butterworth Filtro de Chebyshev Filtros de Primeira Ordem Filtros de Segunda Ordem p. 1/2 Resumo Especificação de Filtros Filtro de Butterworth Filtro de Chebyshev Filtros de Primeira Ordem Filtros de Segunda Ordem Introdução Os primeiros filtros construídos eram circuitos LC passivos.

Leia mais

Modelagem no Domínio da Frequência. Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1

Modelagem no Domínio da Frequência. Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1 Modelagem no Domínio da Frequência Carlos Alexandre Mello 1 Transformada de Laplace O que são Transformadas? Quais as mais comuns: Laplace Fourier Cosseno Wavelet... 2 Transformada de Laplace A transf.

Leia mais

11/07/2012. Professor Leonardo Gonsioroski FUNDAÇÃO EDSON QUEIROZ UNIVERSIDADE DE FORTALEZA DEPARTAMENTO DE ENGENHARIA ELÉTRICA.

11/07/2012. Professor Leonardo Gonsioroski FUNDAÇÃO EDSON QUEIROZ UNIVERSIDADE DE FORTALEZA DEPARTAMENTO DE ENGENHARIA ELÉTRICA. FUNDAÇÃO EDSON QUEIROZ UNIVERSIDADE DE FORTALEZA DEPARTAMENTO DE ENGENHARIA ELÉTRICA Aulas anteriores Tipos de Sinais (degrau, rampa, exponencial, contínuos, discretos) Transformadas de Fourier e suas

Leia mais

CAP. I ERROS EM CÁLCULO NUMÉRICO

CAP. I ERROS EM CÁLCULO NUMÉRICO CAP. I ERROS EM CÁLCULO NUMÉRICO 0. Introdução Por método numérico entende-se um método para calcular a solução de um problema realizando apenas uma sequência finita de operações aritméticas. A obtenção

Leia mais

Transformada z. ADL 25 Cap 13. A Transformada z Inversa

Transformada z. ADL 25 Cap 13. A Transformada z Inversa ADL 25 Cap 13 Transformada z A Transformada z Inversa Qualquer que seja o método utilizado a transformada z inversa produzirá somente os valores da função do tempo nos instantes de amostragem. Portanto,

Leia mais

SISTEMAS DE CONTROLE II

SISTEMAS DE CONTROLE II SISTEMAS DE CONTROLE II - Algumas situações com desempenho problemático 1) Resposta muito oscilatória 2) Resposta muito lenta 3) Resposta com erro em regime permanente 4) Resposta pouco robusta a perturbações

Leia mais

5 Circuitos Equivalentes

5 Circuitos Equivalentes 5 Circuitos Equivalentes 5.1 Circuitos Equivalentes Nos capítulos anteriores já se apresentaram diversos exemplos de circuitos equivalentes, por exemplo, resistências em série e em paralelo ou a chamada

Leia mais

TRABALHO LABORATORIAL Nº 3

TRABALHO LABORATORIAL Nº 3 ESCOLA SUPERIOR NÁUTICA INFANTE D. HENRIQUE DEPARTAMENTO DE ENGENHARIA MARÍTIMA M422 - SISTEMAS E INSTALAÇÕES ELÉCTRICAS DE NAVIOS TRABALHO LABORATORIAL Nº 3 ENSAIO DE UMA MÁQUINA ASSÍNCRONA TRIFÁSICA

Leia mais

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica. Módulo 4

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica. Módulo 4 Universidade Federal do Rio de Janeiro Princípios de Instrumentação Biomédica Módulo 4 Faraday Lenz Henry Weber Maxwell Oersted Conteúdo 4 - Capacitores e Indutores...1 4.1 - Capacitores...1 4.2 - Capacitor

Leia mais

² Servomecanismo: Sistema de controle realimentado para controle automático de posição, velocidade ou aceleração. Muito empregado na indústria.

² Servomecanismo: Sistema de controle realimentado para controle automático de posição, velocidade ou aceleração. Muito empregado na indústria. 1. Introdução 1.1. De nições Básicas ² Sistema: Interconexão de dispositivos e elementos para cumprir um objetivo desejado. ² Processo: Um sistema ou dispositivo a ser controlado. ² Sistema de controle:

Leia mais

Controle II. Estudo e sintonia de controladores industriais

Controle II. Estudo e sintonia de controladores industriais Controle II Estudo e sintonia de controladores industriais Introdução A introdução de controladores visa modificar o comportamento de um dado sistema, o objetivo é, normalmente, fazer com que a resposta

Leia mais

TRABALHO LABORATORIAL Nº 5

TRABALHO LABORATORIAL Nº 5 ESCOLA SUPERIOR NÁUTICA INFANTE D. HENRIQUE DEPARTAMENTO DE ENGENHARIA MARÍTIMA M422 SISTEMAS E INSTALAÇÕES ELÉCTRICAS DE NAVIOS TRABALHO LABORATORIAL Nº 5 ENSAIO DE MÁQUINAS SÍNCRONAS A FUNCIONAR EM PARALELO

Leia mais

1.5 O oscilador harmónico unidimensional

1.5 O oscilador harmónico unidimensional 1.5 O oscilador harmónico unidimensional A energia potencial do oscilador harmónico é da forma U = 2 2, (1.29) onde é a constante de elasticidade e a deformação da mola. Substituindo (1.29) em (1.24) obtemos

Leia mais

Capítulo 4 Resposta em frequência

Capítulo 4 Resposta em frequência Capítulo 4 Resposta em frequência 4.1 Noção do domínio da frequência 4.2 Séries de Fourier e propriedades 4.3 Resposta em frequência dos SLITs 1 Capítulo 4 Resposta em frequência 4.1 Noção do domínio da

Leia mais

www.e-lee.net Temática Circuitos Eléctricos Capítulo Teoria dos Circuitos COMPONENTES INTRODUÇÃO

www.e-lee.net Temática Circuitos Eléctricos Capítulo Teoria dos Circuitos COMPONENTES INTRODUÇÃO Temática Circuitos Eléctricos Capítulo Teoria dos Circuitos COMPONENTES INTRODUÇÃO Nesta secção, estuda-se o comportamento ideal de alguns dos dipolos que mais frequentemente se podem encontrar nos circuitos

Leia mais

Estabilidade. Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1

Estabilidade. Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1 Estabilidade Carlos Alexandre Mello 1 Introdução Já vimos que existem três requisitos fundamentais para projetar um sistema de controle: Resposta Transiente Estabilidade Erros de Estado Estacionário Estabilidade

Leia mais

Universidade Gama Filho Campus Piedade Departamento de Engenharia de Controle e Automação

Universidade Gama Filho Campus Piedade Departamento de Engenharia de Controle e Automação Universidade Gama Filho Campus Piedade Departamento de Engenharia de Controle e Automação Laboratório da Disciplina CTA-147 Controle I Análise da Resposta Transitória (Este laboratório foi uma adaptação

Leia mais

Capítulo 3 Sistemas de Controle com Realimentação

Capítulo 3 Sistemas de Controle com Realimentação Capítulo 3 Sistemas de Controle com Realimentação Gustavo H. C. Oliveira TE055 Teoria de Sistemas Lineares de Controle Dept. de Engenharia Elétrica / UFPR Gustavo H. C. Oliveira Sistemas de Controle com

Leia mais

Introdução ao estudo de equações diferenciais

Introdução ao estudo de equações diferenciais Matemática (AP) - 2008/09 - Introdução ao estudo de equações diferenciais 77 Introdução ao estudo de equações diferenciais Introdução e de nição de equação diferencial Existe uma grande variedade de situações

Leia mais

2 - Modelos em Controlo por Computador

2 - Modelos em Controlo por Computador Modelação, Identificação e Controlo Digital 2-Modelos em Controlo por Computador 1 2 - Modelos em Controlo por Computador Objectivo: Introduzir a classe de modelos digitais que são empregues nesta disciplina

Leia mais

Amplificador Operacional

Amplificador Operacional Amplificador Operacional Os modelos a seguir, referem-se a modelos elétricos simplificados para os amplificadores de tensão e de corrente sem realimentação. Os modelos consideram três elementos apenas:

Leia mais

Amplificadores Operacionais

Amplificadores Operacionais Análise de Circuitos LEE 2006/07 Guia de Laboratório Trabalho 2 Amplificadores Operacionais INSTITUTO SUPERIOR TÉCNICO Departamento de Engenharia Electrotécnica e de Computadores Paulo Flores 1 Objectivos

Leia mais

TRABALHO LABORATORIAL Nº 4

TRABALHO LABORATORIAL Nº 4 ESCOLA SUPERIOR NÁUTICA INFANTE D. HENRIQUE DEPARTAMENTO DE ENGENHARIA MARÍTIMA M422 - SISTEMAS E INSTRALAÇÕES ELÉCTRICAS DE NAVIOS TRABALHO LABORATORIAL Nº 4 ENSAIO DA MÁQUINA SÍNCRONA Por: Prof. José

Leia mais

Notas sobre a Fórmula de Taylor e o estudo de extremos

Notas sobre a Fórmula de Taylor e o estudo de extremos Notas sobre a Fórmula de Taylor e o estudo de etremos O Teorema de Taylor estabelece que sob certas condições) uma função pode ser aproimada na proimidade de algum ponto dado) por um polinómio, de modo

Leia mais

Medição de Tensões e Correntes Eléctricas Leis de Ohm e de Kirchoff (Rev. 03/2008) 1. Objectivo:

Medição de Tensões e Correntes Eléctricas Leis de Ohm e de Kirchoff (Rev. 03/2008) 1. Objectivo: LEO - MEBiom Medição de Tensões e Correntes Eléctricas Leis de Ohm e de Kirchoff (Rev. 03/2008) 1. Objectivo: Aprender a medir tensões e correntes eléctricas com um osciloscópio e um multímetro digital

Leia mais

OBJETIVOS: CARGA HORÁRIA MÍNIMA CRONOGRAMA:

OBJETIVOS: CARGA HORÁRIA MÍNIMA CRONOGRAMA: ESTUDO DIRIGIDO COMPONENTE CURRICULAR: Controle de Processos e Instrumentação PROFESSOR: Dorival Rosa Brito ESTUDO DIRIGIDO: Métodos de Determinação de Parâmetros de Processos APRESENTAÇÃO: O rápido desenvolvimento

Leia mais

Sistema de excitação

Sistema de excitação Sistema de excitação Introdução Introdução A função do sistema de excitação é estabelecer a tensão interna do gerador síncrono; Em consequência,o sistema de excitação é responsável não somente pela tensão

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu 1 Programação Não Linear Aula 25: Programação Não-Linear - Funções de Uma única variável Mínimo; Mínimo Global; Mínimo Local; Optimização Irrestrita; Condições Óptimas; Método da Bissecção; Método de Newton.

Leia mais

CAPÍTULO 1 MEDIÇÃO E O ERRO DE MEDIÇÃO

CAPÍTULO 1 MEDIÇÃO E O ERRO DE MEDIÇÃO CAPÍTULO 1 MEDIÇÃO E O ERRO DE MEDIÇÃO 1.1. Definições do Vocabulário Internacional de Metrologia (VIM) Metrologia: Ciência das medições [VIM 2.2]. Medição: Conjunto de operações que têm por objectivo

Leia mais

Análise e Processamento de Bio-Sinais. Mestrado Integrado em Engenharia Biomédica. Sinais e Sistemas. Licenciatura em Engenharia Física

Análise e Processamento de Bio-Sinais. Mestrado Integrado em Engenharia Biomédica. Sinais e Sistemas. Licenciatura em Engenharia Física Análise e Processamento de Bio-Sinais Mestrado Integrado em Engenharia Biomédica Licenciatura em Engenharia Física Faculdade de Ciências e Tecnologia Slide Slide 1 1 Tópicos: Representação de Sinais por

Leia mais

Instituto Superior Técnico Licenciatura em Engenharia Electrotécnica e de Computadores. Controlo 2005/2006. Controlo de velocidade de um motor D.C.

Instituto Superior Técnico Licenciatura em Engenharia Electrotécnica e de Computadores. Controlo 2005/2006. Controlo de velocidade de um motor D.C. Instituto Superior Técnico Licenciatura em Engenharia Electrotécnica e de Computadores Controlo 2005/2006 Controlo de velocidade de um motor D.C. Elaborado por E. Morgado 1 e F. M. Garcia 2 Reformulado

Leia mais

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELETRÔNICA SÉRIE DE EXERCÍCIO #A22 (1) O circuito a seguir amplifica a diferença de

Leia mais

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 1

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 1 597 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Movimentos Periódicos Para estudar movimentos oscilatórios periódicos é conveniente ter algum modelo físico em mente. Por exemplo, um

Leia mais

INTRODUÇÃO AO ESTUDO DE EQUAÇÕES DIFERENCIAIS

INTRODUÇÃO AO ESTUDO DE EQUAÇÕES DIFERENCIAIS INTRODUÇÃO AO ESTUDO DE EQUAÇÕES DIFERENCIAIS Terminologia e Definições Básicas No curso de cálculo você aprendeu que, dada uma função y f ( ), a derivada f '( ) d é também, ela mesma, uma função de e

Leia mais

ficha 3 espaços lineares

ficha 3 espaços lineares Exercícios de Álgebra Linear ficha 3 espaços lineares Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2011/12 3 Notação Sendo

Leia mais

5. Diagramas de blocos

5. Diagramas de blocos 5. Diagramas de blocos Um sistema de controlo pode ser constituído por vários componentes. O diagrama de blocos é uma representação por meio de símbolos das funções desempenhadas por cada componente e

Leia mais

Estabilidade no Domínio da Freqüência

Estabilidade no Domínio da Freqüência Estabilidade no Domínio da Freqüência Introdução; Mapeamento de Contornos no Plano s; Critério de Nyquist; Estabilidade Relativa; Critério de Desempenho no Domínio do Tempo Especificado no Domínio da Freqüência;

Leia mais

a 1 x 1 +... + a n x n = b,

a 1 x 1 +... + a n x n = b, Sistemas Lineares Equações Lineares Vários problemas nas áreas científica, tecnológica e econômica são modelados por sistemas de equações lineares e requerem a solução destes no menor tempo possível Definição

Leia mais

Modelos Variáveis de Estado

Modelos Variáveis de Estado Modelos Variáveis de Estado Introdução; Variáveis de Estados de Sistemas Dinâmicos; Equação Diferencial de Estado; Função de Transferência a partir das Equações de Estados; Resposta no Domínio do Tempo

Leia mais

Laboratórios de CONTROLO (LEE) 2 o Trabalho Motor DC Controlo de Velocidade

Laboratórios de CONTROLO (LEE) 2 o Trabalho Motor DC Controlo de Velocidade Laboratórios de CONTROLO (LEE) 2 o Trabalho Motor DC Controlo de Velocidade Baseado no trabalho Controlo de Velocidade de um motor DC de E. Morgado, F. Garcia e J. Gaspar João Miguel Raposo Sanches 1 o

Leia mais

EA616B Análise Linear de Sistemas Resposta em Frequência

EA616B Análise Linear de Sistemas Resposta em Frequência EA616B Análise Linear de Sistemas Resposta em Frequência Prof. Pedro L. D. Peres Faculdade de Engenharia Elétrica e de Computação Universidade Estadual de Campinas 2 o Semestre 2013 Resposta em Frequência

Leia mais

Capítulo 2 - Problemas de Valores Fronteira para Equações Diferenciais Ordinárias

Capítulo 2 - Problemas de Valores Fronteira para Equações Diferenciais Ordinárias Capítulo 2 - Problemas de Valores Fronteira para Equações Diferenciais Ordinárias Departamento de Matemática balsa@ipb.pt Mestrados em Engenharia da Construção Métodos de Aproximação em Engenharia 1 o

Leia mais

Diagrama de transição de Estados (DTE)

Diagrama de transição de Estados (DTE) Diagrama de transição de Estados (DTE) O DTE é uma ferramenta de modelação poderosa para descrever o comportamento do sistema dependente do tempo. A necessidade de uma ferramenta deste tipo surgiu das

Leia mais

Aula 2. Carlos Amaral Fonte: Cristiano Quevedo Andrea

Aula 2. Carlos Amaral Fonte: Cristiano Quevedo Andrea Aula 2 Carlos Amaral Fonte: Cristiano Quevedo Andrea UTFPR - Universidade Tecnológica Federal do Paraná DAELT - Departamento Acadêmico de Eletrotécnica Curitiba, Agosto de 2011. Resumo Terminologias 1

Leia mais

APLICAÇÕES DA DERIVADA

APLICAÇÕES DA DERIVADA Notas de Aula: Aplicações das Derivadas APLICAÇÕES DA DERIVADA Vimos, na seção anterior, que a derivada de uma função pode ser interpretada como o coeficiente angular da reta tangente ao seu gráfico. Nesta,

Leia mais

Movimentos Periódicos: representação vetorial

Movimentos Periódicos: representação vetorial Aula 5 00 Movimentos Periódicos: representação vetorial A experiência mostra que uma das maneiras mais úteis de descrever o movimento harmônico simples é representando-o como uma projeção perpendicular

Leia mais

Problemas sobre Sistemas Não Lineares

Problemas sobre Sistemas Não Lineares Mestrado Integrado em Engenharia Electrotécnica e de Computadores Controlo em Espaço de Estados Problemas sobre Sistemas Não Lineares Organizada por J. Miranda Lemos 0 J. M. Lemos IST P. (Construção do

Leia mais

9. Derivadas de ordem superior

9. Derivadas de ordem superior 9. Derivadas de ordem superior Se uma função f for derivável, então f é chamada a derivada primeira de f (ou de ordem 1). Se a derivada de f eistir, então ela será chamada derivada segunda de f (ou de

Leia mais

CIRCUITOS DE CORRENTE CONTÍNUA

CIRCUITOS DE CORRENTE CONTÍNUA Departamento de Física da Faculdade de iências da Universidade de Lisboa Electromagnetismo 2007/08 IRUITOS DE ORRENTE ONTÍNU 1. Objectivo Verificar as leis fundamentais de conservação da energia e da carga

Leia mais

Ivan Guilhon Mitoso Rocha. As grandezas fundamentais que serão adotadas por nós daqui em frente:

Ivan Guilhon Mitoso Rocha. As grandezas fundamentais que serão adotadas por nós daqui em frente: Rumo ao ITA Física Análise Dimensional Ivan Guilhon Mitoso Rocha A análise dimensional é um assunto básico que estuda as grandezas físicas em geral, com respeito a suas unidades de medida. Como as grandezas

Leia mais

Root Locus (Método do Lugar das Raízes)

Root Locus (Método do Lugar das Raízes) Root Locus (Método do Lugar das Raízes) Ambos a estabilidade e o comportamento da resposta transitória em um sistema de controle em malha fechada estão diretamente relacionadas com a localização das raízes

Leia mais

Modelo Cascata ou Clássico

Modelo Cascata ou Clássico Modelo Cascata ou Clássico INTRODUÇÃO O modelo clássico ou cascata, que também é conhecido por abordagem top-down, foi proposto por Royce em 1970. Até meados da década de 1980 foi o único modelo com aceitação

Leia mais

Análise de Circuitos Elétricos III

Análise de Circuitos Elétricos III Análise de Circuitos Elétricos III Prof. Danilo Melges (danilomelges@cpdee.ufmg.br) Depto. de Engenharia Elétrica Universidade Federal de Minas Gerais Introdução à Transformada de Laplace A Transformada

Leia mais

UNIVERSIDADE FEDERAL DE SANTA MARIA COLÉGIO TÉCNICO INDUSTRIAL DE SANTA MARIA Curso de Eletrotécnica

UNIVERSIDADE FEDERAL DE SANTA MARIA COLÉGIO TÉCNICO INDUSTRIAL DE SANTA MARIA Curso de Eletrotécnica UNIVERSIDADE FEDERAL DE SANTA MARIA COLÉGIO TÉCNICO INDUSTRIAL DE SANTA MARIA Curso de Eletrotécnica Apostila de Automação Industrial Elaborada pelo Professor M.Eng. Rodrigo Cardozo Fuentes Prof. Rodrigo

Leia mais

Somatórias e produtórias

Somatórias e produtórias Capítulo 8 Somatórias e produtórias 8. Introdução Muitas quantidades importantes em matemática são definidas como a soma de uma quantidade variável de parcelas também variáveis, por exemplo a soma + +

Leia mais

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010. Matemática Essencial Extremos de funções reais Departamento de Matemática - UEL - 2010 Conteúdo Ulysses Sodré http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Leia mais

Os elementos de circuito que estudámos até agora foram elementos lineares. Ou seja, se duplicamos a ddp aos terminais de um

Os elementos de circuito que estudámos até agora foram elementos lineares. Ou seja, se duplicamos a ddp aos terminais de um O Díodo Os elementos de circuito que estudámos até agora foram elementos lineares. Ou seja, se duplicamos a ddp aos terminais de um componente, a intensidade da corrente eléctrica que o percorre também

Leia mais

Circuitos Elétricos III

Circuitos Elétricos III Circuitos Elétricos III Prof. Danilo Melges (danilomelges@cpdee.ufmg.br) Depto. de Engenharia Elétrica Universidade Federal de Minas Gerais A Transformada de Laplace em análise de circuitos parte 2 Equivalente

Leia mais

Tópico 3. Limites e continuidade de uma função (Parte 2)

Tópico 3. Limites e continuidade de uma função (Parte 2) Tópico 3. Limites e continuidade de uma função (Parte 2) Nessa aula continuaremos nosso estudo sobre limites de funções. Analisaremos o limite de funções quando o x ± (infinito). Utilizaremos o conceito

Leia mais

APOSTILA TECNOLOGIA MECANICA

APOSTILA TECNOLOGIA MECANICA FACULDADE DE TECNOLOGIA DE POMPEIA CURSO TECNOLOGIA EM MECANIZAÇÃO EM AGRICULTURA DE PRECISÃO APOSTILA TECNOLOGIA MECANICA Autor: Carlos Safreire Daniel Ramos Leandro Ferneta Lorival Panuto Patrícia de

Leia mais

Transformada de Laplace. Parte 3

Transformada de Laplace. Parte 3 Transformada de Laplace Parte 3 Elementos de circuito no domínio da frequência O resistor no domínio da frequência Pela lei de OHM : v= Ri A transformada da equação acima é V(s) = R I(s) O indutor no domínio

Leia mais

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 15

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 15 Ondas (continuação) Ondas propagando-se em uma dimensão Vamos agora estudar propagação de ondas. Vamos considerar o caso simples de ondas transversais propagando-se ao longo da direção x, como o caso de

Leia mais

1 Descrição do Trabalho

1 Descrição do Trabalho Departamento de Informática - UFES 1 o Trabalho Computacional de Algoritmos Numéricos - 13/2 Métodos de Runge-Kutta e Diferenças Finitas Prof. Andréa Maria Pedrosa Valli Data de entrega: Dia 23 de janeiro

Leia mais

Análise Dimensional Notas de Aula

Análise Dimensional Notas de Aula Primeira Edição Análise Dimensional Notas de Aula Prof. Ubirajara Neves Fórmulas dimensionais 1 As fórmulas dimensionais são formas usadas para expressar as diferentes grandezas físicas em função das grandezas

Leia mais

ENERGIA POTENCIAL E CONSERVAÇÃO DE ENERGIA Física Geral I (1108030) - Capítulo 04

ENERGIA POTENCIAL E CONSERVAÇÃO DE ENERGIA Física Geral I (1108030) - Capítulo 04 ENERGIA POTENCIAL E CONSERVAÇÃO DE ENERGIA Física Geral I (1108030) - Capítulo 04 I. Paulino* *UAF/CCT/UFCG - Brasil 2012.2 1 / 15 Sumário Trabalho e EP Energia potencial Forças conservativas Calculando

Leia mais

Modelagem de Sistemas Dinâmicos. Eduardo Camponogara

Modelagem de Sistemas Dinâmicos. Eduardo Camponogara Equações Diferenciais Ordinárias Modelagem de Sistemas Dinâmicos Eduardo Camponogara Departamento de Automação e Sistemas Universidade Federal de Santa Catarina DAS-5103: Cálculo Numérico para Controle

Leia mais

APLICAÇÕES DE NÚMEROS COMPLEXOS

APLICAÇÕES DE NÚMEROS COMPLEXOS http://hermes.ucs.br/ccet/deme/emsoares/inipes/complexos/ APLICAÇÕES DE NÚMEROS COMPLEXOS Silvia Carla Menti Propicio Universidade de Caxias do Sul Centro de Ciências Exatas e Tecnologia Departamento de

Leia mais

CONSERVAÇÃO DA ENERGIA MECÂNICA

CONSERVAÇÃO DA ENERGIA MECÂNICA Departamento de Física da Faculdade de Ciências da Universidade de Lisboa T3 Física Experimental I - 2007/08 CONSERVAÇÃO DA ENERGIA MECÂNICA 1. Objectivo Verificar a conservação da energia mecânica de

Leia mais

Métodos de Sintonização de Controladores PID

Métodos de Sintonização de Controladores PID 3ª Aula de Controlo Inteligente Controlo PI iscreto Métodos de Sintonização de Controladores PI Os controladores PI são muito utilizados em aplicações industrias. A função de transferência que define o

Leia mais

Processos em Engenharia: Introdução a Servomecanismos

Processos em Engenharia: Introdução a Servomecanismos Processos em Engenharia: Introdução a Servomecanismos Prof. Daniel Coutinho coutinho@das.ufsc.br Departamento de Automação e Sistemas DAS Universidade Federal de Santa Catarina UFSC DAS 5101 - Aula 7 p.1/47

Leia mais

Análise de Sistemas Não Lineares por Plano de Fase Recorrendo ao MATLAB

Análise de Sistemas Não Lineares por Plano de Fase Recorrendo ao MATLAB MEEC Mestrado em Engenharia Electrotécnica e de Computadores MCSDI Guião do trabalho laboratorial nº Análise de Sistemas Não Lineares por Plano de Fase Recorrendo ao MATLAB Análise de Sistemas Não Lineares

Leia mais

Capítulo 1 - Estática

Capítulo 1 - Estática Capítulo 1 - Estática 1.1. Generalidades sobre forças 1.1.1. A Grandeza Vetorial A finalidade da Estática, parte da Mecânica Geral, é o estudo das condições nas quais um sólido ou um sistema de sólidos,

Leia mais

INTRODUÇÃO AOS MÉTODOS FACTORIAIS

INTRODUÇÃO AOS MÉTODOS FACTORIAIS Capítulo II INTRODUÇÃO AOS MÉTODOS FACTORIAIS A Análise Factorial de Correspondências é uma técnica simples do ponto de vista matemático e computacional. Porém, devido ao elevado suporte geométrico desta

Leia mais

PARALELO DE TRANSFORMADORES TRIFÁSICOS

PARALELO DE TRANSFORMADORES TRIFÁSICOS PARALELO DE TRANSFORMADORES TRIFÁSICOS Quando temos por exemplo um transformador ligado a um barramento que alimenta um receptor de 50 KVA, se este receptor aumentar a procura de potência para 100KVA,

Leia mais

Análise de sistemas no domínio da frequência

Análise de sistemas no domínio da frequência Análise de sistemas no domínio da frequência Quando se analisa um sistema no domínio da frequência, pretende-se essencialmente conhecer o seu comportamento no que respeita a responder a sinais periódicos,

Leia mais

INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS TRANSFORMADAS DE LAPLACE

INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS TRANSFORMADAS DE LAPLACE INSTRUMENTAÇÃO E CONTROLE DE PROCESSOS TRANSFORMADAS DE LAPLACE Preliminares No estudo de sistemas de controle, e comum usar-se diagramas de blocos, como o da figura 1. Diagramas de blocos podem ser utilizados

Leia mais

Curso de Instrumentista de Sistemas. Fundamentos de Controle. Prof. Msc. Jean Carlos

Curso de Instrumentista de Sistemas. Fundamentos de Controle. Prof. Msc. Jean Carlos Curso de Instrumentista de Sistemas Fundamentos de Controle Prof. Msc. Jean Carlos Ações de controle em malha fechada Controle automático contínuo em malha fechada Ação proporcional A característica da

Leia mais

MESTRADO INTEGRADO EM ENGENHARIA MECÂNICA. Integradora II T.02 SOBRE A ANÁLISE DINÂMICA MIEM. Integradora II. Elaborado por Paulo Flores - 2015

MESTRADO INTEGRADO EM ENGENHARIA MECÂNICA. Integradora II T.02 SOBRE A ANÁLISE DINÂMICA MIEM. Integradora II. Elaborado por Paulo Flores - 2015 MESTRADO INTEGRADO EM ENGENHARIA MECÂNICA Elaborado por Paulo Flores - 2015 Departamento de Engenharia Mecânica Campus de Azurém 4804-533 Guimarães - PT Tel: +351 253 510 220 Fax: +351 253 516 007 E-mail:

Leia mais

Introdução ao Estudo da Corrente Eléctrica

Introdução ao Estudo da Corrente Eléctrica Introdução ao Estudo da Corrente Eléctrica Num metal os electrões de condução estão dissociados dos seus átomos de origem passando a ser partilhados por todos os iões positivos do sólido, e constituem

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 3

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 3 Linhas de Força Mencionamos na aula passada que o físico inglês Michael Faraday (79-867) introduziu o conceito de linha de força para visualizar a interação elétrica entre duas cargas. Para Faraday, as

Leia mais

DETERMINAÇÃO DA RESISTÊNCIA INTERNA DE UMA PILHA

DETERMINAÇÃO DA RESISTÊNCIA INTERNA DE UMA PILHA TLHO PÁTCO DETEMNÇÃO D ESSTÊNC NTEN DE UM PLH Objectivo Este trabalho compreende as seguintes partes: comparação entre as resistências internas de dois voltímetros, um analógico e um digital; medida da

Leia mais

Problemas de Valor Inicial para Equações Diferenciais Ordinárias

Problemas de Valor Inicial para Equações Diferenciais Ordinárias Problemas de Valor Inicial para Equações Diferenciais Ordinárias Carlos Balsa balsa@ipb.pt Departamento de Matemática Escola Superior de Tecnologia e Gestão de Bragança Matemática Aplicada - Mestrados

Leia mais

Fundamentos de Telecomunicações

Fundamentos de Telecomunicações Fundamentos de Telecomunicações Translação de Frequências A utilização eficaz de um canal de transmissão pode requerer por vezes a utilização de uma banda de frequências diferente da frequência original

Leia mais

Processos em Engenharia: Modelagem Matemática de Sistemas Fluídicos

Processos em Engenharia: Modelagem Matemática de Sistemas Fluídicos Processos em Engenharia: Modelagem Matemática de Sistemas Fluídicos Prof. Daniel Coutinho coutinho@das.ufsc.br Departamento de Automação e Sistemas DAS Universidade Federal de Santa Catarina UFSC DAS 5101

Leia mais

Força atrito. Forças. dissipativas

Força atrito. Forças. dissipativas Veículo motorizado 1 Trabalho Ocorrem variações predominantes de Por ex: Forças constantes Sistema Termodinâmico Onde atuam Força atrito É simultaneamente Onde atuam Sistema Mecânico Resistente Ocorrem

Leia mais

O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2

O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2 3.2 O Espaço Nulo de A: Resolvendo Ax = 0 11 O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2 Esta seção trata do espaço de soluções para Ax = 0. A matriz A pode ser quadrada ou retangular. Uma solução imediata

Leia mais

4. Curvas planas. T = κn, N = κt, B = 0.

4. Curvas planas. T = κn, N = κt, B = 0. 4. CURVAS PLANAS 35 4. Curvas planas Nesta secção veremos que no caso planar é possível refinar a definição de curvatura, de modo a dar-lhe uma interpretação geométrica interessante. Provaremos ainda o

Leia mais

x0 = 1 x n = 3x n 1 x k x k 1 Quantas são as sequências com n letras, cada uma igual a a, b ou c, de modo que não há duas letras a seguidas?

x0 = 1 x n = 3x n 1 x k x k 1 Quantas são as sequências com n letras, cada uma igual a a, b ou c, de modo que não há duas letras a seguidas? Recorrências Muitas vezes não é possível resolver problemas de contagem diretamente combinando os princípios aditivo e multiplicativo. Para resolver esses problemas recorremos a outros recursos: as recursões

Leia mais

4.10 Solução das Equações de Estado através da Transformada de Laplace Considere a equação de estado (4.92)

4.10 Solução das Equações de Estado através da Transformada de Laplace Considere a equação de estado (4.92) ADL22 4.10 Solução das Equações de Estado através da Transformada de Laplace Considere a equação de estado (4.92) A transformada de Laplace fornece: (4.93) (4.94) A fim de separar X(s), substitua sx(s)

Leia mais

Oficina de Multimédia B. ESEQ 12º i 2009/2010

Oficina de Multimédia B. ESEQ 12º i 2009/2010 Oficina de Multimédia B ESEQ 12º i 2009/2010 Conceitos gerais Multimédia Hipertexto Hipermédia Texto Tipografia Vídeo Áudio Animação Interface Interacção Multimédia: É uma tecnologia digital de comunicação,

Leia mais

Aparelhos de Laboratório de Electrónica

Aparelhos de Laboratório de Electrónica Aparelhos de Laboratório de Electrónica Este texto pretende fazer uma introdução sucinta às características fundamentais dos aparelhos utilizados no laboratório. As funcionalidades descritas são as existentes

Leia mais

PARTE 2 FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL

PARTE 2 FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL PARTE FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL.1 Funções Vetoriais de Uma Variável Real Vamos agora tratar de um caso particular de funções vetoriais F : Dom(f R n R m, que são as funções vetoriais de uma

Leia mais