Aula 4 Modelagem de sistemas no domínio da frequência Prof. Marcio Kimpara

Tamanho: px
Começar a partir da página:

Download "Aula 4 Modelagem de sistemas no domínio da frequência Prof. Marcio Kimpara"

Transcrição

1 FUDAMETOS DE COTROLE E AUTOMAÇÃO Aula 4 Modelagem de itema no domínio da requência Pro. Marcio impara Unieridade Federal de Mato Groo do Sul

2 Sitema mecânico tranlação Elemento Força deloc. tempo Laplace xt Mola t t. x t F. X xt Amortecedor t t. t F.. X M xt t Maa t d t M. dt F M.. X Pro. Marcio impara

3 Pro. Marcio impara Sitema mecânico tranlação Aula anterior Sitema maa-mola M xt t t x t M Força aplicada ao itema Delocalmento damaa Maa Contante elática da mola Coeiciente deatrito icoo F X F M X

4 Pro. Marcio impara 4 Sitema mecânico tranlação Muito itema mecânico ão imilare à itema elétrico com múltipla malha ou nó Mai de uma equação dierencial é neceária para decreer tai itema Em itema mecânico o número de equaçõe neceária é igual ao número de moimento lineare independente. Um moimento linear independente igniica que um determinado ponto de moimento ainda pode e moimentar memo e todo o outro ponto de moimento orem ixado. Sitema com eta caracterítica pouem mai de um grau de liberdade. Em itema com doi grau de liberdade, um ponto do moimento pode er ixado enquanto o outro ponto e moe obre a inluência da orça aplicada. Para acilitar deenhamo o diagrama de orça em cada bloco e uamo o princípio da uperpoição.

5 Pro. Marcio impara 5 Sitema mecânico tranlação Sitema com doi grau de liberdade Encontre a unção de tranerência X / F do itema abaixo.

6 Pro. Marcio impara 6 Sitema mecânico tranlação ete cao, deemo analiar a orça eparadamente em cada bloco. Além dio, para cada bloco, iremo trabalhar com orça atuante deido eu próprio moimento e orça atuante deido ao moimento do outro bloco. Uma dica para identiicar a orça em M, por exemplo, é coniderar M parado e moimentar M para a direita, depoi realizar a análie imilar para o bloco M, com M parado. Força em M deido ao eu próprio moimento Força em M deido ao moimento de M

7 Pro. Marcio impara 7 Sitema mecânico tranlação Força em M decorrente do eu próprio moimento Força em M deido M Superpoição da orça Força em M decorrente do eu próprio moimento Força em M deido M Superpoição da orça

8 Sitema mecânico tranlação Pro. Marcio impara 8 Superpoição da orça em M: 0 F X X X M X X 0 F Superpoição da orça em M: 0 X X X M X X 0 F Podemo ecreer: 0 X M X F X X M

9 Sitema mecânico tranlação Pro. Marcio impara 9 Temo dua equaçõe e dua ariáei. Podemo reoler ete itema organizando matricialmente a expreõe anteriore: Podemo, então, encontrar a unção de tranerência X /F da eguinte maneira: 0 F X X M M det 0 det M M F M X

10 Sitema mecânico tranlação Pro. Marcio impara 0 F X det M M Onde:

11 Sitema mecânico tranlação Pro. Marcio impara De orma geral obere a matriz do lide 9: em aplicada Soma da orça e entre Soma da impedância em conectadaao moimento Soma da impedância x X x x X x em aplicada Soma da orça em conectadaao moimento Soma da impedância e entre Soma da impedância x X x X x x

12 Pro. Marcio impara Sitema mecânico tranlação EXEMPLO: Ecrea a equaçõe para o moimento do itema acima. Reolido quadro aula

13 Pro. Marcio impara Sitema mecânico rotação Sitema mecânico rotacionai ão tratado da mema maneira que itema mecânico em moimento de tranlação, exceto por: Torque T ubtitui Força F Delocamento angular θ ubtitui delocamento tranlacional x Inércia J ubtitui maa M O elemento do itema mecânico rotacionai ão o memo do itema mecânico tranlacionai. A tabela a eguir relaciona torque, elocidade angular ω e delocamento angular.

14 Sitema mecânico rotação Elemento Torque tempo Laplace Mola Tt θt T t. t T. Amortecedor Tt θt T t D. t T D.. D Inércia J Tt θt T t d t J. dt T J.. Pro. Marcio impara 4

15 Pro. Marcio impara 5 Sitema mecânico rotação Exemplo: Obtenha a unção de tranerência θ / T De maneira imilar ao itema tranlacional anterior, exitem grau de liberdade uma ez que cada inércia pode er rotacionada enquanto a outra permanece ixa. Deenhando o diagrama de bloco com a orça agindo em cada inércia e aplicando o princípio da uperpoição, podemo montar a equaçõe dete itema.

16 Pro. Marcio impara 6 Sitema mecânico rotação

17 Sitema mecânico rotação Pro. Marcio impara 7 O omatório de torque em J e J pode er decrito como, Reorganizando na orma matricial, obtém-e: 0 D J T D J 0 T D J D J

18 Sitema mecânico rotação Pro. Marcio impara 8 T Reolendo para θ : D J D J T D J det 0 det D J D J det Portanto: Onde:

19 Sitema mecânico rotação Pro. Marcio impara 9 Analogamente ao itema já etudado, e de orma geral: aplicado em Soma dotorque e entre Soma da impedância em conectadaao moimento Soma da impedância aplicado em Soma dotorque em conectadaao moimento Soma da impedância e entre Soma da impedância

20 Pro. Marcio impara 0 Sitema mecânico engrenagen Sitema mecânico raramente e apreentam deproido de engrenagen. Engrenagen proporcionam antagen em itema rotacionai. Se ocê já pedalou uma bicicleta com marcha, certamente conhece eta antagen. Para o itema ilutrado temo que a ditância percorrida ao longo de cada circunerência é a mema, logo: r r ou r r Se admitirmo que a engrenagen não aboram nem armazenam energia, podemo ecreer: T T ou T T

21 Sitema mecânico engrenagen Exemplo: Em itema girante baeado em engrenagen temo a ituaçõe ilutrada abaixo: T T Pro. Marcio impara

22 Sitema mecânico engrenagen Aim, podemo reletir T na inércia J multiplicando-e por /. O reultado é ilutrado a eguir: Eliminando a engrenagem, o itema agora já é conhecido dicutido anteriormente e a equação de moimento é dada por: J D T Pro. Marcio impara

23 Sitema mecânico engrenagen Pro. Marcio impara Podemo ainda ecreer, dete modo tem-e: Simpliicando-e: T D J T D J

24 Pro. Marcio impara 4 Sitema mecânico engrenagen Redeenhando: Concluão: A impedância mecânica em rotação podem er reletida por meio de tren de engrenagen multiplicando-e a impedância mecânica pela relação: úmero dedente da engrenagem doeixo úmero dedente da engrenagem doeixo dedetino deorigem

25 Pro. Marcio impara 5 Sitema mecânico engrenagen Exemplo: Obter a unção de tranerência, θ /T

26 Pro. Marcio impara 6 Sitema mecânico engrenagen Reletindo a impedância: Portanto, para ete exemplo, a equação de torque pode er decrita como: J e D e e T

27 Pro. Marcio impara 7 Sitema mecânico engrenagen A unção de tranerência, portanto, é dada por: T Je D e e

28 Pro. Marcio impara 8 Sitema mecânico engrenagen Para itema com múltipla engrenagen em cacata, a ideia é a mema:

29 Pro. Marcio impara 9 Sitema elétrico mai de malha Soma da impedância I ao longo da malha Soma da impedância I comum à dua malha Soma da impedância I comum à dua malha Soma da impedância I ao longo da malha Soma da tenõe aplicada ao longo damalha Soma da tenõe aplicada ao longo da malha

30 Pro. Marcio impara 0 Sitema elétrico mai de malha Soma da impedância conectada à malha - Soma da impedância comum à dua malha - Soma da impedância comum à dua malha Soma da impedância conectada à malha I I = Soma da tenõe aplicada em Soma da tenõe aplicada em

31 Pro. Marcio impara Exercício Determine a unção de tranerência G = V L /V H Vt Ω Ω H + VLt -

32 Pro. Marcio impara Exercício Solução Reecreer a impedância para o domínio de Laplace L V R R V L + VL - + VL - Encontrar a corrente na malha atraé da abordagem matricial I V I 0

33 Exercício Solução Pro. Marcio impara Encontre a expreão de aída.... V V I L V L L det 0 det V I V V I

34 Pro. Marcio impara 4 Exercício Solução 4 Ecrea a unção de tranerência F. T VL V G

35 Pro. Marcio impara 5 Reerência O conteúdo deta aula oi, na ua maioria, extraído do liro: Control Sytem Engineering 4ª Edição orman S. ie

No campo da eletrcidade podemos sintetizar 03 elementos fundamentais passivos e são eles: resisores, capacitores e indutores.

No campo da eletrcidade podemos sintetizar 03 elementos fundamentais passivos e são eles: resisores, capacitores e indutores. SIMULAÇÃO MODELAGEM DE SISTEMAS POR LAPLACE Pro. Luí Calda Simulação de Proceo em Eng. de Materiai Diiciplina - MR070 A modelagem matemática de um itema é empre uma tarea muito complexa para o engenheiro

Leia mais

CAPÍTULO 10 Modelagem e resposta de sistemas discretos

CAPÍTULO 10 Modelagem e resposta de sistemas discretos CAPÍTULO 10 Modelagem e repota de itema dicreto 10.1 Introdução O itema dicreto podem er repreentado, do memo modo que o itema contínuo, no domínio do tempo atravé de uma tranformação, nete cao a tranformada

Leia mais

Professora FLORENCE. Resolução:

Professora FLORENCE. Resolução: 1. (FEI-SP) Qual o valor, em newton, da reultante da força que agem obre uma maa de 10 kg, abendo-e que a mema poui aceleração de 5 m/? Reolução: F m. a F 10. 5 F 50N. Uma força contante F é aplicada num

Leia mais

Modelagem Matemática e Simulação computacional de um atuador pneumático considerando o efeito do atrito dinâmico

Modelagem Matemática e Simulação computacional de um atuador pneumático considerando o efeito do atrito dinâmico Modelagem Matemática e Simulação computacional de um atuador pneumático coniderando o efeito do atrito dinâmico Antonio C. Valdiero, Carla S. Ritter, Luiz A. Raia Depto de Ciência Exata e Engenharia, DCEEng,

Leia mais

PROTEÇÕES COLETIVAS. Modelo de Dimensionamento de um Sistema de Guarda-Corpo

PROTEÇÕES COLETIVAS. Modelo de Dimensionamento de um Sistema de Guarda-Corpo PROTEÇÕES COLETIVAS Modelo de Dimenionamento de um Sitema de Guarda-Corpo PROTEÇÕES COLETIVAS Modelo de Dimenionamento de um Sitema de Guarda-Corpo PROTEÇÕES COLETIVAS Modelo de Dimenionamento de um Sitema

Leia mais

Universidade Presbiteriana Mackenzie. Automação e Controle I

Universidade Presbiteriana Mackenzie. Automação e Controle I Univeridade Prebiteriana Mackenzie Curo de Engenharia Elétrica Automação e Controle I Nota de Aula Prof. Marcio Eiencraft Segundo emetre de 006 Univeridade Prebiteriana Mackenzie Curo de Engenharia Elétrica

Leia mais

P U C R S PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA CURSO DE ENGENHARIA CIVIL CONCRETO ARMADO II FORÇA CORTANTE

P U C R S PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA CURSO DE ENGENHARIA CIVIL CONCRETO ARMADO II FORÇA CORTANTE P U C R S PONTIFÍCI UNIERSIDDE CTÓLIC DO RIO GRNDE DO SUL FCULDDE DE ENGENHRI CURSO DE ENGENHRI CIIL CONCRETO RMDO II FORÇ CORTNTE Pro. lmir Schäer PORTO LEGRE MRÇO DE 006 1 FORÇ CORTNTE 1- Notaçõe principai

Leia mais

ESTUDOS EXPERIMENTAIS SOBRE A AVALIAÇÃO DAS PROPRIEDADES DE FLUIDOS DE PERFURAÇÃO EM MEIOS POROSOS ANISOTRÓPICOS

ESTUDOS EXPERIMENTAIS SOBRE A AVALIAÇÃO DAS PROPRIEDADES DE FLUIDOS DE PERFURAÇÃO EM MEIOS POROSOS ANISOTRÓPICOS 3 a 6 de outubro de 0 Univeridade Federal Rural do Rio de Janeiro Univeridade Severino Sombra aoura RJ ESTUDOS EXPERIMENTIS SOBRE LIÇÃO DS PROPRIEDDES DE FLUIDOS DE PERFURÇÃO EM MEIOS POROSOS NISOTRÓPICOS.

Leia mais

AÇÕES DE CONTROLE. Ações de Controle Relação Controlador/Planta Controlador proporcional Efeito integral Efeito derivativo Controlador PID

AÇÕES DE CONTROLE. Ações de Controle Relação Controlador/Planta Controlador proporcional Efeito integral Efeito derivativo Controlador PID AÇÕES E CONTROLE Açõe de Controle Relação Controlador/Planta Controlador roorcional Efeito integral Efeito derivativo Controlador PI Controle de Sitema Mecânico - MC - UNICAMP Açõe comun de controle Ação

Leia mais

AULA 02 POTÊNCIA MECÂNICA. = τ. P ot

AULA 02 POTÊNCIA MECÂNICA. = τ. P ot AULA 0 POTÊNCIA MECÂNICA 1- POTÊNCIA Uma força pode realizar um memo trabalho em intervalo de tempo diferente. Quando colocamo um corpo de maa m obre uma mea de altura H num local onde a aceleração da

Leia mais

Tensão Induzida por Fluxo Magnético Transformador

Tensão Induzida por Fluxo Magnético Transformador defi deartamento de fíica Laboratório de Fíica www.defi.ie.i.t Tenão Induzida or Fluxo Magnético Tranformador Intituto Suerior de Engenharia do Porto- Deartamento de Fíica Rua Dr. António Bernardino de

Leia mais

Livro para a SBEA (material em construção) Edmundo Rodrigues 9. peneiras

Livro para a SBEA (material em construção) Edmundo Rodrigues 9. peneiras Livro para a SBEA (material em contrução) Edmundo Rodrigue 9 4.1. Análie granulométrica Granulometria, graduação ou compoição granulométrica de um agregado é a ditribuição percentual do eu divero tamanho

Leia mais

Resolução Física. Atividades 2. FM.09 1. e Após abandonar a mão do jogador, a bola só sofre a ação exclusiva da força peso. FM.10 1.

Resolução Física. Atividades 2. FM.09 1. e Após abandonar a mão do jogador, a bola só sofre a ação exclusiva da força peso. FM.10 1. eolução Fíica FM.09. e pó abandonar a mão do jogador, a bola ó ofre a ação excluia da força peo.. c Como a força formam 90 entre i e têm o memo módulo (), temo: F Como ele dece em MU, a força reultante

Leia mais

Quantas equações existem?

Quantas equações existem? www2.jatai.ufg.br/oj/index.php/matematica Quanta equaçõe exitem? Rogério Céar do Santo Profeor da UnB - FUP profeorrogeriocear@gmail.com Reumo O trabalho conite em denir a altura de uma equação polinomial

Leia mais

Capítulo 5: Análise através de volume de controle

Capítulo 5: Análise através de volume de controle Capítulo 5: Análie atravé de volume de controle Volume de controle Conervação de maa Introdução Exite um fluxo de maa da ubtância de trabalho em cada equipamento deta uina, ou eja, na bomba, caldeira,

Leia mais

Fenômenos de Transporte I

Fenômenos de Transporte I Fenômeno de Tranorte I Aula Prof. r. Gilberto Garcia Cortez 9.3 Ecoamento em um duto e tubo. 9.3. Conideraçõe erai O ecoamento em duto ou tubo é etudo de rande imortância, oi ão o reonáei elo tranorte

Leia mais

Experimento #4. Filtros analógicos ativos LABORATÓRIO DE ELETRÔNICA

Experimento #4. Filtros analógicos ativos LABORATÓRIO DE ELETRÔNICA UNIVESIDADE FEDEAL DE CAMPINA GANDE CENTO DE ENGENHAIA ELÉTICA E INFOMÁTICA DEPATAMENTO DE ENGENHAIA ELÉTICA LABOATÓIO DE ELETÔNICA Experimento #4 Filtro analógico ativo EXPEIMENTO #4 Objetivo Gerai Eta

Leia mais

Associação de Professores de Matemática PROPOSTA DE RESOLUÇÃO DO EXAME DE MATEMÁTICA APLICADA ÀS CIÊNCIAS SOCIAIS (PROVA 835) 2013 2ªFASE

Associação de Professores de Matemática PROPOSTA DE RESOLUÇÃO DO EXAME DE MATEMÁTICA APLICADA ÀS CIÊNCIAS SOCIAIS (PROVA 835) 2013 2ªFASE Aociação de Profeore de Matemática Contacto: Rua Dr. João Couto, n.º 7-A 1500-36 Liboa Tel.: +351 1 716 36 90 / 1 711 03 77 Fax: +351 1 716 64 4 http://www.apm.pt email: geral@apm.pt PROPOSTA DE RESOLUÇÃO

Leia mais

EXPERIÊNCIA 7 CONVERSORES PARA ACIONAMENTO DE MÁQUINAS ELÉTRICAS

EXPERIÊNCIA 7 CONVERSORES PARA ACIONAMENTO DE MÁQUINAS ELÉTRICAS FACULDADE DE ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO - UNICAMP EE-832 - LABORATÓRIO DE ELETRÔNICA INDUSTRIAL EXPERIÊNCIA 7 CONVERSORES PARA ACIONAMENTO DE MÁQUINAS ELÉTRICAS 7. Introdução A máquina de corrente

Leia mais

Confrontando Resultados Experimentais e de Simulação

Confrontando Resultados Experimentais e de Simulação Confrontando Reultado Experimentai e de Simulação Jorge A. W. Gut Departamento de Engenharia Química Ecola Politécnica da Univeridade de São Paulo E mail: jorgewgut@up.br Um modelo de imulação é uma repreentação

Leia mais

λ =? 300 m/ n = 3ventres nv = 3.300 = 2.6 2.6

λ =? 300 m/ n = 3ventres nv = 3.300 = 2.6 2.6 PROVA DE ÍSICA º ANO - 3ª MENSAL - 3º TRIMESTRE TIPO A 01) E relação ao que oi etudado obre ondulatória, ainale V (erdadeiro) ou (alo). (V) A elocidade de ua onda é igual ao produto do copriento de onda

Leia mais

A transformada de Laplace pode ser usada para resolver equações diferencias lineares com coeficientes constantes, ou seja, equações da forma

A transformada de Laplace pode ser usada para resolver equações diferencias lineares com coeficientes constantes, ou seja, equações da forma Introdução A tranformada de Laplace pode er uada para reolver equaçõe diferencia lineare com coeficiente contante, ou eja, equaçõe da forma ay + by + cy = ft), para a, b, c R Para io, a equação diferencial

Leia mais

Competências/ Objetivos Especifica(o)s

Competências/ Objetivos Especifica(o)s Tema B- Terra em Tranformação Nº previta Materiai Contituição do mundo material Relacionar apecto do quotidiano com a Química. Reconhecer que é enorme a variedade de materiai que no rodeiam. Identificar

Leia mais

Exercícios Resolvidos de Biofísica

Exercícios Resolvidos de Biofísica Exercício Reolvido de Biofíica Faculdade de Medicina da Univeridade de oimbra Exercício Reolvido de Biofíica Metrado ntegrado em Medicina MEMBRNS HOMOGÉNES Exercício 1. Numa experiência com uma membrana

Leia mais

XX SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA GRUPO DE ESTUDO DE ANÁLISE E TÉCNICAS DE SISTEMAS DE POTÊNCIA CA E CC - GAT

XX SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA GRUPO DE ESTUDO DE ANÁLISE E TÉCNICAS DE SISTEMAS DE POTÊNCIA CA E CC - GAT XX SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA Verão.0 22 a 25 Novembro de 2009 Recife PE GRUPO IV GRUPO DE ESTUDO DE ANÁLISE E TÉCNICAS DE SISTEMAS DE POTÊNCIA CA E CC GAT

Leia mais

Campinas www.elitecampinas.com.br Fone: (19) 3232-2713 O ELITE RESOLVE IME 2004 FÍSICA. = +, onde x é a distância entre o plano da lente e a

Campinas www.elitecampinas.com.br Fone: (19) 3232-2713 O ELITE RESOLVE IME 2004 FÍSICA. = +, onde x é a distância entre o plano da lente e a I É-VSIBU www.elitecampina.com.br Fone: (9) -7 O I SOV IM 4 FÍSIC GBIO IM FÍSIC QUSÃO. igura abaio motra uma enda iluminada por uma luz de comprimento de onda. Com a mola não deormada, o ângulo correpondente

Leia mais

Equações Diferenciais (GMA00112) Resolução de Equações Diferenciais por Séries e Transformada de Laplace

Equações Diferenciais (GMA00112) Resolução de Equações Diferenciais por Séries e Transformada de Laplace Equaçõe Diferenciai GMA Reolução de Equaçõe Diferenciai por Série e Tranformada de Laplace Roberto Tocano Couto tocano@im.uff.br Departamento de Matemática Aplicada Univeridade Federal Fluminene Niterói,

Leia mais

Palavras-chave: Tubo Evaporador; Modelo de Drift Flux; Escoamento Bifásico, Simulação Numérica. 1. INTRODUÇÃO

Palavras-chave: Tubo Evaporador; Modelo de Drift Flux; Escoamento Bifásico, Simulação Numérica. 1. INTRODUÇÃO IN 1984-818 Reolução da Equaçõe de Conervação da Maa, Eneria e Momento em Termo de Preão, Título Máico e Fração de Vazio para um Tubo Evaporador Utilizando o Modelo de Drit Flux Luí Henrique Gazeta de

Leia mais

Resolução de Equações Diferenciais Ordinárias por Série de Potências e Transformada de Laplace

Resolução de Equações Diferenciais Ordinárias por Série de Potências e Transformada de Laplace Reolução de Equaçõe Diferenciai Ordinária por Série de Potência e Tranformada de Laplace Roberto Tocano Couto rtocano@id.uff.br Departamento de Matemática Aplicada Univeridade Federal Fluminene Niterói,

Leia mais

Um exemplo de Análise de Covariância. Um exemplo de Análise de Covariância (cont.)

Um exemplo de Análise de Covariância. Um exemplo de Análise de Covariância (cont.) Um exemplo de Análie de Covariância A Regreão Linear e a Análie de Variância etudada até aqui, ão cao particulare do Modelo Linear, que inclui também a Análie de Covariância Em qualquer deta trê ituaçõe

Leia mais

Máquinas Eléctricas. Motores de indução. Motores assíncronos. Arranque

Máquinas Eléctricas. Motores de indução. Motores assíncronos. Arranque Motore de indução Arranque São motore robuto e barato (fabricado em maa), embora tendo o inconveniente de não erem regulávei. Conequentemente, uma vez definido um binário e uma corrente, ete apena dependem

Leia mais

ESTUDO DINÂMICO DA PRESSÃO EM VASOS SEPARADORES VERTICAIS GÁS-LÍQUIDO UTILIZADOS NO PROCESSAMENTO PRIMÁRIO DE PETRÓLEO

ESTUDO DINÂMICO DA PRESSÃO EM VASOS SEPARADORES VERTICAIS GÁS-LÍQUIDO UTILIZADOS NO PROCESSAMENTO PRIMÁRIO DE PETRÓLEO ESTUDO DINÂMICO DA PRESSÃO EM VASOS SEPARADORES VERTICAIS GÁS-LÍQUIDO UTILIZADOS NO PROCESSAMENTO PRIMÁRIO DE PETRÓLEO Thale Cainã do Santo Barbalho 1 ; Álvaro Daniel Tele Pinheiro 2 ; Izabelly Laria Luna

Leia mais

Programa de Formação Técnica Continuada. Categoria de Emprego para Motores CA / CC

Programa de Formação Técnica Continuada. Categoria de Emprego para Motores CA / CC Programa de Formação Técnica Continuada Categoria de Emprego para Motore CA / CC Índice.Introdução.... Chave manuai etrela triângulo.... O motore.... Motore de indução tipo gaiola.... Motore de indução

Leia mais

Fotografando o Eclipse Total da Lua

Fotografando o Eclipse Total da Lua Fotografando o Eclipe Total da Lua (trabalho apreentado para o Mueu de Atronomia e Ciência Afin) http://atrourf.com/diniz/artigo.html Autor: Joé Carlo Diniz (REA-BRASIL) "Você pode e deve fotografar o

Leia mais

Análise de Sensibilidade de Anemômetros a Temperatura Constante Baseados em Sensores Termo-resistivos

Análise de Sensibilidade de Anemômetros a Temperatura Constante Baseados em Sensores Termo-resistivos UNIVERSIDADE FEDERAL DO MARANHÃO CENTRO DE CIÊNCIA E TECNOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE Análie de Senibilidade de Anemômetro a Temperatura Contante Baeado em Senore Termo-reitivo

Leia mais

Figura 3.1 - Curva granulométrica por peneiramento e sedimentação de uma amostra de solo residual (Minas de calcáreo Caçapava do Sul)

Figura 3.1 - Curva granulométrica por peneiramento e sedimentação de uma amostra de solo residual (Minas de calcáreo Caçapava do Sul) Nota de Aula - Mecânica do Solo 23 UNIDADE 3 GRANULOMETRIA DOS SOLOS 3.1 Introdução Todo o olo, em ua fae ólida, contêm partícula de diferente tamanho em proporçõe a mai variada. A determinação do tamanho

Leia mais

CONTROLO DE SISTEMAS. APONTAMENTOS DE MATLAB CONTROL SYSTEM Toolbox. Pedro Dinis Gaspar António Espírito Santo J. A. M.

CONTROLO DE SISTEMAS. APONTAMENTOS DE MATLAB CONTROL SYSTEM Toolbox. Pedro Dinis Gaspar António Espírito Santo J. A. M. UNIVERSIDADE DA BEIRA INTERIOR DEPARTAMENTO DE ENGENHARIA ELECTROMECÂNICA CONTROLO DE SISTEMAS APONTAMENTOS DE MATLAB CONTROL SYSTEM Toolbox Pedro Dini Gapar António Epírito Santo J. A. M. Felippe de Souza

Leia mais

2 Introdução à Fluorescência

2 Introdução à Fluorescência 2 Introdução à luorecência 2. O fenômeno da fluorecência Luminecência é a emião de luz por alguma ubtância, ocorrendo a partir de etado eletrônico excitado. Para ecrever ee capítulo conultamo principalmente

Leia mais

( ) ( ) ( ( ) ( )) ( )

( ) ( ) ( ( ) ( )) ( ) Física 0 Duas partículas A e, de massa m, executam movimentos circulares uniormes sobre o plano x (x e representam eixos perpendiculares) com equações horárias dadas por xa ( t ) = a+acos ( ωt ), ( t )

Leia mais

Vestibular 2013 2 a fase Gabarito Física

Vestibular 2013 2 a fase Gabarito Física etibular 203 2 a fae Gabarito Fíica Quetão 0 (alor: 5 ponto) Cálculo da variação da quantidade de movimento A velocidade inicial no momento do impacto erá a velocidade final da queda Aplicando conervação

Leia mais

Marés, fases principais da Lua e bebês

Marés, fases principais da Lua e bebês Maré, fae principai da ua e bebê CADERNO BRASIEIRO DE ENSINO DE FÍSICA, FORIANÓPOIS, V.0, N. 1: P.10-9, ABR. 003 Fernando ang da Silveira Univeridade Federal do Rio Grande do Sul UFRGS Intituto de Fíica

Leia mais

Laboratório de Sistemas e Sinais Equações Diferenciais

Laboratório de Sistemas e Sinais Equações Diferenciais Laboratório e Sitema e Sinai Equaçõe Diferenciai Luí Cala e Oliveira Abril 2009 O objectivo ete trabalho e laboratório é o e realizar experiência com moelo e itema em tempo contínuo ecrito por equaçõe

Leia mais

METODOLOGIA DE PROJETO DE FILTROS DE SEGUNDA ORDEM PARA INVERSORES DE TENSÃO COM MODULAÇÃO PWM DIGITAL

METODOLOGIA DE PROJETO DE FILTROS DE SEGUNDA ORDEM PARA INVERSORES DE TENSÃO COM MODULAÇÃO PWM DIGITAL METODOLOGIA DE PROJETO DE FILTROS DE SEGUNDA ORDEM PARA INVERSORES DE TENSÃO COM MODULAÇÃO PWM DIGITAL Leandro Michel * Robinon F. de Camargo * michel@ieee.org robinonfc@bol.com.br Fernando Botterón *

Leia mais

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE SÃO PAULO CEFET SP

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE SÃO PAULO CEFET SP Diciplina: Mecânica do Fluido Aplicada Lita de Exercício Reolvido Profeor: 1 de 11 Data: 13/0/08 Caruo 1. Um menino, na tentativa de melhor conhecer o fundo do mar, pretende chegar a uma profundidade de

Leia mais

Apostila de SINAIS E SISTEMAS

Apostila de SINAIS E SISTEMAS Apotila de SINAIS E SISTEMAS Álvaro Luiz Stelle (PhD) DAELN CPGEI CEFET PR Março de 5 I PREFÁCIO Eta apotila tem como objetivo dar ao leitor um embaamento teórico da Tranformada de Laplace, de Fourier

Leia mais

Reconhece e aceita a diversidade de situações, gostos e preferências entre os seus colegas.

Reconhece e aceita a diversidade de situações, gostos e preferências entre os seus colegas. Ecola Báic a 2º º e 3º º Ciclo Tema 1 Viver com o outro Tema Conteúdo Competência Actividade Tema 1 Viver com o outro Valore Direito e Devere Noção de valor O valore como referenciai para a acção: - o

Leia mais

PROCEDIMENTO DE MERCADO AM.04 Cálculo de Votos e Contribuição

PROCEDIMENTO DE MERCADO AM.04 Cálculo de Votos e Contribuição PROCEDIMENTO DE MERCADO AM.04 Cálculo de Voto e Contribuição Reponável pelo PM: Acompanhamento do Mercado CONTROLE DE ALTERAÇÕES Verão Data Decrição da Alteração Elaborada por Aprovada por PM AM.04 - Cálculo

Leia mais

Considere as seguintes expressões que foram mostradas anteriormente:

Considere as seguintes expressões que foram mostradas anteriormente: Demontração de que a linha neutra paa pelo centro de gravidade Foi mencionado anteriormente que, no cao da flexão imple (em eforço normal), a linha neutra (linha com valore nulo de tenõe normai σ x ) paa

Leia mais

Enterprise Quality Management [EQM] Excelência em Gestão da Qualidade

Enterprise Quality Management [EQM] Excelência em Gestão da Qualidade Enterprie Quality Management [EQM] Excelência em Getão da Qualidade A Getão da Qualidade Total, do inglê Total Quality Management - TQM é uma etratégia de adminitração completa que tem como objetivo principal

Leia mais

= T B. = T Bloco A: F = m. = P Btang. s P A. 3. b. P x. Bloco B: = 2T s T = P B 2 s. s T = m 10 B 2. De (I) e (II): 6,8 m A. s m B

= T B. = T Bloco A: F = m. = P Btang. s P A. 3. b. P x. Bloco B: = 2T s T = P B 2 s. s T = m 10 B 2. De (I) e (II): 6,8 m A. s m B eolução Fíica FM.9 1. e Com bae na tabela, obervamo que o atleta etá com 5 kg acima do peo ideal. No gráfico, temo, para a meia maratona: 1 kg,7 min 5 kg x x,5 min. Na configuração apreentada, a força

Leia mais

CAPÍTULO 6 - Testes de significância

CAPÍTULO 6 - Testes de significância INF 16 CAPÍTULO 6 - Tete de ignificância Introdução Tete de ignificância (também conhecido como Tete de Hipótee) correpondem a uma regra deciória que no permite rejeitar ou não rejeitar uma hipótee etatítica

Leia mais

Palavras-chave:Algoritmo Genético; Carregamento de Contêiner; Otimização Combinatória.

Palavras-chave:Algoritmo Genético; Carregamento de Contêiner; Otimização Combinatória. Reolução do Problema de Carregamento e Decarregamento 3D de Contêinere em Terminai Portuário para Múltiplo Cenário via Repreentação por Regra e Algoritmo Genético Aníbal Tavare de Azevedo (UNICAMP) anibal.azevedo@fca.unicamp.br

Leia mais

NOTAS DE AULA ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA RETAS E PLANOS ERON E ISABEL

NOTAS DE AULA ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA RETAS E PLANOS ERON E ISABEL NOTAS DE AULA ÁLGEBRA VETORIAL E GEOMETRIA ANALÍTICA RETAS E PLANOS ERON E ISABEL SALVADOR BA 7 EQUAÇÃO VETORIAL DA RETA EQUAÇÕES DA RETA DEF: Qualque eto não nulo paalelo a uma eta chama-e eto dieto dea

Leia mais

v t Unidade de Medida: Como a aceleração é dada pela razão entre velocidade e tempo, dividi-se também suas unidades de medida.

v t Unidade de Medida: Como a aceleração é dada pela razão entre velocidade e tempo, dividi-se também suas unidades de medida. Diciplina de Fíica Aplicada A / Curo de Tecnólogo em Geão Ambienal Profeora M. Valéria Epíndola Lea. Aceleração Média Já imo que quando eamo andando de carro em muio momeno é neceário reduzir a elocidade,

Leia mais

31.1 Treliça de Mörsch

31.1 Treliça de Mörsch Univeridade Católica de Goiá - Departamento de Engenharia Etrutura de Concreto Armado I - Nota de Aula conteúdo 31 cialhamento 31.1 Treliça de Mörch O comportamento de peça fletida (fiurada) de concreto

Leia mais

SISTEMA S01 - Sistema Mecânico Massa-Mola- Amortecedor montado em um carro

SISTEMA S01 - Sistema Mecânico Massa-Mola- Amortecedor montado em um carro CCI- Matemática Computacional/ 008 SISTEMA S0 - Sistema Mecânico Massa-Mola- Amortecedor montado em um carro Considere um sistema mecânico massa-mola-amortecedor montado em um carro de massa desprezíel,

Leia mais

Processos em Engenharia: Introdução a Servomecanismos

Processos em Engenharia: Introdução a Servomecanismos Processos em Engenharia: Introdução a Servomecanismos Prof. Daniel Coutinho coutinho@das.ufsc.br Departamento de Automação e Sistemas DAS Universidade Federal de Santa Catarina UFSC DAS 5101 - Aula 7 p.1/47

Leia mais

SISTEMAS DE CONTROLE DE PROCESSOS

SISTEMAS DE CONTROLE DE PROCESSOS SISTEMAS DE CONTROLE DE PROCESSOS PACOTE DE ATIVIDADES DE APRENDIZADO DIAGRAMAS DE TUBULAÇÃO E INSTRUMENTAÇÃO TM B270-XD-P PACOTE DE ATIVIDADES DE APRENDIZADO 3 DIAGRAMAS DE TUBULAÇÃO E INSTRUMENTAÇÃO

Leia mais

Física 1 Capítulo 7 Dinâmica do Movimento de Rotação Prof. Dr. Cláudio Sérgio Sartori.

Física 1 Capítulo 7 Dinâmica do Movimento de Rotação Prof. Dr. Cláudio Sérgio Sartori. Fíica Capítulo 7 Dinâmica do Movimento de Rotação Prof. Dr. Cláudio Sérgio Sartori. Introdução: Ao uarmo uma chave de roda para retirar o parafuo para trocar o pneu de um automóvel, a roda inteira pode

Leia mais

ESCOLA TÉCNICA FEDERAL DE SÃO PAULO CEFET SP ÁREA INDUSTRIAL Disciplina: Máquinas Hidráulicas MHL Exercícios resolvidos

ESCOLA TÉCNICA FEDERAL DE SÃO PAULO CEFET SP ÁREA INDUSTRIAL Disciplina: Máquinas Hidráulicas MHL Exercícios resolvidos Diciplina: Máquina Hidráulica MHL Exercício reolido /7 Data: 02/0/00 ) Deontrar a igualdade nuérica entre a aa de u fluido no itea MKS e eu peo no itea MK*S Seja x o núero que repreenta, ito é: x coo:

Leia mais

EME610 - Sistemas Hidropneumáticos Hidráulica 03

EME610 - Sistemas Hidropneumáticos Hidráulica 03 UNIFEI EME610 - Sitema Hidropneumático Hidráulica 03 Válvula de egurança (limitadora de preão) Aula 03 Prof. Joé Hamilton Chave Gorgulho Júnior 1 3 Válvula de egurança (limitadora de preão) Válvula de

Leia mais

SITE EM JAVA PARA A SIMULAÇÃO DE MÁQUINAS ELÉTRICAS

SITE EM JAVA PARA A SIMULAÇÃO DE MÁQUINAS ELÉTRICAS SITE EM JAVA PARA A SIMULAÇÃO DE MÁQUINAS ELÉTRICAS Reumo Luca Franco de Ai¹ Marcelo Semenato² ¹Intituto Federal de Educação, Ciência e Tecnologia/Campu Jataí/Engenharia Elétrica/PIBIT-CNPQ lucafranco_jty@hotmail.com

Leia mais

3 Amplificador óptico a fibra dopada

3 Amplificador óptico a fibra dopada 3 Amlificador ótico a fibra doada Em qualquer itema de tranmião o amlificador tem um ael imortante de catar o inal que leva a informação, amlificá-lo, e devolvê-lo ara o canal de tranmião ou ara o recetor,

Leia mais

Modelagem de Sistemas Dinâmicos. Eduardo Camponogara

Modelagem de Sistemas Dinâmicos. Eduardo Camponogara Equações Diferenciais Ordinárias Modelagem de Sistemas Dinâmicos Eduardo Camponogara Departamento de Automação e Sistemas Universidade Federal de Santa Catarina DAS-5103: Cálculo Numérico para Controle

Leia mais

Resistência dos Materiais SUMÁRIO 1. TENSÕES DE CISALHAMENTO... 1 1.1 DIMENSIONAMENTO... 2 1.2 EXEMPLOS... 2

Resistência dos Materiais SUMÁRIO 1. TENSÕES DE CISALHAMENTO... 1 1.1 DIMENSIONAMENTO... 2 1.2 EXEMPLOS... 2 Reitência do Materiai SUMÁRIO 1. TESÕES DE CISLHMETO... 1 1.1 DIMESIOMETO... 1. EXEMPLOS... Cialhamento 0 Prof. Joé Carlo Morilla Reitência do Materiai 1. Tenõe de Cialhamento Quando dua força cortante

Leia mais

Nestas notas será analisado o comportamento deste motor em regime permanente.

Nestas notas será analisado o comportamento deste motor em regime permanente. MOTO DE INDUÇÃO TIFÁSICO 8/0/006 Ivan Camargo Introdução O motor de indução trifáico correponde a, aproximadamente, 5 % da carga elétrica do Brail, ou eja, 50 % da carga indutrial que, por ua vez, correponde

Leia mais

Controle Servo e Regulatório

Controle Servo e Regulatório ontrole Sero e Regulatório Outro Proeo de Searação Prof a Ninoka Bojorge Deartamento de Engenharia Químia e de Petróleo U Sitema de mitura de orrente, w 2, w 2 Relembrando Exemlo da aula anterior A, w

Leia mais

ENG04030 - ANÁLISE DE CIRCUITOS I ENG04030

ENG04030 - ANÁLISE DE CIRCUITOS I ENG04030 EG04030 AÁISE DE IRUITOS I Aula 20 ircuito de ª ordem: análie no domínio do tempo apacitore e indutore em regime permanente ; circuito diviore de corrente e de tenão em capacitore e indutore Sérgio Haffner

Leia mais

IDENTIFICAÇÃO DOS PARÂMETROS ELÉTRICOS DE UM MOTOR DE CORRENTE ALTERNADA

IDENTIFICAÇÃO DOS PARÂMETROS ELÉTRICOS DE UM MOTOR DE CORRENTE ALTERNADA Anai do 12 O Encontro de Iniciação Científica e Pó-Graduação do ITA XII ENCITA / 26 Intituto Tecnológico de Aeronáutica São Joé do Campo SP Brail Outubro 16 a 19 26 IDENTIFICAÇÃO DOS PARÂMETROS ELÉTRICOS

Leia mais

DISTRIBUIÇÃO DE TEMPOS DE RESIDÊNCIA EM SISTEMAS ALIMENTADOS COM VAZÃO VARIÁVEL. Renata Akemi Sassaki

DISTRIBUIÇÃO DE TEMPOS DE RESIDÊNCIA EM SISTEMAS ALIMENTADOS COM VAZÃO VARIÁVEL. Renata Akemi Sassaki DISTRIBUIÇÃO DE TEMPOS DE RESIDÊNIA EM SISTEMAS ALIMENTADOS OM VAZÃO VARIÁVEL Renata Akemi Saaki TESE SUBMETIDA AO ORPO DOENTE DA OORDENAÇÃO DOS PROGRAMAS DE PÓS-GRADUAÇÃO DE ENGENHARIA DA UNIVERSIDADE

Leia mais

FUNÇÕES DE TRANSFERÊNCIA

FUNÇÕES DE TRANSFERÊNCIA CAPÍTULO FUNÇÕE DE TRANFERÊNCIA INTRODUÇÃO O filtro contínuo roceam inai definido em qualquer intante de temo e que têm qualquer amlitude oível O filtro contínuo odem er realizado com diferente tecnologia

Leia mais

Apresentação de Motores Elétricos Trifásicos ABNT

Apresentação de Motores Elétricos Trifásicos ABNT Apreentação de Motore Elétrico Trifáico ABNT Apreentação de Motore Elétrico Apreentação de Motore Elétrico Caixa de Ligação Olhal para Prena-cabo Ventilador Rolamento de Efera Chaveta Ponta de Eixo Tampa

Leia mais

1. Introdução... 1. 1.1 Âmbito... 1 1.2 Motivação... 2 1.3 Objectivo... 3 1.4 Organização... 3. 2. O Motor de Indução Trifásico...

1. Introdução... 1. 1.1 Âmbito... 1 1.2 Motivação... 2 1.3 Objectivo... 3 1.4 Organização... 3. 2. O Motor de Indução Trifásico... Indice Índice Pág. 1. Introdução... 1 1.1 Âmbito... 1 1. Motivação... 1.3 Objectivo... 3 1.4 Organização... 3. O Motor de Indução Trifáico... 5.1 Parâmetro que Caracterizam o eu Funcionamento... 5. Modelo

Leia mais

1. PRINCÍPIOS FUNDAMENTAIS PARA A CONCEPÇÃO E O DESENVOLVIMENTO DA SENSIBILIDADE ESTRUTURAL

1. PRINCÍPIOS FUNDAMENTAIS PARA A CONCEPÇÃO E O DESENVOLVIMENTO DA SENSIBILIDADE ESTRUTURAL UDESC UNIVERSIDADE DO ESTADO DE SANTA CATARINA CCT CENTRO DE CIÊNCIAS TECNOLÓGICAS DEC DEPARTAMENTO DE ENGENHARIA CIVIL APOSTILA DE CONCRETO ARMADO I CAR I 2º emetre de 2011 Proa. Sandra Denie Kruger Alve

Leia mais

O CORPO HUMANO E A FÍSICA

O CORPO HUMANO E A FÍSICA 1 a fae Prova para aluno do 9º e 1º ano LEIA ATENTAMENTE AS INSTRUÇÕES ABAIXO: 01) Eta prova detina-e excluivamente a aluno do 9 o ano do enino fundamental e 1º ano do enino médio. Ela contém trinta quetõe.

Leia mais

APOSTILA DE USO DO SOFTWARE COMPUTACIONAL ModSym

APOSTILA DE USO DO SOFTWARE COMPUTACIONAL ModSym UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE CENTRO DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA DE COMPUTAÇÃO E AUTOMAÇÃO APOSTILA DE USO DO SOFTWARE COMPUTACIONAL ModSym Prof. André Laurindo Maitelli 28 de

Leia mais

Curso de Análise Matricial de Estruturas 1 I - INTRODUÇÃO

Curso de Análise Matricial de Estruturas 1 I - INTRODUÇÃO Curo de Análie Matricial de Etrutura 1 I - INTRODUÇÃO I.1 - Introdução O proceo de um projeto etrutural envolve a determinação de força interna e de ligaçõe e de delocamento de uma etrutura. Eta fae do

Leia mais

Observação: CURSOS MICROSOFT

Observação: CURSOS MICROSOFT Obervação: O material utilizado nete curo é de propriedade e ditribuição da emprea Microoft, podendo er utilizado por qualquer peoa no formato de ditribuição WEB e leitura em PDF conforme decrito na lei

Leia mais

Cap. 3 Máquinas de Indução Polifásicas 1. Máquinas de Indução Polifásicas

Cap. 3 Máquinas de Indução Polifásicas 1. Máquinas de Indução Polifásicas Cap. 3 Máquina de Indução Polifáica Máquina de Indução Polifáica Cap. 3 Máquina de Indução Polifáica Índice ÍNDICE... CAPÍTULO 3... MÁQUINAS DE INDUÇÃO POLIFÁSICAS... A. Decrição geral da máquina de indução

Leia mais

6.2.1 Prescrições gerais

6.2.1 Prescrições gerais CAPÍTULO 6.2 PRESCRIÇÕES RELATIVAS AO FABRICO E AOS ENSAIOS SOBRE OS RECIPIENTES SOB PRESSÃO, AEROSSÓIS, RECIPIENTES DE BAIXA CAPACIDADE CONTENDO GÁS (CARTUCHOS DE GÁS) E CARTUCHOS DE PILHAS DE COMBUSTÍVEL

Leia mais

Modelagem de Edificações com Multi-Pavimentos em Concreto Pré-Moldado. Joaquim E Mota

Modelagem de Edificações com Multi-Pavimentos em Concreto Pré-Moldado. Joaquim E Mota Modelagem de Edificações com Multi-Pavimentos em Concreto Pré-Moldado. Joaquim E Mota MOTIVAÇÃO A CRECENTE UTILIZAÇÃO DE ETRUTURA DO TIPO MULTI-PIO DE CONCRETO PRÉ-MOLDADO ETUTURA TIPO EQUELETO OU RETICULADA

Leia mais

DIMENSIONAMENTO DE REFORÇO À FLEXÃO E AO CORTE COM FRP SEGUNDO AS RECOMENDAÇÕES DO ACI 440 Joaquim Barros Report 04-DEC/E-12

DIMENSIONAMENTO DE REFORÇO À FLEXÃO E AO CORTE COM FRP SEGUNDO AS RECOMENDAÇÕES DO ACI 440 Joaquim Barros Report 04-DEC/E-12 DIMENSIONAMENTO DE REFORÇO À FLEXÃO E AO CORTE COM FRP SEGUNDO AS RECOMENDAÇÕES DO ACI 440 Joaquim Barro Report 04-DEC/E-1 O autor agradece a bola SFRH/BSAB/91/00-POCTI concedida pela FCT e FSE no âmbito

Leia mais

UMA ABORDAGEM GLOBAL PARA O PROBLEMA DE CARREGAMENTO NO TRANSPORTE DE CARGA FRACIONADA

UMA ABORDAGEM GLOBAL PARA O PROBLEMA DE CARREGAMENTO NO TRANSPORTE DE CARGA FRACIONADA UMA ABORDAGEM GLOBAL PARA O PROBLEMA DE CARREGAMENTO NO TRANSPORTE DE CARGA FRACIONADA Benjamin Mariotti Feldmann Mie Yu Hong Chiang Marco Antonio Brinati Univeridade de São Paulo Ecola Politécnica da

Leia mais

GABARITO NÍVEL III. Questão 1) As Leis de Kepler.

GABARITO NÍVEL III. Questão 1) As Leis de Kepler. SOCIEDADE ASTONÔMICA BASILEIA SAB IV Olimpíada Braileira de Atronomia IV OBA - 001 Gabarito da Prova de nível III (para aluno do enino médio) GABAITO NÍVEL III Quetão 1) A Lei de Kepler. Johanne Kepler,

Leia mais

RESISTÊNCIA E PROPULSÃO Mestrado em Engenharia e Arquitectura Naval Exame de 2ª Época 26 de Janeiro de 2010 Duração: 3 horas

RESISTÊNCIA E PROPULSÃO Mestrado em Engenharia e Arquitectura Naval Exame de 2ª Época 26 de Janeiro de 2010 Duração: 3 horas RESISTÊNCIA E PROPULSÃO Metrado e Engenharia e Arquitectura Naval Exae de ª Época 6 de Janeiro de 010 Duração: 3 hora Quetão 1. U porta-contentore te a eguinte caracterítica: -Superfície olhada: 5454.

Leia mais

Física Básica: Mecânica - H. Moysés Nussenzveig, 4.ed, 2003 Problemas do Capítulo 2

Física Básica: Mecânica - H. Moysés Nussenzveig, 4.ed, 2003 Problemas do Capítulo 2 Fíica Báica: Mecânica - H. Moyé Nuenzveig, 4.ed, 003 Problea do Capítulo por Abraha Moyé Cohen Departaento de Fíica - UFAM Manau, AM, Brail - 004 Problea Na célebre corrida entre a lebre e a tartaruga,

Leia mais

ESTUDO COMPARATIVO ENTRE OS PROCEDIMENTOS DE AMOSTRAGEM CASUAL SIMPLES E AMOSTRAGEM SISTEMÁTICA

ESTUDO COMPARATIVO ENTRE OS PROCEDIMENTOS DE AMOSTRAGEM CASUAL SIMPLES E AMOSTRAGEM SISTEMÁTICA Etudo comparativo entre o procedimento de amotragem... 67 ESTUDO COMPARATIVO ENTRE OS PROCEDIMENTOS DE AMOSTRAGEM CASUAL SIMPLES E AMOSTRAGEM SISTEMÁTICA EM INVENTÁRIOS DE ARBORIZAÇÃO URBANA Comparative

Leia mais

EFEITOS DO COEFICIENTE DE POISSON E ANÁLISE DE ERRO DE TENSÕES EM TECTÔNICA DE SAL

EFEITOS DO COEFICIENTE DE POISSON E ANÁLISE DE ERRO DE TENSÕES EM TECTÔNICA DE SAL Copright 004, Intituto Braileiro de Petróleo e Gá - IBP Ete Trabalho Técnico Científico foi preparado para apreentação no 3 Congreo Braileiro de P&D em Petróleo e Gá, a er realizado no período de a 5 de

Leia mais

3 Fuga de cérebros e investimentos em capital humano na economia de origem uma investigação empírica do brain effect 3.1.

3 Fuga de cérebros e investimentos em capital humano na economia de origem uma investigação empírica do brain effect 3.1. 3 Fuga de cérebro e invetimento em capital humano na economia de origem uma invetigação empírica do brain effect 3.1. Introdução Uma da vertente da literatura econômica que etuda imigração eteve empre

Leia mais

CAPÍTULO II MÁQ UINAS DE INDUÇÃO

CAPÍTULO II MÁQ UINAS DE INDUÇÃO 34 CAPÍTULO II MÁQ UINAS DE INDUÇÃO.) INTRODUÇÃO A áquina de indução é a ai iple da áquina elétrica rotativa, eja ob o ponto de vita de ua contrução, eja ob o ponto de vita de ua operação. O eu principal

Leia mais

Método de Eliminação de Gauss. Eduardo Camponogara

Método de Eliminação de Gauss. Eduardo Camponogara Sistemas de Equações Lineares Método de Eliminação de Gauss Eduardo Camponogara Departamento de Automação e Sistemas Universidade Federal de Santa Catarina DAS-5103: Cálculo Numérico para Controle e Automação

Leia mais

CURSO DE ENGENHARIA DO AMBIENTE FÍSICA E QUÍMICA DA ATMOSFERA

CURSO DE ENGENHARIA DO AMBIENTE FÍSICA E QUÍMICA DA ATMOSFERA CURSO DE ENGENHARIA DO AMBIENE FÍSICA E QUÍMICA DA AMOSFERA Ano Lectivo 2004/2005 Época Epecial: 17/10/2005 I (4.8 valore) Atribua a cada uma da afirmaçõe eguinte, em jutificar, uma da claificaçõe: Verdadeiro

Leia mais

Modelagem no Domínio do Tempo. Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1

Modelagem no Domínio do Tempo. Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1 Carlos Alexandre Mello 1 Modelagem no Domínio da Frequência A equação diferencial de um sistema é convertida em função de transferência, gerando um modelo matemático de um sistema que algebricamente relaciona

Leia mais

Compensadores. Controle 1 - DAELN - UTFPR. Os compensadores são utilizados para alterar alguma característica do sistema em malha fechada.

Compensadores. Controle 1 - DAELN - UTFPR. Os compensadores são utilizados para alterar alguma característica do sistema em malha fechada. Compenadore 0.1 Introdução Controle 1 - DAELN - UTFPR Prof. Paulo Roberto Brero de Campo O compenadore ão utilizado para alterar alguma caracterítica do itema em malha fechada. 1. Avanço de fae (lead):

Leia mais

PENSAMENTO SISTÊMICO APLICADO A SISTEMAS DE INFORMAÇÃO UM ESTUDO DE CASO. Leila Lage Humes lhumes@usp.br

PENSAMENTO SISTÊMICO APLICADO A SISTEMAS DE INFORMAÇÃO UM ESTUDO DE CASO. Leila Lage Humes lhumes@usp.br V I I S E M E A D E S T U D O D E C A S O M É T O D O S Q U A N T I T A T I V O S E I N F O R M Á T I C A PENSAMENTO SISTÊMICO APLICADO A SISTEMAS DE INFORMAÇÃO UM ESTUDO DE CASO Leila Lage Hume lhume@up.br

Leia mais

Mecânica dos Fluidos (MFL0001) CAPÍTULO 4: Equações de Conservação para Tubo de Corrente

Mecânica dos Fluidos (MFL0001) CAPÍTULO 4: Equações de Conservação para Tubo de Corrente Mecânica do Fluido (MFL000) Curo de Engenharia Civil 4ª fae Prof. Dr. Doalcey Antune Ramo CAPÍTULO 4: Equaçõe de Conervação ara Tubo de Corrente Fonte: Bitafa, Sylvio R. Mecânica do Fluido: noçõe e alicaçõe.

Leia mais

Avaliação de Ações. Mercado de Capitais. Luiz Brandão. Ações. Mercado de Ações

Avaliação de Ações. Mercado de Capitais. Luiz Brandão. Ações. Mercado de Ações Mercado de Capitai Avaliação de Açõe Luiz Brandão O título negociado no mercado podem de renda fixa ou de renda variável. Título de Renda Fixa: Conhece-e de antemão qual a remuneração a er recebida. odem

Leia mais

Torque Eletromagnético de Máquinas CA. com Entreferro Constante

Torque Eletromagnético de Máquinas CA. com Entreferro Constante 1. Intodução Apotila 4 Diciplina de Coneão de Enegia B Toque Eletoagnético de Máquina CA co Entefeo Contante Neta apotila ão abodado o pincipai apecto elacionado co a podução de toque e áquina de coente

Leia mais

MODELAGEM DE TRANSFORMADORES TRIFÁSICOS DE DISTRIBUIÇÃO PARA ESTUDOS DE FLUXO DE POTÊNCIA

MODELAGEM DE TRANSFORMADORES TRIFÁSICOS DE DISTRIBUIÇÃO PARA ESTUDOS DE FLUXO DE POTÊNCIA MODELAGEM DE TRANSFORMADORES TRIFÁSICOS DE DISTRIBUIÇÃO PARA ESTUDOS DE FLUXO DE POTÊNCIA FABRÍCIO LUIZ SILA DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DA COORDENAÇÃO DOS PROGRAMAS DE PÓS-GRADUAÇÃO DE ENGENHARIA

Leia mais

Vicente Leite (1), Henrique Teixeira (1), Rui Araújo (2), Diamantino Freitas (2) Resumo

Vicente Leite (1), Henrique Teixeira (1), Rui Araújo (2), Diamantino Freitas (2) Resumo Sitema Electrónico de Condicionamento e Proceamento, em Tempo Real, da Tenõe e Corrente do Motor de Indução Trifáico Alimentado por Converore de Frequência Vicente Leite (1), Henrique Teieira (1), Rui

Leia mais