Endereçamento IP. S u m á r i o Visão Geral Camada de Internet Endereços de Internet...04

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Endereçamento IP. S u m á r i o Visão Geral...02 1 Camada de Internet...03 2 Endereços de Internet...04"

Transcrição

1 Endereçamento IP S u m á r i o Visão Geral Camada de Internet Endereços de Internet Endereçamento IP Conversão decimal/binário Endereçamento IPv Endereços IP classes A, B, C, D e E Endereços IP reservados Endereços IP públicos e privados Introdução às sub-redes IPv4 X IPv Obtendo um endereço da Internet Atribuição estática do endereço IP Gerenciamento de Endereços IP com uso de DHCP Problemas de resolução de endereços Testando a conectividade com o ping Protocolo de Resolução de Endereços (ARP) Sub-Redes Introdução e razão para a divisão em sub-redes Estabelecimento do endereço da máscara de sub-rede Aplicação da máscara de sub-rede Divisão de redes das classes A e B em sub-redes Cálculo da sub-rede residente através do ANDing...34 Bibliografia... 35

2 Visão Geral A Internet foi desenvolvida para oferecer uma rede de comunicação que pudesse continuar funcionando em tempos de guerra. Embora tenha evoluído de maneira bem diferente daquela imaginada por seus idealizadores, ela ainda é baseada no conjunto de protocolos TCP/IP. O projeto do TCP/IP é ideal para uma rede descentralizada e robusta como é a Internet. Muitos protocolos usados hoje em dia foram criados usando o modelo TCP/IP de quatro camadas. É útil conhecer os dois modelos de rede TCP/IP e OSI. Cada modelo oferece sua própria estrutura para explicar como uma rede funciona, mas há muita sobreposição entre eles. Sem conhecer os dois, é possível que um administrador de rede não tenha uma percepção suficientemente clara sobre as razões pelas quais uma rede funciona da maneira que funciona. Qualquer dispositivo da Internet que queira comunicar-se com outros dispositivos da Internet precisa ter um identificador exclusivo. Esse identificador é conhecido como endereço IP, porque os roteadores usam um protocolo da camada três, o protocolo IP, para encontrar o melhor caminho até esse dispositivo. O IPv4, versão atual do IP, foi concebido antes que houvesse uma grande demanda por endereços. O crescimento explosivo da Internet tem ameaçado esgotar o estoque de endereços IP. As sub-redes, a tradução de endereços de rede (NAT, Network Address Translation) e o endereçamento privado são usados para expandir o endereçamento IP sem que esse estoque termine. Uma outra versão do IP, conhecida como IPv6, apresenta melhorias em relação à versão atual, oferecendo um espaço de endereçamento muito maior, integrando ou eliminando os métodos usados para lidar com as deficiências do IPv4. Para fazer parte da Internet, além do endereço MAC físico, cada computador precisa de um endereço IP exclusivo, às vezes chamado de endereço lógico. Há vários métodos para atribuir um endereço IP a um dispositivo. Alguns dispositivos têm sempre um endereço estático, enquanto outros têm um endereço temporário atribuído a eles toda vez que se conectam à rede. Quando é necessário um endereço IP atribuído dinamicamente, o dispositivo pode obtê-lo por meio de vários métodos. Para que ocorra um roteamento eficiente entre os dispositivos, outras questões precisam ser resolvidas. Por exemplo, endereços IP duplicados podem impedir o roteamento eficiente dos dados. Veremos nesse texto: Descrever a função e a estrutura dos endereços IP. Entender por que as sub-redes são necessárias. Explicar a diferença entre os endereçamentos público e privado. Entender a função dos endereços IP reservados. 2

3 Explicar o uso de endereçamento estático e dinâmico para um dispositivo. Entender como o endereçamento dinâmico pode ser feito usando DHCP. Usar o Ping Usar ARP para obter o endereço MAC e enviar um pacote para outro dispositivo. Entender as questões relacionadas ao endereçamento entre redes. Classes de endereços IP de rede Introdução e razão para a divisão em sub-redes Estabelecimento do endereço da máscara de sub-rede Aplicação da máscara de sub-rede Divisão de redes das classes A e B em sub-redes Cálculo da sub-rede residente através do ANDing 1 Camada de Internet A finalidade da camada de Internet é escolher o melhor caminho para os pacotes viajarem através da rede. O principal protocolo que funciona nessa camada é o IP (Internet Protocol). A determinação do melhor caminho e a comutação de pacotes ocorrem nesta camada. Os seguintes protocolos operam na camada de Internet TCP/IP: O IP oferece roteamento de pacotes sem conexão, e uma entrega de melhor esforço. Ele não se preocupa com o conteúdo dos pacotes, apenas procura um caminho até o destino. O ICMP (Internet Control Message Protocol Protocolo de Mensagens de Controle da Internet) oferece recursos de controle e de mensagens. O ARP (Address Resolution Protocol Protocolo de Resolução de Endereços) determina o endereço da camada de enlace (-o endereço MAC),ara os endereços IP conhecidos. O RARP (Reverse Address Resolution Protocol Protocolo de Resolução Reversa de Endereços) determina os endereços IP quando o endereço MAC é conhecido. O IP realiza as seguintes operações: Define um pacote e um esquema de endereçamento Transfere dados entre a camada de Internet e as camadas de acesso à rede Roteia os pacotes para os hosts remotos Finalmente, como esclarecimento sobre a tecnologia, o IP às vezes é considerado um protocolo nãoconfiável. Isso não significa que o IP não entregue os dados de maneira precisa através de uma rede. Chamá-lo de protocolo não-confiável significa simplesmente que o IP não realiza a verificação e 3

4 correção de erros. Essa função é realizada pelos protocolos de camadas superiores, as camadas de transporte ou de aplicação. Figura 1 Modelo TCP/IP. 2 Endereços de Internet 2.1 Endereçamento IP Para que dois sistemas quaisquer comuniquem-se, eles precisam ser capazes de se identificar e localizar um ao outro. Um computador pode estar conectado a mais de uma rede. Nesta situação, o sistema deve receber mais de um endereço. Cada endereço identificará a conexão do computador a uma rede diferente. Não se fala que um dispositivo tem um endereço, mas que cada um dos pontos de conexão (-ou interfaces), daquele dispositivo tem um endereço para uma rede.isso permite que os outros computadores localizem o dispositivo nessa rede específica. A combinação de letra (endereço da rede) e número (endereço do host) cria um endereço exclusivo para cada dispositivo da rede. Cada computador em uma rede TCP/IP deve receber um identificador exclusivo, ou endereço IP. Esse endereço, operando na camada 3, permite que um computador localize outro computador na rede. Todos os computadores também têm um endereço físico exclusivo, conhecido como endereço MAC. Esse endereço é atribuído pelo fabricante da placa de interface de rede. Os endereços MAC operam na camada 2 do modelo OSI. Um endereço IP é uma seqüência de 32 bits de 1s e 0s. Para facilitar a utilização do endereço IP, geralmente ele é escrito como quatro números decimais separados por pontos. Por exemplo, o endereço IP de um computador é Outro computador pode ter o endereço Essa maneira de escrever o endereço é chamada de formato decimal pontuado. Nesta notação, cada 4

5 endereço IP é escrito em quatro partes separada por pontos. Cada parte do endereço é denominada octeto, já que é formada de oito dígitos binários. Por exemplo, o endereço IP seria em notação binária. A notação decimal separada por ponots é um método mais fácil de entender do que o método que utiliza od dígitos binários um e zero. Essa notação decimal separada por ponots também evita a grande quantidade de erros de transposição que ocorreriam se fosse usada somente a numeração binária. A utilização da notação decimal separada por ponots permite que os padrões numéricos sejam mais facilmente entendidos. Tanto os números binários quanto os decimais na Figura 2 representam os mesmos valores, mas é mais fácil de se entender a notação decimal separada por ponots. Este é um dos problemas comuns quando se trabalha diretamente com números binários. As longas cadeias de uns e zeros repetidos aumentam a probabilidade de erros de transposição e omissão. É fácil ver a relação entre os números e , enquanto que não é tão fácil reconhecer a relação entre e Observando os números binários, é quase impossível ver que são números consecutivos. 2.2 Conversão decimal/binário Figura 2 Modelo de endereço de 32 bits. Há várias maneiras de se resolver um problema. Também existem várias maneiras de se converter números decimais em números binários. Aqui apresentamos um método, embora não seja o único. O aluno pode achar outro método mais fácil. É uma questão de preferência pessoal. Figura 3 Conversão biário/decimal. 5

6 Ao converter um número decimal em binário, é preciso determinar a maior potência de 2 que se encaixará no número decimal. Se esse processo deve funcionar com computadores, o lugar mais lógico para se começar é com os maiores valores que se encaixam em um byte ou dois bytes. Conforme mencionado anteriormente, o agrupamento mais comum de bits é o de oito bits, equivalente a um byte. Às vezes, porém, o maior valor que pode um byte pode comportar não é suficientemente grande para os valores necessários. Para acomodar isso, bytes são combinados. Em vez de dois números de 8 bits, cria-se um número de 16 bits. Em vez de três números de 8 bits, cria-se um número de 24 bits. Aplicamse as mesmas regras dos números de 8 bits. Multiplique o valor da posição anterior por 2 para obter o valor da coluna atual. A conversão de binário para decimal é simplesmente o inverso. Basta colocar o binário na tabela e, se houver um 1 na posição de uma coluna, adicionar esse valor ao total. Converta para decimal. A resposta é Endereçamento IPv4 Um roteador encaminha pacotes da rede de origem para a rede de destino usando o protocolo IP. Os pacotes devem incluir um identificador tanto para a rede de origem quanto para a de destino. Usando o endereço IP da rede de destino, um roteador pode entregar um pacote para a rede correta. Quando o pacote chega a um roteador conectado à rede de destino, esse roteador usa o endereço IP para localizar o computador específico conectado a essa rede. Esse sistema funciona de maneira muito parecida com o sistema dos correios. Quando uma correspondência é roteada, primeiro ela deve ser entregue à agência dos correios na cidade de destino usando-se o CEP. Em seguida, essa agência deve localizar o destino final nessa cidade usando-se o nome da rua. É um processo em duas etapas. Da mesma maneira, todo endereço IP tem duas partes. Uma parte identifica a rede à qual o sistema está conectado; a outra parte identifica o sistema específico na rede. Ao se referir ao endereço do grupo diretamente acima de um grupo na hierarquia, todos os grupos que se ramificam desse endereço podem ser mencionados como uma única unidade. Esse tipo de endereço é chamado de endereço hierárquico, porque contém diferentes níveis. Um endereço IP combina esses dois identificadores em um único número. Esse número deve ser exclusivo, já que endereços duplicados tornariam o roteamento impossível. A primeira parte identifica o endereço de rede do sistema. A segunda parte, chamada de parte do host, identifica qual é a máquina específica na rede. 6

7 Figura 4 Quantidade de redes de hosts por Endereço IP. Os endereços IP são divididos em classes, para definir redes pequenas, médias e grandes. Os endereços de classe A são atribuídos a redes maiores. Os endereços de classe B são usados para redes de porte médio e os de classe C para redes pequenas. A primeira etapa para determinar qual parte do endereço identifica a rede e qual parte identifica o host é identificar a classe do endereço IP. Figura 5 Intervalos em binário e decimal por classe de sub-rede. 2.4 Endereços IP classes A, B, C, D e E Para acomodar redes de diferentes tamanhos e ajudar na classificação dessas redes, os endereços IP são divididos em grupos chamados classes. Isto é conhecido por enderçamento classful. Cada endereço IP completo de 32 bits é dividido em uma parte da rede e uma parte do host. Um bit ou uma seqüência de bits no início de cada endereço determina a classe do endereço. Há cinco classes de endereços IP, conforme mostrado na Figura 6. 7

8 Figura 6 Distribuição dos bits de rede e host pelos octetos. O endereço de classe A foi criado para suportar redes extremamente grandes, com mais de 16 milhões de endereços de host disponíveis. Os endereços IP de classe A usam somente o primeiro octeto para indicar o endereço de rede. Os três octetos restantes são responsáveis pelos endereços de rede. O primeiro bit de um endereço de classe A é sempre 0. Como esse primeiro bit é 0, o menor número que pode ser representado é , que também é o 0 decimal. O maior número que pode ser representado é , equivalente a 127 em decimal. Os números 0 e 127 são reservados e não podem ser usados como endereços de rede. Qualquer endereço que comece com um valor entre 1 e 126 no primeiro octeto é um endereço de classe A. A rede é reservada para testes de loopback. Os roteadores ou as máquinas locais podem usar esse endereço para enviar pacotes para si mesmos. Por isso, esse número não pode ser atribuído a nenhuma rede. O endereço classe B foi criado para dar conta das necessidades de redes de porte médio a grande. Um endereço IP de classe B usa os dois primeiros octetos para indicar o endereço da rede. Os outros dois octetos especificam os endereços dos hosts. Os dois primeiros bits do primeiro octeto de um endereço classe B são sempre 10. Os seis bits restantes podem ser preenchidos com 1s ou 0s. Portanto, o menor número que pode ser representado por um endereço classe B é , equivalente a 128 em decimal. O maior número que pode ser representado é , equivalente a 191 em decimal. Qualquer endereço que comece com um valor no intervalo de 128 a 191 no primeiro octeto é um endereço classe B. Das classes de endereços originais, o espaço de endereços de classe C é o mais usado. Esse espaço de endereços tinha como objetivo suportar redes pequenas com no máximo 254 hosts. 8

9 Um endereço classe C começa com o binário 110. Assim, o menor número que pode ser representado é , equivalente a 192 em decimal. O maior número que pode ser representado é , equivalente a 223 em decimal. Se um endereço contém um número entre 192 e 223 no primeiro octeto, é um endereço classe C. O endereço classe D foi criado para permitir multicasting em um endereço IP. Um endereço de multicast é um endereço de rede exclusivo que direciona os pacotes com esse endereço de destino para grupos predefinidos de endereços IP. Assim, uma única estação pode transmitir simultaneamente um único fluxo de dados para vários destinatários. O espaço de endereços de classe D, de forma muito semelhante aos outros espaços de endereços, é limitadomatematicamente. Os primeiros quatro bits de um endereço classe D devem ser Assim, o intervalo de valores no primeiro octeto dos endereços de classe D vai de a , ou de 224 a 239 em decimal. Um endereço IP que comece com um valor no intervalo de 224 a 239 no primeiro octeto é um endereço classe D. Também foi definido um endereço classe E. Entretanto, a IETF (Internet Engineering Task Force) reserva esses endereços para suas próprias pesquisas. Dessa forma, nenhum endereço classe E foi liberado para uso na Internet. Os primeiros quatro bits de um endereço classe E são sempre definidos como 1s. Assim, o intervalo de valores no primeiro octeto dos endereços de classe E vai de a , ou de 240 a 255 em decimal. A Figura 7 mostra o intervalo de endereços IP do primeiro octeto, tanto em decimal quanto em binário, para cada classe de endereços IP. Figura 7 Intervalo em binário no primeiro octeto das classes. 9

10 2.5 Endereços IP reservados Alguns endereços de host são reservados e não podem ser atribuídos a dispositivos em uma rede. Esses endereços de host reservados incluem o seguinte: Figura 8 Exemplo de Rede IP. Endereço de rede: Usado para identificar a própria rede Na Figura 8, a seção identificada pela caixa superior representa a rede Os dados que são enviados para qualquer host dessa rede ( ) serão vistos para fora da rede local como O único momento em que os números dos hosts têm importância é quando os dados estão na rede local. A LAN que está contida na caixa inferior é tratada da mesma maneira que a LAN superior, com a diferença de que seu número de rede é Endereço de broadcast: Usado para realizar broadcast de pacotes para todos os dispositivos de uma rede Idem para o endereço de broadcast Os dados enviados para o endereço de broadcast são lidos por todos os hosts dessa rede ( ). A LAN que está contida na caixa inferior é tratada da mesma maneira que a LAN superior, com a diferença de que seu endereço de broadcast é

11 Um endereço IP com 0s binários em todas as posições de bits dos hosts é reservado para o endereço de rede. Em um exemplo de rede de classe A, é o endereço IP da rede (conhecido como ID da rede) que contém o host Um roteador usa o endereço IP da rede ao encaminhar dados na Internet. Em um exemplo de rede de classe B, o endereço é um endereço de rede. Em um endereço de rede classe B, os dois primeiros octetos são designados como a parte da rede. Os dois últimos octetos contêm 0s porque esses 16 bits são para os números de host e são usados para identificar os dispositivos conectados à rede. O endereço IP é um exemplo de endereço de rede. Esse endereço nunca é atribuído como endereço de host. O endereço de host de um dispositivo da rede poderia ser Neste exemplo, "176.10" é a parte da rede e "16.1" é a parte do host. Para enviar dados a todos os dispositivos de uma rede, é necessário um endereço de broadcast. Um broadcast acontece quando uma origem envia dados a todos os dispositivos de uma rede. Para garantir que todos os outros dispositivos da rede processem o broadcast, o remetente deve usar um endereço IP de destino que eles possam reconhecer e processar. Os endereços IP de broadcast ultilizam bits 1s em toda a parte do endereço reservada para a identificação de host. No exemplo da rede , os 16 últimos bits formam o campo de hosts ou parte do host do endereço. Um broadcast enviado a todos os dispositivos dessa rede incluiria um endereço de destino Isso porque 255 é o valor decimal de um octeto que contém Endereços IP públicos e privados A estabilidade da Internet depende diretamente da exclusividade dos endereços de rede usados publicamente. Há um problema no esquema de endereçamento da rede. Observando as redes, vemos que ambas tem o endereço de rede O roteador nessa ilustração não será capaz de encaminhar os pacotes de dados corretamente. Endereços IP de rede duplicados impedem que o roteador realize sua função de selecionar o melhor caminho. Para cada dispositivo de uma rede, é necessário um endereço exclusivo. Foi necessário criar um procedimento que garantisse que os endereços fossem realmente exclusivos. Inicialmente, uma organização conhecida como InterNIC (Internet Network Information Center Centro de Informações da Rede Internet) cuidou desse procedimento. A InterNIC não existe mais e foi substituída pela IANA (Internet Assigned Numbers Authority). A IANA gerencia cuidadosamente o estoque de endereços IP para garantir que não haja duplicidade de endereços usados publicamente. A duplicidade causaria instabilidade na Internet e comprometeria sua capacidade de entregar datagramas para as redes. 11

12 Os endereços IP públicos são exclusivos. Nunca pode haver mais de uma máquina que se conecte a uma rede pública com o mesmo endereço IP, pois os endereços IP públicos são globais e padronizados. Todas as máquinas conectadas à Internet concordam em obedecer a esse sistema. Os endereços IP públicos precisam ser obtidos de um provedor de serviços de Internet ou através de registro a um certo custo. Com o rápido crescimento da Internet, os endereços IP públicos começaram a escassear. Para ajudar a solucionar o problema, foram desenvolvidos novos esquemas de endereçamento, como o CIDR (classless interdomain routing roteamento sem classes entre domínios) e o IPv6. O CIDR e o IPv6 serão discutidos mais adiante neste curso. Os endereços IP privados são outra solução para o problema da escassez iminente dos endereços IP públicos. Como foi dito, as redes públicas exigem que os hosts tenham endereços IP exclusivos. Entretanto, as redes privadas que não estão conectadas à Internet podem usar quaisquer endereços de host, contanto que cada host dentro da rede privada seja exclusivo. Muitas redes privadas existem em paralelo com as redes públicas. Porém, não é recomendável que uma rede privada use um endereço qualquer, pois essa rede pode ser conectada à Internet algum dia. O RFC 1918 reserva três blocos de endereços IP para uso interno e privado. Esses três blocos consistem de um endereço de classe A, um intervalo de endereços de classe B e um intervalo de endereços de classe C. Os endereços dentro desses intervalos não são roteados no backbone da Internet. Os roteadores da Internet descartam imediatamente os endereços privados. Para endereçar uma intranet não-pública, um laboratório de testes ou uma rede doméstica, pode-se usar esses endereços privados no lugar dos endereços globalmente exclusivos. Os endereços IP privados podem ser combinados, conforme mostrado no gráfico, com os endereços públicos. Isso poupará a quantidade de endereços usados para as conexões internas. Figura 9 Redes IP Privadas. Conectar uma rede que usa endereços privados à Internet exige a conversão dos endereços privados em endereços públicos. Esse processo de conversão é chamado de NAT (Network Address Translation Conversão de Endereços de Rede). Geralmente, o roteador é o dispositivo que realiza a NAT. A NAT, juntamente com o CIDR e o IPv6, é tratada em maior profundidade mais adiante no curso. 12

13 2.7 Introdução às sub-redes As sub-redes são outro método para gerenciar os endereços IP. Esse método de dividir classes inteiras de endereços de redes em pedaços menores impediu o esgotamento completo dos endereços IP. É impossível abordar o TCP/IP sem mencionar as sub-redes. Como administrador de sistemas, é importante compreender a utilização de sub-redes como uma forma de dividir e identificar redes independentes através da LAN. Nem sempre é necessário dividir uma rede pequena em sub-redes. Entretanto, para redes grandes ou extremamente grandes, a divisão em sub-redes é necessária. Dividir uma rede em sub-redes significa usar a máscara de sub-rede para dividir a rede em segmentos menores, ou sub-redes, mais eficientes e mais fáceis de gerenciar. Um exemplo semelhante seria o sistema telefônico brasileiro, que é dividido em códigos DDD, prefixos e números locais. O administrador do sistema precisa resolver essas questões ao adicionar e expandir a rede. É importante saber quantas sub-redes ou redes são necessárias e quantos hosts serão necessários em cada rede. Com as sub-redes, a rede não fica limitada às máscaras de rede padrão de classes A, B ou C, e há maior flexibilidade no projeto da rede. Os endereços de sub-rede incluem a parte da rede, mais um campo de sub-rede e um campo do host. O campo da sub-rede e o campo do host são criados a partir da parte do host original para toda a rede. A possibilidade de decidir como dibidir a parte reservada originalmente ao endereço de host em novos campos para a identificação de sub-rede e host, provendo para o administrador da rede uma maior flexibilidade no endereçamento. Para criar um endereço de sub-rede, um administrador de rede toma emprestados alguns bits do campo do host e os designa como o campo da sub-rede. A quantidade mínima de bits que podem ser emprestados é 2. Se criássemos uma sub-rede tomando somente um bit emprestado, o número da rede seria.0. O número de broadcast seria.255. A quantidade máxima de bits que podem ser emprestados é qualquer valor que deixe pelo menos 2 bits sobrando para o número do host. 2.8 IPv4 X IPv6 Quando o TCP/IP foi adotado, na década de 80, ele se baseava em um esquema de endereçamento em dois níveis. Na época, isso oferecia uma escalabilidade adequada. Infelizmente, os idealizadores do TCP/IP não poderiam prever que esse protocolo acabaria sustentando uma rede global de informações, comércio e entretenimento. Há mais de vinte anos, o IP versão 4 (IPv4) ofereceu uma estratégia de endereçamento que, embora fosse escalonável durante certo tempo, resultou em uma alocação ineficiente dos endereços. 13

14 Os endereços classe A e B representam 75% do espaço de endereços do IPv4, embora menos de organizações possam receber um número de rede classes A ou B. Os endereços de rede de classe C são muito mais numerosos do que os de classes A e B, embora representem somente 12,5% dos 4 bilhões de possíveis endereços IP. Infelizmente, os endereços de classe C estão limitados a 254 hosts utilizáveis. Isso não atende ás necessidades de organizações maiores, que não podem adquirir um endereço de classes A ou B. Mesmo se houvesse mais endereços classe A, B ou C, um excesso de endereços de rede faria com que os roteadores da Internet viessem a parar sob o peso do enorme tamanho das tabelas de roteamento necessárias para armazenar as rotas para alcançar cada rede. Já em 1992, a IETF (Internet Engineering Task Force Força-Tarefa de Engenharia da Internet) identificou as duas seguintes preocupações específicas: Esgotamento dos endereços de rede IPv4 restantes, não atribuídos. Naquela época, o espaço de classe B estava prestes a se esgotar. Ocorreu um crescimento forte e rápido do tamanho das tabelas de roteamento da Internet quando mais redes de classe C ficaram on-line. A inundação de novas informações de rede daí resultante ameaçou a capacidade dos roteadores de Internet de reagir de maneira eficiente. Durante as duas últimas décadas, foram desenvolvidas diversas extensões do IPv4. Essas extensões foram projetadas especificamente para melhorar a eficiência de utilização do espaço de endereços de 32 bits. Duas das mais importantes extensões são as máscaras de sub-rede e o roteamento inderdomínios classless (CIDR), que serão discutidos em maior profundidade em lições posteriores. Nesse meio tempo, foi definida e desenvolvida uma versão ainda mais extensível e escalonável do IP, o IP versão 6 (IPv6). O IPv6 usa 128 bits em vez dos 32 bits usados atualmente no IPv4. O IPv6 usa números hexadecimais para representar os 128 bits. Ele oferece 640 sextilhões de endereços. Essa versão do IP deve oferecer endereços suficientes para as futuras necessidades das comunicações. Endereços IPv4 têm 32 bits de comprimento, são escritos em formato decimal e separados por pontos. Endereços IPv6 têm 128 bits de comprimento e são utilizados para identificar interfaces individuais ou conjuntos de interfaces. Endereços IPv6 são atribuídos a interfaces, não aos nós. Uma vez que cada interface pertence a um único nó, qualquer endereço unicast atribuído às interfaces de um nó podem ser utilizadas como um identificador deste nó. Endereços IPv6 são escritos em formato hexadecimal e separados por dois pontos. Os campos do IPv6 têm 16 bits de comprimento. Para facilitar a leitura dos endereços, os zeros à esquerda podem ser omitidos em todos os campos. O campo :0003: é escrito como :3:. A representação abreviada do IPv6 para os 128 bits usa oito números de 16 bits, mostrados como quatro dígitos hexadecimais. 14

15 Após anos de planejamento e desenvolvimento, o IPv6 está sendo implementado lentamente em algumas redes. No futuro, o IPv6 pode vir a substituir o IPv4 como protocolo Internet dominante. 2.9 Obtendo um endereço da Internet Um host de rede precisa obter um endereço único para operar na Internet. O endereço físico ou MAC de um host só é significativo localmente, identificando o host dentro da rede local. Como esse endereço é de camada 2, o roteador não o utiliza para encaminhamento fora da LAN. Os endereços IP são os endereços mais usados para as comunicações na Internet. Esse protocolo é um esquema de endereçamento hierárquico que permite que os endereços individuais sejam associados entre si e tratados como grupos. Esses grupos de endereços permitem uma transferência eficiente de dados através da Internet. Os administradores de rede usam dois métodos para atribuir endereços IP. Esses métodos são: estático e dinâmico. Mais adiante nesta lição, abordaremos o endereçamento estático e três variações do endereçamento dinâmico. Independentemente do esquema de endereçamento escolhido, duas interfaces não podem ter o mesmo endereço IP. Dois hosts que tenham o mesmo endereço IP poderiam gerar um conflito, fazendo com que os dois hosts envolvidos não funcionassem corretamente. Os hosts têm um endereço físico, atribuído à placa de interface de rede que permite a conexão ao meio físico Atribuição estática do endereço IP A atribuição estática funciona bem em redes pequenas, que mudam pouco. O administrador do sistema atribui e rastreia manualmente os endereços IP de cada computador, impressora ou servidor da intranet. Uma boa manutenção de registros é essencial para evitar problemas relacionados a endereços IP duplicados. Isso só é possível quando há uma quantidade pequena de dispositivos para rastrear. Os servidores devem receber um endereço IP estático, para que as estações de trabalho e os outros dispositivos sempre saibam como acessar os serviços necessários. Imagine a dificuldade que seria telefonar para uma empresa que mudasse de número de telefone todos os dias. Outros dispositivos que devem receber endereços IP estáticos são as impressoras de rede, os servidores de aplicativos e os roteadores Gerenciamento de Endereços IP com uso de DHCP O DHCP (Dynamic Host Configuration Protocol) é o sucessor do BOOTP. Diferentemente do BOOTP, o DHCP permite que um host obtenha um endereço IP dinamicamente sem que o administrador da rede 15

16 tenha que configurar um perfil individual para cada dispositivo. Tudo o que é necessário ao usar o DHCP é um intervalo de endereços IP definido IP em um servidor DHCP. À medida que ficam online, os hosts entram em contato com o servidor DHCP e solicitam um endereço. O servidor DHCP escolhe um endereço e o concede a esse host. Com o DHCP, toda a configuração de rede de um computador pode ser obtida em uma única mensagem. Isso inclui todos os dados fornecidos pela mensagem BOOTP mais um endereço IP concedido e uma máscara de sub-rede. A principal vantagem do DHCP em relação ao BOOTP é permitir a mobilidade dos usuários. Essa mobilidade possibilita que os usuários mudem as conexões da rede de um local para outro. Assim, deixa de ser necessário manter um perfil fixo para cada dispositivo conectado à rede, como acontecia com o sistema BOOTP. A importância desse avanço do DHCP é a sua capacidade de conceder um endereço IP a um dispositivo e, em seguida, recuperar esse endereço para outro usuário, depois que o primeiro usuário o tiver liberado. Isso significa que o DHCP oferece uma relação de endereços IP de um para vários e que um endereço está disponível para qualquer um que se conectar à rede. Uma descrição passo-a-passo do processo é apresentado nas Figuras de 10 a 24. Figura 10 Início do processo de atribuição de IP pelo DHCP. 16

17 Figura 11 Cliente DHCP elabora uma solicitação de IP. Figura 12 Solicitação DHCP cliente é transmitida. Figura 12 Cliente DHCP envia solicitação de IP. 17

18 Figura 13 Solicitação DHCP cliente só é lida pelo DHCP Server. Os demais host descartam o quadro após analisá-lo. Figura 14-18

19 Figura 15-19

20 Figura 16 - Figura 16 - Figura 17-20

21 Figura 18 - Figura 19-21

22 Figura 20 - Figura 21-22

23 Figura 22 O DHCP Server envia resposta de solicitação para o cliente. Figura 23-23

24 Figura Problemas de resolução de endereços Um dos principais problemas dos sistemas em rede é como se comunicar com os outros dispositivos da rede. Nas comunicações por TCP/IP, um datagrama em uma rede local deve conter um endereço MAC de destino e um endereço IP de destino. Esses endereços devem estar corretos e coincidir com os endereços MAC e IP de destino do dispositivo host. Se não coincidirem, o datagrama será rejeitado pelo host de destino. As comunicações dentro de um segmento de LAN requerem dois endereços. Deve haver uma maneira de mapear automaticamente os endereços IP para endereços MAC. O usuário gastaria muito tempo se tivesse que criar os mapas manualmente. O TCP/IP tem um protocolo chamado ARP (Address Resolution Protocol Protocolo de Resolução de Endereços), que pode obter automaticamente os endereços MAC para transmissão local. Surgem outros problemas quando os dados são enviados para fora da rede local. As comunicações entre dois segmentos de LAN têm uma tarefa adicional. Tanto o endereço IP quanto o endereço MAC são necessários para o host de destino e para o dispositivo de roteamento intermediário. O TCP/IP tem uma variação do ARP chamada Proxy ARP, que fornece o endereço MAC de um dispositivo intermediário para transmissão fora da LAN para outro segmento da rede Testando a conectividade com o ping O ping é um programa básico que verifica se um endereço IP particular existe e pode aceitar requisições. O acrônimo de computação ping significa Packet Internet or Inter-Network Groper. O nome foi concebido para ser comparável ao termo usado em submarinos para o som de um pulso de sonar retornando de um objeto submerso. 24

25 O comando ping funciona enviando vários pacotes IP, chamados datagramas ICMP de Requisição de Eco, a um destino específico. Cada pacote enviado é uma solicitação de resposta. A resposta de saída de um ping contém a relação de sucesso e o tempo de ida e volta ao destino. A partir destas informações, é possível determinar se existe ou não conectividade com um destino. O comando ping é utilizado para testar a função de transmissão/recepção da placa de rede, a configuração do TCP/IP e a conectividade na rede. Os seguintes tipos de testes ping podem ser emitidos: ping Como nenhum pacote é transmitido, efetuar o ping da interface loopback testa a configuração TCP/IP basica. ping endereço IP do computador Um ping para um PC host verifica a configuração do endereço TCP/IP do computador local assim como a conectividade com o computador. ping endereço IP do gateway padrão Um ping para o gateway padrão verifica se o roteador que conecta a rede local a outras redes pode ser alcançado. ping endereço IP do destino remoto Um ping para o destino remoto verifica a conectividade ao computador remoto 2.14 Protocolo de Resolução de Endereços (ARP) Em redes TCP/IP, um pacote de dados deve conter tanto um endereço MAC de destino quanto um endereço IP de destino. Se um dos dois estiver faltando, os dados não passarão da camada 3 para as camadas superiores. Dessa forma, os endereços MAC e os endereços IP agem como verificadores e balanceadores entre si. Depois de determinarem os endereços IP dos dispositivos de destino, os dispositivos podem adicionar os endereços MAC de destino aos pacotes de dados. Alguns dispositivos mantêm tabelas que contêm os endereços MAC e os endereços IP de outros dispositivos conectados à mesma LAN. Elas são chamadas de tabelas ARP. As tabelas ARP são armazenadas na memória RAM, onde as informações sobre cada um dos dispositivos são mantidas automaticamente em cache. É muito raro que o usuário tenha que criar uma entrada na tabela ARP manualmente. Cada dispositivo em uma rede mantém sua própria tabela ARP. Quando um dispositivo da rede quer enviar dados através dela, ele usa as informações fornecidas pela tabela ARP. Quando uma origem determina o endereço IP de um destino, ela consulta a tabela ARP a fim de localizar o endereço MAC do destino. Se a origem localizar uma entrada na sua tabela (endereço IP de destino para o endereço MAC de destino), ela associa o endereço IP ao endereço MAC e o utiliza para encapsular os dados. Então, o pacote de dados é enviado pelos meios físicos da rede para ser capturado pelo dispositivo de destino. Os dispositivos podem usar duas formas de obter os endereços MAC que eles precisam para adicionar aos dados encapsulados. A primeira maneira é monitorar o tráfego que ocorre no segmento local da 25

26 rede. Todas as estações de uma rede Ethernet analisarão todo o tráfego para determinar se os dados são para elas. Parte desse processo é gravar os endereços IP e MAC de origem do datagrama em uma tabela ARP. Conforme os dados são transmitidos pela rede, os pares de endereços preenchem a tabela ARP. A outra maneira de obter um par de endereços para transmissão dos dados é enviar uma solicitação ARP broadcast. Figura 25 Fluxograma ARP. O computador que requer um par de endereços IP e MAC envia uma solicitação ARP broadcast. Todos os outros dispositivos da rede local analisam essa solicitação. Se um dos dispositivos locais corresponder ao endereço IP da solicitação, ele devolve uma resposta ARP que contém seu par IP- MAC. Se o endereço IP for para a rede local e o computador não existir ou estiver desligado, não haverá resposta à solicitação ARP. Nesta situação, o dispositivo de origem relata um erro. Se a solicitação for para uma rede com outro IP, há outro processo que pode ser usado. Os roteadores não encaminham pacotes de broadcast. Se este recurso estiver ativado, o roteador realiza um Proxy ARP. O Proxy ARP é uma variação do protocolo ARP. Nesta variação, um roteador envia ao host solicitante uma resposta ARP com o endereço MAC da interface na qual a solicitação foi recebida. O roteador responde com os endereços MAC às solicitações cujo endereço IP não esteja no intervalo de endereços da sub-rede local. 26

27 Outro método para enviar dados ao endereço de um dispositivo que está em outro segmento da rede é configurar um gateway padrão. O gateway padrão é uma opção de host em que o endereço IP da interface do roteador é armazenado na configuração de rede do host. O host de origem compara o endereço IP de destino com o seu próprio endereço IP para determinar se os dois endereços IP estão localizados no mesmo segmento. Se o host receptor não estiver no mesmo segmento, o host de origem envia os dados usando o endereço IP real do destino e o endereço MAC do roteador. O endereço MAC do roteador foi obtido da tabela ARP, usando o endereço IP desse roteador. Figura 26 Tabela ARP e Gateway Padrão. Se o gateway padrão no host e o recurso de Proxy ARP no roteador não estiverem configurados, nenhum tráfego poderá sair da rede local. Um dos dois precisa estar configurado para que haja uma conexão para fora da rede local. 27

28 3 Sub-Redes 3.1 Introdução e razão para a divisão em sub-redes Para criar a estrutura de sub-redes, os bits do host devem ser reatribuídos como bits da sub-rede. Esse processo é freqüentemente chamado pedir emprestado bits. No entanto, um termo mais preciso seria emprestar bits. O ponto de partida para este processo é sempre o bit do host mais à esquerda, aquele mais próximo ao último octeto da rede. Figura 27 Exemplo de Sub-rede na Classe C. Os endereços de sub-rede incluem a parte da rede de classe A, classe B e classe C, mais um campo de sub-rede e um campo de host. O campo da sub-rede e o campo do host são criados da parte original do host do endereço IP principal. Isso é feito com a atribuição de bits da parte do host à parte de rede original do endereço.a capacidade de dividir a parte do host original do endereço nos novos campos de sub-rede e de host proporciona flexibilidade de endereçamento ao administrador da rede. Figura 28 Exemplo de Sub-rede na Classe B. Figura 29 Exemplo de Sub-rede na Classe A. 28

29 Além da necessidade de gerenciabilidade, a divisão em sub-redes permite que o administrador da rede ofereça contenção de broadcast e segurança nos níveis inferiores na rede local. Ela proporciona alguma segurança, pois o acesso a outras sub-redes está disponível somente através dos serviços de um roteador. Além disso, a segurança de acesso pode ser proporcionada com o uso de listas de acesso. Essas listas podem permitir ou negar acesso a uma sub-rede com base em diversos critérios, proporcionando, assim, mais segurança. As listas de acesso serão estudadas adiante no curso. Alguns proprietários de redes das classes A e B também descobriram que a divisão em sub-redes cria uma fonte de lucros para a organização através do aluguel ou da venda de endereços IP não usados anteriormente. A divisão em sub-redes é um função interna à rede. Para fora da rede, uma LAN é vista como uma única rede sem que sejam apresentados detalhes da estrutura da rede interna. Esta visão da rede mantém as tabelas de roteamento pequenas e eficientes. Dado o endereço do nó local , pertencente à sub-rede , o mundo externo à LAN vê apenas o número anunciado da rede principal A razão para isso é que o endereço da sub-rede é utilizado apenas dentro da LAN à qual a sub-rede pertence. 3.2 Estabelecimento do endereço da máscara de sub-rede A seleção do número de bits a serem usados no processo de sub-redes dependerá do número máximo de hosts exigido por sub-rede. É necessária alguma compreensão de números binários e de valores de posição dos bits em cada octeto ao calcular o número de sub-redes e de hosts criados quando esse bit foi tomado por empréstimo. Figura 30 Tabela de bits emprestados nos octeto. Os dois últimos bits do último octeto, independentemente da classe de endereço IP, jamais poderão ser atribuídos à sub-rede. Eles são chamados de os últimos dois bits significativos. O uso de todos os bits disponíveis para criar sub-redes, exceto esses dois últimos, resultará em sub-redes com apenas dois hosts utilizáveis. Esse é um método prático de conservação de endereços para o endereçamento de links de roteadores seriais. No entanto, para uma rede local em funcionamento, ele resultaria em custos proibitivos de equipamento. 29

30 Figura 31 Tabela das máscaras de sub-rede. A máscara de sub-rede fornece ao roteador as informações necessárias para determinar em que rede e sub-rede um host específico reside. A máscara de sub-rede é criada com o uso de 1s binários nas posições dos bits relativos à rede. Os bits da sub-rede são determinados com a adição do valor às posições dos bits tomados por empréstimo. Se tivessem sido tomados três bits, a máscara para um endereço de classe C seria Essa máscara também pode ser representada, no formato de barras, como /27, como na Figura 32. O número após a barra é o total de bits usados para a parte da rede e da sub-rede. Figura 32 Exemplo de tomada de bits emprestados para sub-rede. Para determinar o número de bits a serem usados, o projetista da rede precisa calcular quantos hosts a maior sub-rede requer e o número necessário de sub-redes. Como exemplo, a rede requer 30 hosts e cinco sub-redes. Um atalho para determinar quantos bits deverão ser reatribuídos é usar a tabela de divisão em sub-redes. Consultando-se a linha "Hosts utilizáveis", a tabela indica que, para 30 hosts utilizáveis, são necessários três bits. A tabela também mostra que isso cria seis sub-redes utilizáveis, que atenderão aos requisitos deste esquema. A diferença entre hosts utilizáveis e total de hosts resulta do uso do primeiro endereço disponível como ID e do último endereço disponível como broadcast para 30

31 cada sub-rede. Tomar emprestado o número apropriado de bits para acomodar o número necessário de sub-redes e de hosts por sub-rede pode ser resultado de um ato de balanceamento, que pode resultar em endereços de host não utilizados em múltiplas sub-redes. A habilidade de usar estes endereços não é provida em roteamento classful. De qualquer maneira,o roteamento classless, que será visto mais tarde no curso, pode recuperar muitos destes endereços desperdiçados. Figura 33 O método usado para criar a tabela de sub-redes pode ser usado para resolver todos os problemas da divisão em sub-redes. Esse método usa a seguinte fórmula: Número de sub-redes utilizáveis= dois elevado ao número de bits de sub-rede atribuídos ou tomados por empréstimo, menos dois. O menos dois é dos endereços reservados para ID da rede e de broadcast da rede. (2 núm. de bits emprestados ) 2 = sub-redes utilizáveis (2 3 ) 2 = 6 Número de hosts utilizáveis = dois elevado ao número de bits restantes menos dois (endereços reservados para ID da sub-rede e broadcast da sub-rede) (2 núm. de bits restantes ) 2 = hosts utilizáveis (2 5 ) 2 = 30 31

32 3.3 Aplicação da máscara de sub-rede Uma vez estabelecida a máscara de sub-rede, ela pode ser usada para criar o esquema de sub-redes, como na Figura 34. A tabela mostrada nesta figura é um exemplo das sub-redes e endereços criados pela atribuição de três bits ao campo de sub-rede. Isso criará oito sub-redes com 32 hosts por sub-rede. Ao numerar sub-redes, comece com zero (0). A primeira sub-rede é sempre chamada sub-rede zero. Figura 34 Sub-redes de Classe C com 3 bits emprestados. Quando se preenche a tabela de sub-redes, três dos campos são automáticos; os outros exigem cálculos. A ID da sub-rede zero é igual ao número da rede principal, sendo, neste caso, A ID de broadcast para toda a rede é o maior número possível, sendo, neste caso, O terceiro número fornecido é a ID de sub-rede para a sub-rede número sete. Esse número reflete os três octetos da rede com o número da máscara de rede inserido na quarta posição do octeto. Foram atribuídos três bits ao campo de sub-rede com valor cumulativo 224. A ID para a sub-rede sete é Com a inserção desses números, foram estabelecidos pontos de verificação, que verificarão a precisão quando a tabela for concluída. Consultando-se a tabela de divisão em sub-redes ou utilizando-se a fórmula, os três bits atribuídos ao campo de sub-rede resultarão no total de 32 hosts atribuídos a cada sub-rede. Essas informações fornecem a contagem de etapas para cada ID de sub-rede. Adicionando-se 32 a cada número precedente, começando com a sub-rede zero, é estabelecida a ID para cada sub-rede. Observe na Figura 34 que a ID de sub-rede tem todos os 0s binários na parte do host. O campo de broadcast é o último número em cada sub-rede e tem todos os uns binários na parte do host. Esse endereço pode fazer broadcast somente para os membros de uma única sub-rede. Como a ID de sub-rede para a sub-rede zero é e há um total de 32 hosts, a ID de broadcast será 32

33 Começando em zero, o 32 o número seqüencial será 31. É importante lembrar que zero (0) é um número real no mundo das redes. O equilíbrio da coluna de ID de broadcast pode ser obtido com o mesmo processo usado na coluna de ID de sub-rede. Simplesmente, adicione 32 à ID de broadcast precedente da sub-rede. Outra opção é começar na parte inferior e preencher até o alto da coluna, subtraindo um da ID de sub-rede precedente. 3.4 Divisão de redes das classes A e B em sub-redes O procedimento de divisão em sub-redes das classes A e B é idêntico ao da classe C, exceto que pode envolver um número significativamente maior de bits. O número de bits disponíveis para atribuição ao campo de sub-rede em um endereço de Classe A é 22, enquanto um endereço de classe B tem 14 bits. Figura 35 Exemplo de bits emprestados para sub-redes na Classe B. Figura 36 Exemplo de bits emprestados para sub-redes na Classe A. A atribuição de 12 bits de um endereço de classe B ao campo de sub-rede cria uma máscara de subrede , ou /28. Todos os oito bits foram atribuídos no terceiro octeto, resultando em 255, valor total dos oito bits. Quatro bits foram atribuídos no quarto octeto, resultando em 240. Lembre-se que, a máscara com barra é a soma total dos bits atribuídos à sub-rede mais os bits fixos da rede. A atribuição de 20 de um endereço de classe A ao campo de sub-rede cria uma máscara de sub-rede , ou /28. Todos os oito bits dos segundo e terceiro octetos foram atribuídos ao campo de sub-rede e quatro bits do quarto octeto. 33

34 Nessa situação, é visível que a máscara de sub-rede para os endereços das classes A e B parece idêntica. A menos que a máscara esteja relacionada a um endereço de rede, não é possível saber quantos bits foram atribuídos ao campo de sub-rede. Qualquer que seja a classe de endereço a ser dividida em sub-redes, as regras a seguir são as mesmas: Total de sub-redes = 2elevado ao número de bits tomados por empréstimo Total de hosts= 2elevado ao número de bits restantes Sub-redes utilizáveis = 2 elevado ao número de bits tomados por empréstimo menos 2 Hosts utilizáveis= 2 elevado ao número de bits restantes menos Cálculo da sub-rede residente através do ANDing Os roteadores usam máscaras de sub-rede para determinar a sub-rede de origem para nós individuais. Esse processo é chamado ANDing lógico. O ANDing é um processo binário pelo qual o roteador calcula a ID de sub-rede para um pacote enviado. O ANDing é semelhante à multiplicação. Figura 37 Esse processo é controlado no nível binário. Assim, é necessário visualizar o endereço IP e a máscara em binários. Os endereços IP e de sub-rede são ANDed (operação lógica AND) e o resultado é a ID de sub-rede. Em seguida, o roteador usa essas informações para encaminhar o pacote pela interface correta. Figura 38 Cálculo para descubrir de rede pertence o host. 34

35 A divisão em sub-redes é uma habilidade que se aprende. Serão necessárias muitas horas de exercícios práticos para que se domine o desenvolvimento de esquemas flexíveis e funcionais. Diversas calculadoras para sub-redes estão disponíveis na Web. No entanto, um administrador de redes deve saber calcular sub-redes manualmente, para que possa projetar o esquema da rede com eficiência e garantir a validade dos resultados de uma calculadora. A calculadora de sub-redes não fornecerá o esquema inicial, mas apenas o endereçamento final. Além disso, não são permitidas calculadoras, de nenhum tipo, durante a prova de certificação. Bibliografia 1. CISCO SYSTEMS, Curriculum do Programa Cisco Networking Academy Versões e 3.1, Outubro de MCQUERY, Steve. INTERCONECTANDO CISCO NETWORK DEVICES. Ed. Ciscopress.com e Altabooks, Rio de Janeiro,

identificar e localizar um ao outro computador pode estar conectado a mais de uma rede mais de um endereço

identificar e localizar um ao outro computador pode estar conectado a mais de uma rede mais de um endereço Endereçamento Endereçamento IP Para que dois sistemas quaisquer comuniquem-se, eles precisam ser capazes de se identificar e localizar um ao outro. Um computador pode estar conectado a mais de uma rede.

Leia mais

Capítulo 9 - Conjunto de Protocolos TCP/IP e Endereçamento. Associação dos Instrutores NetAcademy - Julho de 2007 - Página

Capítulo 9 - Conjunto de Protocolos TCP/IP e Endereçamento. Associação dos Instrutores NetAcademy - Julho de 2007 - Página Capítulo 9 - Conjunto de Protocolos TCP/IP e Endereçamento IP 1 História e Futuro do TCP/IP O modelo de referência TCP/IP foi desenvolvido pelo Departamento de Defesa dos Estados Unidos (DoD). O DoD exigia

Leia mais

Módulo 9 Conjunto de Protocolos TCP/IP e endereçamento IP

Módulo 9 Conjunto de Protocolos TCP/IP e endereçamento IP CCNA 1 Conceitos Básicos de Redes Módulo 9 Conjunto de Protocolos TCP/IP e endereçamento IP Introdução ao TCP/IP 2 Modelo TCP/IP O Departamento de Defesa dos Estados Unidos (DoD) desenvolveu o modelo de

Leia mais

Protocolo IPv4, cálculo de sub-rede, Classless InterDomain Routing- CIDR e Endereçamento Network Address Translation-NAT

Protocolo IPv4, cálculo de sub-rede, Classless InterDomain Routing- CIDR e Endereçamento Network Address Translation-NAT Protocolo IPv4, cálculo de sub-rede, Classless InterDomain Routing- CIDR e Endereçamento Network Address Translation-NAT Apresentar os conceitos da camada de rede e seus principais protocolos. Camada de

Leia mais

CCNA 1 Modelos OSI e TCP/IP. Kraemer

CCNA 1 Modelos OSI e TCP/IP. Kraemer CCNA 1 Modelos OSI e TCP/IP Modelos OSI e TCP/IP Modelo em camadas Modelo OSI Modelo TCP/IP Comparação dos modelos Endereçamento de rede Modelo de camadas Encapsulamento Desencapsulamento Modelo OSI Sistema

Leia mais

Aula 4. Pilha de Protocolos TCP/IP:

Aula 4. Pilha de Protocolos TCP/IP: Aula 4 Pilha de Protocolos TCP/IP: Comutação: por circuito / por pacotes Pilha de Protocolos TCP/IP; Endereçamento lógico; Encapsulamento; Camada Internet; Roteamento; Protocolo IP; Classes de endereços

Leia mais

Redes de Computadores II. Professor Airton Ribeiro de Sousa

Redes de Computadores II. Professor Airton Ribeiro de Sousa Redes de Computadores II Professor Airton Ribeiro de Sousa 1 PROTOCOLO IP IPv4 - Endereçamento 2 PROTOCOLO IP IPv4 - Endereçamento A quantidade de endereços possíveis pode ser calculada de forma simples.

Leia mais

APOSTILA DE REDES DE COMPUTADORES PARTE - I I

APOSTILA DE REDES DE COMPUTADORES PARTE - I I APOSTILA DE REDES DE COMPUTADORES PARTE - I I 1 Índice 1. INTRODUÇÃO... ERRO! INDICADOR NÃO DEFINIDO. 2. ENDEREÇOS IP... 3 3. ANALISANDO ENDEREÇOS IPV4... 4 4. MÁSCARA DE SUB-REDE... 5 5. IP ESTÁTICO E

Leia mais

INTERNET = ARQUITETURA TCP/IP

INTERNET = ARQUITETURA TCP/IP Arquitetura TCP/IP Arquitetura TCP/IP INTERNET = ARQUITETURA TCP/IP gatewa y internet internet REDE REDE REDE REDE Arquitetura TCP/IP (Resumo) É útil conhecer os dois modelos de rede TCP/IP e OSI. Cada

Leia mais

Projeto de Redes de Computadores. Projeto do Esquema de Endereçamento e de Nomes

Projeto de Redes de Computadores. Projeto do Esquema de Endereçamento e de Nomes Projeto do Esquema de Endereçamento e de Nomes Lembrar a estrutura organizacional do cliente ajuda a planejar a atribuição de endereços e nomes O mapa topológico também ajuda, pois indica onde há hierarquia

Leia mais

Disciplina Fundamentos de Redes. Introdução ao Endereço IP. Professor Airton Ribeiro de Sousa Outubro de 2014

Disciplina Fundamentos de Redes. Introdução ao Endereço IP. Professor Airton Ribeiro de Sousa Outubro de 2014 Disciplina Fundamentos de Redes Introdução ao Endereço IP 1 Professor Airton Ribeiro de Sousa Outubro de 2014 PROTOCOLO TCP - ARQUITETURA Inicialmente para abordamos o tema Endereço IP, é necessário abordar

Leia mais

Endereçamento e Roteamento IP

Endereçamento e Roteamento IP Endereçamento e Roteamento IP Redes TCP/IP O objetivo deste módulo é explicar como funciona a atribuição de endereços IP com classe e sem classe e como configurar logicamente tabelas de roteamento. Obs.

Leia mais

Aula 5 Cálculo de máscara e de subredes

Aula 5 Cálculo de máscara e de subredes 1 Aula 5 Cálculo de máscara e de subredes 5.1 Conceitos Quando um host se comunica com outro usa o endereço de enlace dele. Os endereços de hardware das placas de rede, ou MAC Address, são constituídos

Leia mais

FACULDADE PITÁGORAS. Prof. Ms. Carlos José Giudice dos Santos cpgcarlos@yahoo.com.br www.oficinadapesquisa.com.br

FACULDADE PITÁGORAS. Prof. Ms. Carlos José Giudice dos Santos cpgcarlos@yahoo.com.br www.oficinadapesquisa.com.br FACULDADE PITÁGORAS DISCIPLINA FUNDAMENTOS DE REDES REDES DE COMPUTADORES Prof. Ms. Carlos José Giudice dos Santos cpgcarlos@yahoo.com.br www.oficinadapesquisa.com.br Material elaborado com base nas apresentações

Leia mais

ADDRESS RESOLUTION PROTOCOL. Thiago de Almeida Correia

ADDRESS RESOLUTION PROTOCOL. Thiago de Almeida Correia ADDRESS RESOLUTION PROTOCOL Thiago de Almeida Correia São Paulo 2011 1. Visão Geral Em uma rede de computadores local, os hosts se enxergam através de dois endereços, sendo um deles o endereço Internet

Leia mais

Interconexão de Redes. Aula 03 - Roteamento IP. Prof. Esp. Camilo Brotas Ribeiro cribeiro@catolica-es.edu.br

Interconexão de Redes. Aula 03 - Roteamento IP. Prof. Esp. Camilo Brotas Ribeiro cribeiro@catolica-es.edu.br Interconexão de Redes Aula 03 - Roteamento IP Prof. Esp. Camilo Brotas Ribeiro cribeiro@catolica-es.edu.br Revisão Repetidor Transceiver Hub Bridge Switch Roteador Domínio de Colisão Domínio de Broadcast

Leia mais

3) Na configuração de rede, além do endereço IP, é necessário fornecer também uma máscara de subrede válida, conforme o exemplo:

3) Na configuração de rede, além do endereço IP, é necessário fornecer também uma máscara de subrede válida, conforme o exemplo: DIRETORIA ACADÊMICA DE EDUCAÇÃO E TECNOLOGIA COORDENAÇÃO DOS CURSOS DA ÁREA DE INFORMÁTICA! Atividade em sala de aula. 1) A respeito de redes de computadores, protocolos TCP/IP e considerando uma rede

Leia mais

A máscara de sub-rede pode ser usada para dividir uma rede existente em "sub-redes". Isso pode ser feito para:

A máscara de sub-rede pode ser usada para dividir uma rede existente em sub-redes. Isso pode ser feito para: Fundamentos: A máscara de pode ser usada para dividir uma rede existente em "s". Isso pode ser feito para: 1) reduzir o tamanho dos domínios de broadcast (criar redes menores com menos tráfego); 2) para

Leia mais

IPv6: Introdução. Escrito por Paul Stalvig Gerente Técnico de Marketing

IPv6: Introdução. Escrito por Paul Stalvig Gerente Técnico de Marketing IPv6: Introdução Assim como outras pessoas, eu acredito que algumas complicam demais a vida. Talvez seja a segurança do emprego, o efeito "Chicken Little" ou o fato de que isso dá ao mundo de TI uma plataforma

Leia mais

Capítulo 10 - Conceitos Básicos de Roteamento e de Sub-redes. Associação dos Instrutores NetAcademy - Julho de 2007 - Página

Capítulo 10 - Conceitos Básicos de Roteamento e de Sub-redes. Associação dos Instrutores NetAcademy - Julho de 2007 - Página Capítulo 10 - Conceitos Básicos de Roteamento e de Sub-redes 1 Protocolos Roteáveis e Roteados Protocolo roteado: permite que o roteador encaminhe dados entre nós de diferentes redes. Endereço de rede:

Leia mais

Máscaras de sub-rede. Fórmula

Máscaras de sub-rede. Fórmula Máscaras de sub-rede As identificações de rede e de host em um endereço IP são diferenciadas pelo uso de uma máscara de sub-rede. Cada máscara de sub-rede é um número de 32 bits que usa grupos de bits

Leia mais

Endereçamento IP. Rede 2 Roteador 2 1

Endereçamento IP. Rede 2 Roteador 2 1 O protocolo TCP/IP é roteável, isto é, ele foi criado pensando-se na interligação de diversas redes onde podemos ter diversos caminhos interligando o transmissor e o receptor -, culminando na rede mundial

Leia mais

Arquitetura do Protocolo da Internet. Aula 05 - Protocolos de Roteamento. Prof. Esp. Camilo Brotas Ribeiro cribeiro@catolica-es.edu.

Arquitetura do Protocolo da Internet. Aula 05 - Protocolos de Roteamento. Prof. Esp. Camilo Brotas Ribeiro cribeiro@catolica-es.edu. Arquitetura do Protocolo da Internet Aula 05 - Protocolos de Roteamento Prof. Esp. Camilo Brotas Ribeiro cribeiro@catolica-es.edu.br Revisão Roteamento; Gateway; Tabelas de Roteamento; Slide 2 de 82 Rotas?!

Leia mais

Conteúdo. Endereçamento IP Sub-redes VLSM Variable Length Subnetwork Mask CIDR Classless Inter-Domain Routing

Conteúdo. Endereçamento IP Sub-redes VLSM Variable Length Subnetwork Mask CIDR Classless Inter-Domain Routing EndereçamentoIP Conteúdo Endereçamento IP Sub-redes VLSM Variable Length Subnetwork Mask CIDR Classless Inter-Domain Routing Endereçamento IP Serviço de Comunicação Universal Um sistema de comunicação

Leia mais

Endereçamento IP, Sub-redes e Roteamento

Endereçamento IP, Sub-redes e Roteamento Segurança em Redes Prof. Rafael R. Obelheiro Semestre: 2009.1 Endereçamento IP, Sub-redes e Roteamento Endereçamento IP Endereços IP possuem 32 bits, o que possibilita 2 32 = 4.294.967.296 endereços Na

Leia mais

Conceitos sobre TCP/IP. Endereços IP (Internet Protocol) Introdução

Conceitos sobre TCP/IP. Endereços IP (Internet Protocol) Introdução Conceitos sobre TCP/IP Endereços IP (Internet Protocol) Introdução O uso de computadores em rede e, claro, a internet, requer que cada máquina tenha um identificador que a diferencie das demais. Para isso,

Leia mais

Veja abaixo um exemplo de um endereço IP de 32 bits: 10000011 01101011 00010000 11001000

Veja abaixo um exemplo de um endereço IP de 32 bits: 10000011 01101011 00010000 11001000 4 Camada de Rede: O papel da camada de rede é transportar pacotes de um hospedeiro remetente a um hospedeiro destinatário. Para fazê-lo, duas importantes funções da camada de rede podem ser identificadas:

Leia mais

Modelo em Camadas Arquitetura TCP/IP/Ethernet. Edgard Jamhour

Modelo em Camadas Arquitetura TCP/IP/Ethernet. Edgard Jamhour Modelo em Camadas Arquitetura TCP/IP/Ethernet Edgard Jamhour Ethernet não-comutada (CSMA-CD) A Ethernet não-comutada baseia-se no princípio de comunicação com broadcast físico. a b TIPO DADOS (até 1500

Leia mais

Introdução Introduç ão Rede Rede TCP/IP Roteame Rotea nto nto CIDR

Introdução Introduç ão Rede Rede TCP/IP Roteame Rotea nto nto CIDR Introdução as Redes TCP/IP Roteamento com CIDR LAN = Redes de Alcance Local Exemplo: Ethernet II não Comutada Barramento = Broadcast Físico Transmitindo ESCUTANDO ESCUTANDO A quadro B C B A. DADOS CRC

Leia mais

Endereçamento IP. Figura 1 Estrutura hierárquica do endereço IP

Endereçamento IP. Figura 1 Estrutura hierárquica do endereço IP Endereçamento IP 1. Introdução: A partir da segunda metade dos anos 90, a Internet se tornou uma rede muito diferente daquela existente em sua concepção no início dos anos 80. Hoje, a Internet tornou-se

Leia mais

Redes de Dados e Comunicações. Prof.: Fernando Ascani

Redes de Dados e Comunicações. Prof.: Fernando Ascani Redes de Dados e Comunicações Prof.: Fernando Ascani Camada de Aplicação A camada de Aplicação é a que fornece os serviços Reais para os usuários: E-mail, Acesso a Internet, troca de arquivos, etc. Portas

Leia mais

ICORLI. INSTALAÇÃO, CONFIGURAÇÃO e OPERAÇÃO EM REDES LOCAIS e INTERNET

ICORLI. INSTALAÇÃO, CONFIGURAÇÃO e OPERAÇÃO EM REDES LOCAIS e INTERNET INSTALAÇÃO, CONFIGURAÇÃO e OPERAÇÃO EM REDES LOCAIS e INTERNET 2010/2011 1 Protocolo TCP/IP É um padrão de comunicação entre diferentes computadores e diferentes sistemas operativos. Cada computador deve

Leia mais

Redes. Pablo Rodriguez de Almeida Gross

Redes. Pablo Rodriguez de Almeida Gross Redes Pablo Rodriguez de Almeida Gross Conceitos A seguir serão vistos conceitos básicos relacionados a redes de computadores. O que é uma rede? Uma rede é um conjunto de computadores interligados permitindo

Leia mais

Serviço de datagrama não confiável Endereçamento hierárquico. Facilidade de fragmentação e remontagem de pacotes

Serviço de datagrama não confiável Endereçamento hierárquico. Facilidade de fragmentação e remontagem de pacotes IP Os endereços IP são números com 32 bits, normalmente escritos como quatro octetos (em decimal), por exemplo 128.6.4.7. A primeira parte do endereço identifica uma rede especifica na interrede, a segunda

Leia mais

M3 Redes de computadores avançado (36 horas - 48 TL)

M3 Redes de computadores avançado (36 horas - 48 TL) M3 Redes de computadores avançado (36 horas - 48 TL) Redes de Comunicação Ano lectivo 2013/2014 Camada de rede do modelo OSI Routers e portos de interface de routers (I) 2 Nesta camada imperam os routers.

Leia mais

Curso Técnico em Informática. Rafael Barros Sales Tecnico em Informática CREAC/AC Teclogo em Redes de Computadores

Curso Técnico em Informática. Rafael Barros Sales Tecnico em Informática CREAC/AC Teclogo em Redes de Computadores Curso Técnico em Informática Rafael Barros Sales Tecnico em Informática CREAC/AC Teclogo em Redes de Computadores Visão Geral Para entender o papel que os computadores exercem em um sistema de redes, considere

Leia mais

Endereços IP Sem Classe, Endereços Privados e NAT. Prof. Othon M. N. Batista (othonb@yahoo.com) Mestre em Informática

Endereços IP Sem Classe, Endereços Privados e NAT. Prof. Othon M. N. Batista (othonb@yahoo.com) Mestre em Informática Endereços IP Sem Classe, Endereços Privados e NAT Prof. Othon M. N. Batista (othonb@yahoo.com) Mestre em Informática Tópicos Máscaras de Rede com Classe Classless Inter-Domain Routing - CID Notação CIDR

Leia mais

Arquitetura de Rede de Computadores

Arquitetura de Rede de Computadores TCP/IP Roteamento Arquitetura de Rede de Prof. Pedro Neto Aracaju Sergipe - 2011 Ementa da Disciplina 4. Roteamento i. Máscara de Rede ii. Sub-Redes iii. Números Binários e Máscara de Sub-Rede iv. O Roteador

Leia mais

Fundamentos à Redes de Computadores. Prof. Victor Guimarães Pinheiro/victor.tecnologo@gmail.com

Fundamentos à Redes de Computadores. Prof. Victor Guimarães Pinheiro/victor.tecnologo@gmail.com Fundamentos à Redes de Computadores Prof. Victor Guimarães Pinheiro/victor.tecnologo@gmail.com www.victorpinheiro.jimdo.com www.victorpinheiro.jimdo.com CAMADA DE REDE Responsável por: Dividir os pacotes

Leia mais

ESTUDOS REALIZADOS. Camada Física. Redes de Computadores AULA 13 CAMADA DE REDE. Camada Física Camada de Enlace Subcamada de Acesso ao Meio AGORA:

ESTUDOS REALIZADOS. Camada Física. Redes de Computadores AULA 13 CAMADA DE REDE. Camada Física Camada de Enlace Subcamada de Acesso ao Meio AGORA: Redes de Computadores AULA 13 CAMADA DE REDE Profº Alexsandro M. Carneiro Outubro - 2005 ESTUDOS REALIZADOS Camada Física Camada de Enlace Subcamada de Acesso ao Meio AGORA: Camada de Rede Camada Física

Leia mais

1. Explicando Roteamento um exemplo prático. Através da análise de uns exemplos simples será possível compreender como o roteamento funciona.

1. Explicando Roteamento um exemplo prático. Através da análise de uns exemplos simples será possível compreender como o roteamento funciona. Aula 14 Redes de Computadores 24/10/07 Universidade do Contestado UnC/Mafra Sistemas de Informação Prof. Carlos Guerber ROTEAMENTO EM UMA REDE DE COMPUTADORES A máscara de sub-rede é utilizada para determinar

Leia mais

Endereçamento de IP e colocação em sub-rede para novos usuários

Endereçamento de IP e colocação em sub-rede para novos usuários Endereçamento de IP e colocação em sub-rede para novos usuários Índice Introdução Pré-requisitos Requisitos Componentes Utilizados Informações adicionais Convenções Entendendo endereços IP Máscaras de

Leia mais

Prof. Marcelo de Sá Barbosa REDE DE COMPUTADORES

Prof. Marcelo de Sá Barbosa REDE DE COMPUTADORES Prof. Marcelo de Sá Barbosa REDE DE COMPUTADORES MODELO TCP/IP DE 5 CAMADAS MODELO OSI MODELO TCP IP NUMERO DA CAMADA CAMADA NUMERO DA CAMADA CAMADA 7 APLICAÇÃO 6 APRESENTAÇÃO 5 APLICAÇÃO 5 SESSÃO 4 TRANSPORTE

Leia mais

Arquitetura TCP/IP. Parte III Endereçamento IP e roteamento. Fabrízzio Alphonsus A. M. N. Soares

Arquitetura TCP/IP. Parte III Endereçamento IP e roteamento. Fabrízzio Alphonsus A. M. N. Soares Arquitetura TCP/IP Parte III Endereçamento IP e roteamento Fabrízzio Alphonsus A. M. N. Soares Tópicos Formato do endereço Classes de endereços Endereços especiais Sub-rede e máscara VLSM (Variable Length

Leia mais

Interconexão de Redes Parte 1. Prof. Dr. S. Motoyama

Interconexão de Redes Parte 1. Prof. Dr. S. Motoyama Interconexão de Redes Parte 1 Prof. Dr. S. Motoyama 1 O Problema de Interconexão de redes Problema: Como interconectar efetivamente redes heterogêneas? Três problemas com interconexão a nível de enlace

Leia mais

Endereço IP Privado. Endereçamento IP. IP Protocolo da Internet. Protocolos da. Camada de Inter-Rede (Internet)

Endereço IP Privado. Endereçamento IP. IP Protocolo da Internet. Protocolos da. Camada de Inter-Rede (Internet) Protocolos da Camada de Inter- (Internet) IP Protocolo da Internet. Não Confiável; Não Orientado à conexão; Trabalha com Datagramas; Roteável; IPv 4 32 bits; IPv 6 128 bits; Divisão por Classes (A,B,C,D,E);

Leia mais

Modulo 3. Professor: Leandro Engler Boçon E-mail: leandro@facear.edu.br Disciplina: Comunicação de dados

Modulo 3. Professor: Leandro Engler Boçon E-mail: leandro@facear.edu.br Disciplina: Comunicação de dados Modulo 3 Professor: Leandro Engler Boçon E-mail: leandro@facear.edu.br Disciplina: Comunicação de dados 1 Protocolo ARP Address Resolution Protocol 2 IP utiliza endereços de 32 bits para localização de

Leia mais

9.5.2. Preparando um esquema de endereçamento de sua rede

9.5.2. Preparando um esquema de endereçamento de sua rede Guia Internet de Conectividade - Cyclades - Endereçamento IP - página 1 9.5. Identificação dos Hosts em uma rede Todo sistema ou host que você quiser conectar em sua rede deve ter uma única identificação

Leia mais

Redes de Computadores

Redes de Computadores Departamento de Informática UFPE Redes de Computadores Nível de Redes - Exemplos jamel@cin.ufpe.br Nível de Rede na Internet - Datagramas IP Não orientado a conexão, roteamento melhor esforço Não confiável,

Leia mais

1 TCI/IP... 3 1.1 MODELO TCP/IP... 3 1.1.1 Camada de Aplicação... 4

1 TCI/IP... 3 1.1 MODELO TCP/IP... 3 1.1.1 Camada de Aplicação... 4 TCP/IP Brito INDICE 1 TCI/IP... 3 1.1 MODELO TCP/IP... 3 1.1.1 Camada de Aplicação... 4 1.1.1.1 Camada de Transporte... 4 1.1.1.2 TCP (Transmission Control Protocol)... 4 1.1.1.3 UDP (User Datagram Protocol)...

Leia mais

REDES DE COMPUTADORES - I UNI-ANHANGUERA. CURSO DE ANÁLISE E DESENVOLVIMENTO DE SISTEMAS PROF. MARCIO BALIAN

REDES DE COMPUTADORES - I UNI-ANHANGUERA. CURSO DE ANÁLISE E DESENVOLVIMENTO DE SISTEMAS PROF. MARCIO BALIAN 1 REDES DE COMPUTADORES - I UNI-ANHANGUERA. CURSO DE ANÁLISE E DESENVOLVIMENTO DE SISTEMAS PROF. MARCIO BALIAN ENDEREÇAMENTO IP O IP é um protocolo da Camada de rede É um endereço lógico único em toda

Leia mais

Experiência 05: CONFIGURAÇÃO BÁSICA DE UMA REDE. Objetivo Geral Criar uma rede ponto-a-ponto com crossover e utiizando switch.

Experiência 05: CONFIGURAÇÃO BÁSICA DE UMA REDE. Objetivo Geral Criar uma rede ponto-a-ponto com crossover e utiizando switch. ( ) Prova ( ) Prova Semestral ( ) Exercícios ( ) Prova Modular ( ) Segunda Chamada ( ) Exame Final ( ) Prática de Laboratório ( ) Aproveitamento Extraordinário de Estudos Nota: Disciplina: Turma: Aluno

Leia mais

SUMÁRIO 1. AULA 6 ENDEREÇAMENTO IP:... 2

SUMÁRIO 1. AULA 6 ENDEREÇAMENTO IP:... 2 SUMÁRIO 1. AULA 6 ENDEREÇAMENTO IP:... 2 1.1 Introdução... 2 1.2 Estrutura do IP... 3 1.3 Tipos de IP... 3 1.4 Classes de IP... 4 1.5 Máscara de Sub-Rede... 6 1.6 Atribuindo um IP ao computador... 7 2

Leia mais

Redes e Conectividade

Redes e Conectividade Redes e Conectividade Camada de enlace: domínio de colisão e domínio de broadcast, segmentação, modos de switching para encaminhamento de quadros Versão 1.0 Março de 2016 Prof. Jairo jairo@uninove.br professor@jairo.pro.br

Leia mais

Regras de funcionamento (Unreliable Delivery, etc.) Método de roteamento (Sem conexão) Formato dos dados em um datagrama

Regras de funcionamento (Unreliable Delivery, etc.) Método de roteamento (Sem conexão) Formato dos dados em um datagrama IP - Internet Protocol Histórico O protocolo internet (IP), definido e aprovado pelo DoD (Departamento de Defesa Americano), foi concebido para uso em sistemas de computação interconectados através de

Leia mais

Endereços Lógicos, Físicos e de Serviço

Endereços Lógicos, Físicos e de Serviço Endereçamento IP O IP é um protocolo da Camada de rede É um endereço lógico único em toda a rede, portanto, quando estamos navegando na Internet estamos utilizando um endereço IP único mundialmente, pois

Leia mais

A camada de rede do modelo OSI

A camada de rede do modelo OSI A camada de rede do modelo OSI 1 O que faz a camada de rede? (1/2) Esta camada tem como função principal fazer o endereçamento de mensagens. o Estabelece a relação entre um endereço lógico e um endereço

Leia mais

Antes da popularização da Internet existiam diferentes protocolos sendo utilizados nas redes das empresas. Os mais utilizados eram os seguintes:

Antes da popularização da Internet existiam diferentes protocolos sendo utilizados nas redes das empresas. Os mais utilizados eram os seguintes: Introdução ao TCP/IP Esta é a primeira parte de um total de 100 partes, deste tutorial de TCP/IP. Este curso de Introdução ao TCP/IP é formado pelas partes de 01 a 20. O objetivo da Parte 1 é apresentar

Leia mais

Segurança de redes com Linux. Everson Scherrer Borges Willen Borges de Deus

Segurança de redes com Linux. Everson Scherrer Borges Willen Borges de Deus Segurança de redes com Linux Everson Scherrer Borges Willen Borges de Deus Segurança de Redes com Linux Protocolo TCP/UDP Portas Endereçamento IP Firewall Objetivos Firewall Tipos de Firewall Iptables

Leia mais

Laboratório - Visualização das tabelas de roteamento do host

Laboratório - Visualização das tabelas de roteamento do host Laboratório - Visualização das tabelas de roteamento do host Topologia Objetivos Parte 1: Acessar a tabela de roteamento de host Parte 2: Examinar as entradas da tabela de roteamento de host IPv4 Parte

Leia mais

Funcionamento. Protocolos de roteamento

Funcionamento. Protocolos de roteamento 1 Redes de Computadores Aula 06/10/2009 Roteador é um equipamento usado para fazer a comutação de protocolos, a comunicação entre diferentes redes de computadores provendo a comunicação entre computadores

Leia mais

Nível de rede - Tópicos

Nível de rede - Tópicos Nível de rede - Tópicos Introdução: Revisão do modelo de camadas Serviços genéricos do nível de rede IP: Serviços e endereçamento NAT, ICMP, IPv6 Encaminhamento 4 30 Como se obtém um endereço IP? P: Como

Leia mais

Entendendo o IPv6 (I)

Entendendo o IPv6 (I) Entendendo o IPv6 (I) SNNAngola IPv6 Series http://www.snnangola.wordpress.com Nataniel Baião. IPv4 - Limitações Esgotamento do protocolo finito IPv4. IPv4: 32 bits, 4 Octetos. Ex: 1.1.1.1, 10.11.12.13

Leia mais

UNIVERSIDADE DA BEIRA INTERIOR Faculdade de Engenharia Departamento de Informática

UNIVERSIDADE DA BEIRA INTERIOR Faculdade de Engenharia Departamento de Informática 90 minutos * 24.05.2013 =VERSÃO A= 1 1. Esta teste serve como avaliação de frequência às aulas teóricas. 2. Leia as perguntas com atenção antes de responder. São 70 perguntas de escolha múltipla. 3. Escreva

Leia mais

ARP. Tabela ARP construída automaticamente. Contém endereço IP, endereço MAC e TTL

ARP. Tabela ARP construída automaticamente. Contém endereço IP, endereço MAC e TTL ARP Protocolo de resolução de endereços (Address Resolution Protocol) Descrito na RFC 826 Faz a tradução de endereços IP para endereços MAC da maioria das redes IEEE 802 Executado dentro da sub-rede Cada

Leia mais

Redes de Computadores. Protocolo IP

Redes de Computadores. Protocolo IP Redes de Computadores Protocolo IP Sumário! Endereços IP Classes de endereços Tipos de endereços Endereços especiais Máscaras Redes privadas Endereçamento IP dinâmico 2 Esquema de endereçamento IPv4! Endereços

Leia mais

Redes de Computadores II INF-3A

Redes de Computadores II INF-3A Redes de Computadores II INF-3A 1 ROTEAMENTO 2 Papel do roteador em uma rede de computadores O Roteador é o responsável por encontrar um caminho entre a rede onde está o computador que enviou os dados

Leia mais

Camada de Enlace de Dados - Apêndice. Prof. Leonardo Barreto Campos 1

Camada de Enlace de Dados - Apêndice. Prof. Leonardo Barreto Campos 1 Camada de Enlace de Dados - Apêndice Prof. Leonardo Barreto Campos 1 Sumário Endereço MAC; ARP Address Resolution Protocol; DHCP Dynamic Host Configuration Protocol; Ethernet Estrutura do quadro Ethernet;

Leia mais

O que se tem, na prática, é a utilização do protocolo TCP/IP na esmagadora maioria das redes. Sendo a sua adoção cada vez maior.

O que se tem, na prática, é a utilização do protocolo TCP/IP na esmagadora maioria das redes. Sendo a sua adoção cada vez maior. Introdução ao TCP/IP(TCP (Transmission Control Protocol) e IP(InternetProtocol) ) Objetivo Para que os computadores de uma rede possam trocar informações entre si é necessário que todos os computadores

Leia mais

Redes de Computadores

Redes de Computadores TCP/IP Adriano Lhamas, Berta Batista, Jorge Pinto Leite Março de 2007 Pilha TCP/IP Desenvolvido pelo Departamento de Defesa dos EUA Objectivos: garantir a comunicação sob quaisquer circunstâncias garantir

Leia mais

Redes de Computadores

Redes de Computadores edes de Computadores edes de Computadores Nível de ede edes de Computadores 2 1 Esquema de endereçamento original: cada rede física tem seu endereço de rede, cada host em uma rede tem o endereço de rede

Leia mais

ENDEREÇO IP ENDEREÇO IP 13/04/2015

ENDEREÇO IP ENDEREÇO IP 13/04/2015 ENDEREÇO IP ENDEREÇO IP PROF. FABRÍCIO ALESSI STEINMACHER Os endereços IP identificam cada host na rede. A regra básica é que cada host deve ter um endereço IP diferente e devem ser utilizados endereços

Leia mais

Redes TCP/IP. Prof. M.Sc. Alexandre Fraga de Araújo. alexandref@ifes.edu.br. INSTITUTO FEDERAL DO ESPÍRITO SANTO Campus Cachoeiro de Itapemirim

Redes TCP/IP. Prof. M.Sc. Alexandre Fraga de Araújo. alexandref@ifes.edu.br. INSTITUTO FEDERAL DO ESPÍRITO SANTO Campus Cachoeiro de Itapemirim Redes TCP/IP alexandref@ifes.edu.br Camada de Redes 2 O que acontece na camada de rede Transporta segmentos do hospedeiro transmissor para o receptor Roteador examina campos de cabeçalho em todos os datagramas

Leia mais

Redes de Computadores

Redes de Computadores Redes de Computadores Prof. Macêdo Firmino Camada de Redes Macêdo Firmino (IFRN) Redes de Computadores Junho 2012 1 / 68 Pilha TCP/IP A B M 1 Aplicação Aplicação M 1 Cab M T 1 Transporte Transporte Cab

Leia mais

PROTOCOLO IP O esgotamento dos endereços IP.

PROTOCOLO IP O esgotamento dos endereços IP. 1 PROTOCOLO IP O IP é o protocolo mais importante na Internet. Ele é quem define as regras através das quais as informações fluem na rede mundial. Uma das principais regras diz que: Cada computador deve

Leia mais

Redes de Computadores

Redes de Computadores Redes de Computadores Endereçamento IP Escola Superior de Tecnologia e Gestão Instituto Politécnico de Bragança Março de 2006 Esquema de endereçamento Todos os interfaces numa rede devem ter um endereço

Leia mais

Redes de Computadores. Mauro Henrique Mulati

Redes de Computadores. Mauro Henrique Mulati Redes de Computadores Mauro Henrique Mulati Roteiro Sub-redes NAT CIDR Protocolos de controle Sub-redes Todos os hosts de uma rede devem ter o mesmo número de rede Ex.: Universidade pega endereço de classe

Leia mais

Apostila do Material da Cisco Gerenciamento de Redes

Apostila do Material da Cisco Gerenciamento de Redes Apostila do Material da Cisco Gerenciamento de Redes 7.1.1 Com o que se parece uma rede? A visualização de uma rede é importante. Uma rede é um conjunto de dispositivos que interagem entre si para fornecer

Leia mais

Capítulo 11: NAT para IPv4

Capítulo 11: NAT para IPv4 Unisul Sistemas de Informação Redes de Computadores Capítulo 11: NAT para IPv4 Roteamento e Switching Academia Local Cisco UNISUL Instrutora Ana Lúcia Rodrigues Wiggers Presentation_ID 1 Capítulo 11 11.0

Leia mais

Curso de extensão em Administração de redes com GNU/Linux

Curso de extensão em Administração de redes com GNU/Linux Curso de extensão em - italo@dcc.ufba.br Gestores da Rede Acadêmica de Computação Departamento de Ciência da Computação Universidade Federal da Bahia Todo o material aqui disponível pode, posteriormente,

Leia mais

Apresentação de REDES DE COMUNICAÇÃO

Apresentação de REDES DE COMUNICAÇÃO Apresentação de REDES DE COMUNICAÇÃO Curso Profissional de Técnico de Gestão e Programação de Sistemas Informáticos MÓDULO VI Programação de Sistemas de Comunicação Duração: 30 tempos Conteúdos 2 Construção

Leia mais

Na Figura a seguir apresento um exemplo de uma "mini-tabela" de roteamento:

Na Figura a seguir apresento um exemplo de uma mini-tabela de roteamento: Tutorial de TCP/IP - Parte 6 - Tabelas de Roteamento Por Júlio Cesar Fabris Battisti Introdução Esta é a sexta parte do Tutorial de TCP/IP. Na Parte 1 tratei dos aspectos básicos do protocolo TCP/IP. Na

Leia mais

Roteamento e Comutação

Roteamento e Comutação Roteamento e Comutação A camada de enlace, cujo protocolo é utilizado para transportar um datagrama por um enlace individual, define o formato dos pacotes trocados entre os nós nas extremidades, bem como

Leia mais

QUAL O PROCEDIMENTO PARA CONFIGURAR AS IMPRESSORAS DE REDE BROTHER EM UM SISTEMA DEC TCP / IP para VMS (UCX) Procedimento

QUAL O PROCEDIMENTO PARA CONFIGURAR AS IMPRESSORAS DE REDE BROTHER EM UM SISTEMA DEC TCP / IP para VMS (UCX) Procedimento Procedimento Visão geral Antes de usar a máquina Brother em um ambiente de rede, você precisa instalar o software da Brother e também fazer as configurações de rede TCP/IP apropriadas na própria máquina.

Leia mais

TCP/IP O guia definitivo para cálculos

TCP/IP O guia definitivo para cálculos ENTENDENDO O CÁLCULO DE SUB-REDES IP por Eduardo Parise Para que seja possível a comunicação entre máquinas em uma mesma rede é necessário que cada uma possua um endereço IP exclusivo naquela rede. Um

Leia mais

Arquitetura de Rede de Computadores

Arquitetura de Rede de Computadores Arquitetura de Rede de Prof. Pedro Neto Aracaju Sergipe - 2011 Ementa da Disciplina 2. TCP/IP i. Fundamentos ii. Camada de Aplicação iii. Camada de Transporte iv. Camada de Internet v. Camada de Interface

Leia mais

Capítulo 11 - Camada de Transporte TCP/IP e de Aplicação. Associação dos Instrutores NetAcademy - Julho de 2007 - Página

Capítulo 11 - Camada de Transporte TCP/IP e de Aplicação. Associação dos Instrutores NetAcademy - Julho de 2007 - Página Capítulo 11 - Camada de Transporte TCP/IP e de Aplicação 1 Introdução à Camada de Transporte Camada de Transporte: transporta e regula o fluxo de informações da origem até o destino, de forma confiável.

Leia mais

SISTEMAS OPERACIONAIS LIVRES GERENCIAMENTO DE SERVIÇOS NO WINDOWS. Professor Carlos Muniz

SISTEMAS OPERACIONAIS LIVRES GERENCIAMENTO DE SERVIÇOS NO WINDOWS. Professor Carlos Muniz SISTEMAS OPERACIONAIS LIVRES GERENCIAMENTO DE SERVIÇOS NO WINDOWS Se todos os computadores da sua rede doméstica estiverem executando o Windows 7, crie um grupo doméstico Definitivamente, a forma mais

Leia mais

Redes de Computadores

Redes de Computadores Redes de Computadores Redes de Computadores Nível de Rede Redes de Computadores 2 1 Nível de Rede Internet Nível de Rede na Internet O ambiente inter-redes: hosts conectados a redes redes interligam-se

Leia mais

O endereço IP (v4) é um número de 32 bits com 4 conjuntos de 8 bits (4x8=32). A estes conjuntos de 4 bits dá-se o nome de octeto.

O endereço IP (v4) é um número de 32 bits com 4 conjuntos de 8 bits (4x8=32). A estes conjuntos de 4 bits dá-se o nome de octeto. Endereçamento IP Para que uma rede funcione, é necessário que os terminais dessa rede tenham uma forma de se identificar de forma única. Da mesma forma, a interligação de várias redes só pode existir se

Leia mais

Diagrama lógico da rede da empresa Fácil Credito

Diagrama lógico da rede da empresa Fácil Credito Diagrama lógico da rede da empresa Fácil Credito Tabela de endereçamento da rede IP da rede: Mascara Broadcast 192.168.1.0 255.255.255.192 192.168.1.63 Distribuição de IP S na rede Hosts IP Configuração

Leia mais

Professor: Macêdo Firmino Configuração TCP/IP no Windows 7

Professor: Macêdo Firmino Configuração TCP/IP no Windows 7 Professor: Macêdo Firmino Configuração TCP/IP no Windows 7 Se você tem mais que um computador ou outros dispositivos de hardware, como impressoras, scanners ou câmeras, pode usar uma rede para compartilhar

Leia mais

Exercícios de Revisão Edgard Jamhour. Quarto Bimestre: IPv6 e Mecanismos de Transiçao

Exercícios de Revisão Edgard Jamhour. Quarto Bimestre: IPv6 e Mecanismos de Transiçao Exercícios de Revisão Edgard Jamhour Quarto Bimestre: IPv6 e Mecanismos de Transiçao Questão 1: Indique a qual versão do IP pertence cada uma das características abaixo: ( ) Verifica erros no cabeçalho

Leia mais

No projeto das primeiras redes de computadores, o hardware foi a principal preocupação e o software ficou em segundo plano.

No projeto das primeiras redes de computadores, o hardware foi a principal preocupação e o software ficou em segundo plano. No projeto das primeiras redes de computadores, o hardware foi a principal preocupação e o software ficou em segundo plano. Essa estratégia foi deixada para trás. Atualmente, o software de rede é altamente

Leia mais

Há dois tipos de configurações bidirecionais usados na comunicação em uma rede Ethernet:

Há dois tipos de configurações bidirecionais usados na comunicação em uma rede Ethernet: Comunicação em uma rede Ethernet A comunicação em uma rede local comutada ocorre de três formas: unicast, broadcast e multicast: -Unicast: Comunicação na qual um quadro é enviado de um host e endereçado

Leia mais

Camada de Transporte, protocolos TCP e UDP

Camada de Transporte, protocolos TCP e UDP Camada de Transporte, protocolos TCP e UDP Conhecer o conceito da camada de transporte e seus principais protocolos: TCP e UDP. O principal objetivo da camada de transporte é oferecer um serviço confiável,

Leia mais

Prof. Luís Rodolfo. Unidade III REDES DE COMPUTADORES E TELECOMUNICAÇÃO

Prof. Luís Rodolfo. Unidade III REDES DE COMPUTADORES E TELECOMUNICAÇÃO Prof. Luís Rodolfo Unidade III REDES DE COMPUTADORES E TELECOMUNICAÇÃO Redes de computadores e telecomunicação Objetivos da Unidade III Apresentar as camadas de Transporte (Nível 4) e Rede (Nível 3) do

Leia mais

CAMADA DE REDE. UD 2 Aula 3 Professor João Carneiro Arquitetura de Redes 1º e 2º Semestres UNIPLAN

CAMADA DE REDE. UD 2 Aula 3 Professor João Carneiro Arquitetura de Redes 1º e 2º Semestres UNIPLAN CAMADA DE REDE UD 2 Aula 3 Professor João Carneiro Arquitetura de Redes 1º e 2º Semestres UNIPLAN Modelo de Referência Híbrido Adoção didática de um modelo de referência híbrido Modelo OSI modificado Protocolos

Leia mais

1. O DHCP Dynamic Host Configuration Protocol

1. O DHCP Dynamic Host Configuration Protocol CURSO DE EDUCAÇÃO E FORMAÇÃO TIPO 5 2º ANO TÉCNICO DE INFORMÁTICA/INSTALAÇÃO E GESTÃO DE REDES 2008/2009 INSTALAÇÃO REDES CLIENTE SERVIDOR WINDOWS SERVER 2003 Após a instalação Instalação de serviços de

Leia mais

LONWORKS VISÃO DO PROTOCOLO DE COMUNICAÇÃO

LONWORKS VISÃO DO PROTOCOLO DE COMUNICAÇÃO LONWORKS VISÃO DO PROTOCOLO DE COMUNICAÇÃO Aldo Ventura da Silva * RESUMO O presente trabalho teve como objetivo principal apresentar a tecnologia LonWorks, passando por alguns atributos da tecnologia,

Leia mais