Um outro arquivo texto deve ser criado para usar as funções definidas acima, por exemplo com o nome "simulacao.sce":

Tamanho: px
Começar a partir da página:

Download "Um outro arquivo texto deve ser criado para usar as funções definidas acima, por exemplo com o nome "simulacao.sce":"

Transcrição

1 List C Auls Prátics d cilb imulçã numéric Exmpl d rsrvtóri Objtiv: sluçã numéric d quçõs dirnciis rdináris usnd unçã ODE. Cnsidr nvmnt sistm d um rsrvtóri: srvtóri cm áu Prâmtrs: 0 m - ár d sçã trnsvrsl (cnstnt 0 8 P/(m 3 /s - prâmtr qu rlcin vzã cm qud d prssã (prd d cr ρ 000 k/m 3 - mss spcíic d áu 0 m/s - clrçã d rvidd n supríci d trr V P Mdl mtmátic (quçã dirncil: & ρ Vriávis: 0,0047 m 3 /s - vzã d ntrd : nívl d rsrvtóri [m] V: vlum d áu n rsrvtóri [m 3 ] P: prssã rltiv à tmséric, n und d rsrvtóri [P] : vzã d síd [m 3 /s] Admit-s qu áu sj incmprssívl. imulçã A sluçã numéric d quçã dirncil pd sr dtrmind n cilb d suint rm: Em um prrm d diçã d txt sm rmtçã, cm Ntpd, dv s scrvr um rquiv d txt, cm nm "rsrvtri.sci", dinind unçã qu rprsnt quçã dirncil: // Dinic d unc qu implmnt quc n linr unctin [dt]tnqu(t,,q dt(-sqrt(r**/+q(t/ ndunctin N msm rquiv txt d nm "rsrvtri.sci", pd-s crscntr unçã qu clcul ntrd d sistm. Est ntrd é um unçã d tmp qulqur. Nst xmpl, dtrms: Q ( t nd i é um trm cnstnt. i (n vrdd pdri sr qulqur unçã d tmp, pr xmpl, // Dinic d unc qu implmnt ntrd Q: unctin [u]ntrd(t uqi; // supnd xmpl, uk*sin(w*t+k*t^(- ndunctin ( t K sn( ω t + K t Um utr rquiv txt dv sr crid pr usr s unçõs dinids cim, pr xmpl cm nm "simulc.sc": // Dinic d rquiv qu implmnt simulc: clr ll // p s vrivis ntrirs // Crrr unc qu implmnt mdl mtmtic d sistm // Us cmin crrt m su cmputdr: t("c:\dcumnts nd ttins\administrdr\dsktp\curs\rsrvtri.sci"; // Dinir prmtrs: 0; // [m^] Ar d sc trnsvrsl d rsrvtri

2 List C Auls Prátics d cilb r000; // [k/m^3] mss spciic d u 0; // [m/s^] clrçã d rvidd n suprici d Trr *0^8; // [P/(m^3/s^] prmtr qu rlcin prss vz ; // [m] nivl d rsrvtri m rim i0.; // [m] nívl dicinl dsjd Qisqrt(r**(+i/; // [m^3/s] vz n ntrd // Dinir cndic inicil: 0; // [m] nivl d rsrvtri n cndic inicil // Dinir vtr t d instnts d tmp: t0:0:40000; // vtr d tmp. Obsrv qu t( instnt inicil // Cmnd qu rliz simulc numéric: d(0,t(,t,list(tnqu,ntrd; // nivl d rsrvtri [m] // Pltnd rsultd m vrd: pltd(t,,3 // Dinind um vrivl d tip 'list': Tlist("spst trnsitri d rsrvtri","tmp t [s]","nivl [m]"; // Clcnd um titul n iur nmnd s ixs: xtitl(t(,t(,t(3; // Clcnd um rd zul n ric: xrid( Pr rlizr simulçã: Grv-s sts dis rquivs, "rsrvtri.sci" "simulc.sc", n pst inrmd ntrirmnt: "C:\Dcumnts nd ttins\administrdr\dsktp\curs\" Abr-s cilb, s xcut suint cmnd: xc('c:\dcumnts nd ttins\administrdr\dsktp\curs\simulc.sc' Exrcíci: imulr sistm cm dis rsrvtóris: V V Q P P s & & Q ρ ρ ( ( ρ s

3 List C Auls Prátics d cilb 3 Linrizçã Cnsidr sistm d um rsrvtóri: srvtóri cm áu Prâmtrs: 0 m - ár d sçã trnsvrsl (cnstnt 0 8 P/(m 3 /s - prâmtr qu rlcin vzã cm qud d prssã (prd d cr ρ 000 k/m 3 - mss spcíic d áu 0 m/s - clrçã d rvidd n supríci d trr V Vriávis: 0,0047 m 3 /s - vzã d ntrd : nívl d rsrvtóri [m] V: vlum d áu n rsrvtóri [m 3 ] P: prssã rltiv à tmséric, n und d rsrvtóri [P] : vzã d síd [m 3 /s] P Admit-s qu áu sj incmprssívl. Cm i vist ntrirmnt, mdl mtmátic nã linr é dd pr: & ρ Linrizçã d mdl: Pnt d quilíbri: O pnt d quilíbri é std d sistm m qu nã á ltrçõs, u sj, vriçã n tmp é nul. N xmpl d tnqu, pnt d quilíbri, dinid pr um dd ntrd cnstnt, é dd pr: Q & ρ 0 & Q + 0 ρ Expnsã m séri d Tylr: j unçã (, dinid suir: & (, Q ρ A xpnsã m séri d Tylr d unçã (, é: ( Q (, Q (, Q (, Q, + ( + + q q ( Q Q T.. O índic "q" siniic qu drivd prcil é clculd n pnt d quilíbri, u sj, pr. O trm "T.." siniic "Trms d Ordm uprir". Ests trms rprsntm prcl nã linr d xpnsã m séri d Tylr srá dsprzd pr s btr um mdl linr prximd. Clculnd s drivds prciis: ( Q, ρ q ρ q ρ q

4 List C Auls Prátics d cilb 4 (, Q q ρ q q Cm, n pnt d quilíbri, tms vriçã nul ln d tmp: & (, Q 0 ( Q (, Q (, Q (, Q, + ( + & ρ q (, Q 0 ( + ( Q Q T.. + Dsprznd s trms d rdm suprir: & ρ Dinind: ( + ( Q Q ( & & & & x 0 (já qu é cnstnt, u sj, su drivd n tmp é nul u ( q ( Q Q + T.. Obtms mdl linr cuj cmprtmnt é prximdmnt iul d mdl nã linr, pl mns ns prximidds d pnt d quilíbri: ρ x + u Obsrv qu pr um vriçã x i n nívl, vzã dicinl ncssári srá: u i Est quçã dirncil rdinári, linr prâmtrs cnstnts d rdm pd sr xprss d md néric cm: x & x + bu Cm: ρ b ρ x i ρ x + u { 443 b

5 List C Auls Prátics d cilb 5 Exrcíci Obtn mdl linrizd d sistm cm dis rsrvtóris: V V A A Q P P s Obsrv qu sistm linr srá rprsntd dtnd-s s suints diniçõs d vriávis: Ax + Bu y Cx + Du ( ( ( x x u y x y x (quçõs dirnciis (quçõs lébrics cm x y x y x y Nst cs, A, B, C D sã mtrizs, x é vtr d stds, y é vtr d síds u é ntrd. Liçã d cs: Trmin st list. Estud list D.

Algoritmo de integração numérica - Euler: Considerando a seguinte equação diferencial:

Algoritmo de integração numérica - Euler: Considerando a seguinte equação diferencial: Lista B Aulas Práticas d Scilab Equaçõs difrnciais Introdução: Considr um corpo d massa m fito d um matrial cujo calor spcífico à prssão constant sja c p. Est corpo stá inicialmnt a uma tmpratura T 0,

Leia mais

Cálculo Diferencial II Lista de Exercícios 1

Cálculo Diferencial II Lista de Exercícios 1 Cálculo Difrncil II List d Ercícios 1 CONJUNTO ABERTO E PONTOS DE ACUMULAÇÃO 1 Vrifiqu quis dos conjuntos sguir são brtos m (, ) 1 (, ) 0 (, ) 0 (, ) 0 1 Dtrmin o conjunto d pontos d cumulção do conjunto

Leia mais

Roteiro de de Trabalho com com o AQUA AQUA REDE REDE

Roteiro de de Trabalho com com o AQUA AQUA REDE REDE Rtir d d Trblh cm cm AQUA AQUA REDE REDE Prt Prt I I Iníci Iníci AutCAD Lnçr Lnçr s s pnts pnts ct ct d d Rd Rd Lnçr Lnçr s s trchs trchs brts brts lignd lignd smpr smpr d d Mntnt Mntnt pr pr Jusnt Jusnt

Leia mais

Sinais e Sistemas Mecatrónicos

Sinais e Sistemas Mecatrónicos Sinis Sistms Mctrónicos Anális d Sistms no Domínio do Tmpo José Sá d Cost José Sá d Cost T11 - Anális d Sistms no Tmpo - Rsp. stcionári 1 Crctrizção d rspost stcionário A crctrizção d rspost stcionári

Leia mais

log5 log 5 x log 2x log x 2

log5 log 5 x log 2x log x 2 mta unção rítmic. Indiqu o vlor d:.. 6.. 7 49...5..6. 5 ln.7. 9.4. ln.8..9. 46.. 4 4 6 6 8 8. Dtrmin o vlor d... 4 8.. 8.. 8.4. 5.5..9. 5.6. 9.7.,8.8... 6 5 8 4 5..... Rsolv cd um ds quçõs:.... 5.. ln

Leia mais

4.21 EXERCÍCIOS pg. 176

4.21 EXERCÍCIOS pg. 176 78 EXERCÍCIOS pg 7 Nos rcícios d clculr s drivds sucssivs t ordm idicd, 5 7 IV V 7 c d c, 5, 8 IV V VI 8 8 ( 7) ( 8), ( ) ( ) '' ( ) ( ) ( ) ( ) 79 5, 5 8 IV, 8 7, IV 8 l, 9 s, 7 8 cos IV V VI VII 5 s

Leia mais

MATEMÁTICA A - 12o Ano Funções - Teorema de Bolzano Propostas de resolução

MATEMÁTICA A - 12o Ano Funções - Teorema de Bolzano Propostas de resolução MATEMÁTICA A - o Ano Funçõs - Torm d Bolzno Proposts d rsolução Exrcícios d xms tsts intrmédios. Dtrminndo s coordnds dos pontos P Q, m função d são, rsptivmnt P (,h() ) = P Q (,h() ) ( = Q, ln() ), tmos

Leia mais

1) Determine o domínio das funções abaixo e represente-o graficamente: 1 1

1) Determine o domínio das funções abaixo e represente-o graficamente: 1 1 ) Dtrmin dmíni das funçõs abai rprsnt- graficamnt: z + z 4.ln( ) z ln z z arccs( ) f) z g) z ln + h) z ( ) ) Dtrmin dmíni, trac as curvas d nívl sbc gráfic das funçõs: f (, ) 9 + 4 f (, ) 6 f (, ) 6 f

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA

ESCOLA SUPERIOR DE TECNOLOGIA Dprtnto Mtátic Disciplin Anális Mtátic II Curso Engnhri do Abint º Sstr º Fich nº 6: Equçõs difrnciis d vriávis sprds správis, totis cts, co fctor intgrnt hoogéns d ª ord. Coptição ntr spécis E hbitts

Leia mais

c.c. É a função que associa a cada x X(S) um número f(x) que deve satisfazer as seguintes propriedades:

c.c. É a função que associa a cada x X(S) um número f(x) que deve satisfazer as seguintes propriedades: Prof. Lorí Vili, Dr. vili@mt.ufrgs.r http://www.mt.ufrgs.r/~vili/ Sj um vriávl ltóri com conjunto d vlors (S). S o conjunto d vlors for infinito não numrávl ntão vriávl é dit contínu. É função qu ssoci

Leia mais

Vamos analisar o seguinte circuito trifásico: Esta aula:! Sistemas Trifásicos equilibrados com Transformador ideal

Vamos analisar o seguinte circuito trifásico: Esta aula:! Sistemas Trifásicos equilibrados com Transformador ideal EA6 Circuits FEEC UNCAMP Aul 6 Est ul:! Sistms Trifásics quilibrds cm Trnsfrmdr idl Nst ul nlisrms um sistm trifásic quilibrd cm trnsfrmdr Cm sistm é quilibrd, pdms nlisr circuit trifásic trtnd pns d um

Leia mais

Cálculo Diferencial e Integral 1

Cálculo Diferencial e Integral 1 NOTAS DE AULA Cálculo Dirncil Intgrl Drivds Prossor: Luiz Frnndo Nuns, Dr. 8/Sm_ Cálculo ii Índic Drivds.... Dinição.... Função drivd.... Drivds ds unçõs composts.... Rgrs d drivção.... A Drivd como T

Leia mais

ANEXO I DA LEI COMPLEMENTAR Nº123, DE 14 DE DEZEMBRO DE 2006 (vigência: 01/01/2012)

ANEXO I DA LEI COMPLEMENTAR Nº123, DE 14 DE DEZEMBRO DE 2006 (vigência: 01/01/2012) ANEO I DA LEI COMPLEMENTAR Nº123, DE 14 DE DEZEMBRO DE 2006 (vigênci: 01/01/2012) (Rdção dd pl Li Complmntr nº 139, d 10 d novmbro d 2011) Alíquots Prtilh do Simpls Ncionl - Comércio Rcit Brut m 12 mss

Leia mais

( ) 2. Eletromagnetismo I Prof. Dr. Cláudio S. Sartori - CAPÍTULO VIII Exercícios 1 ˆ ˆ ( ) Idl a R. Chamando de: x y du. tg θ

( ) 2. Eletromagnetismo I Prof. Dr. Cláudio S. Sartori - CAPÍTULO VIII Exercícios 1 ˆ ˆ ( ) Idl a R. Chamando de: x y du. tg θ Elromgnismo Prof. Dr. Cláudio S. Srori - CPÍTUO V Ercícios Emplo Cálculo do cmpo mgnéico d um fio d comprimno prcorrido por um corrn léric num pono P(,,. dl - r + + r dl d P(,, r r + + ( ( r r + + r r

Leia mais

TABELA V-A. 0,10=< (r) 0,15=< (r) (r) < 0,20. Até 120.000,00 17,50% 15,70% 13,70% 11,82% 10,47% 9,97% 8,80% 8,00%

TABELA V-A. 0,10=< (r) 0,15=< (r) (r) < 0,20. Até 120.000,00 17,50% 15,70% 13,70% 11,82% 10,47% 9,97% 8,80% 8,00% Anxo V 1) Srá purd rlção conform bixo: = Folh d Slários incluídos ncrgos (m 12 mss) Rcit Brut (m 12 mss) 2) Ns hipótss m qu corrspond os intrvlos cntsimis d Tbl V-A, ond < signific mnor qu, > signific

Leia mais

MECANISMOS DE REAÇÕES

MECANISMOS DE REAÇÕES /4/7 MECSMS DE REÇÕES rof. Hrly. Mrins Filho Rçõs lmnrs Rçõs qu concm m pns um p são rçõs lmnrs. molculri rção lmnr é o númro moléculs qu rgm. Rção lmnr unimolculr: C molécul m um proili inrínsc s compor

Leia mais

D e atribuamos a x o acréscimo x e a y o acréscimo y, tais que o ponto ( x + x,

D e atribuamos a x o acréscimo x e a y o acréscimo y, tais que o ponto ( x + x, DERIVADAS PARCIAIS ACRÉSCIMOS Acréscimo totl Sj unção dinid n rgião D R Tommos o ponto D tribumos o créscimo o créscimo tis qu o ponto D O créscimo d unção qundo pssmos do ponto o ponto é s chm créscimo

Leia mais

MESTRADO INTEGRADO EM ENGENHARIA INFORMÁTICA E COMPUTAÇÃO EIC0011 MATEMÁTICA DISCRETA

MESTRADO INTEGRADO EM ENGENHARIA INFORMÁTICA E COMPUTAÇÃO EIC0011 MATEMÁTICA DISCRETA 1. Tm 40 livros irnts qu vi gurr m 4 ixs ors irnts, olono 10 livros m ix.. Qunts possiilis tm istriuir os livros pls ixs irnts? Justiiqu.. Suponh gor qu tinh 60 livros. Qunts possiilis pr os olor ns 4

Leia mais

Material Teórico - Módulo Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. Razões Trigonométricas no Triângulo Retângulo.

Material Teórico - Módulo Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. Razões Trigonométricas no Triângulo Retângulo. Mtril Tórico - Módulo Triângulo Rtângulo, Li dos Snos ossnos, Poĺıgonos Rgulrs Rzõs Trigonométrics no Triângulo Rtângulo Nono no utor: Prof Ulisss Lim Prnt Rvisor: Prof ntonio min M Nto Portl d OMEP 1

Leia mais

Universidade Federal do Rio de Janeiro COPPE Programa de Engenharia Química 2014/1 1

Universidade Federal do Rio de Janeiro COPPE Programa de Engenharia Química 2014/1 1 Univrsidd Fdrl do Rio d Jniro COPPE Progrm d Engnhri Químic COQ 79 ANÁLISE DE SISEMAS DA ENGENHARIA QUÍMICA AULA : Rprsnção m Espço d Esdos 4/ Rprsnção m Espço d Esdos Esdo: O sdo d um sism no mpo é o

Leia mais

RESPOSTA DO SISTEMA. Resposta em Regime Transitório Resposta em Regime Permanente

RESPOSTA DO SISTEMA. Resposta em Regime Transitório Resposta em Regime Permanente RESPOSTA DO SISTEMA Rsps m Rgm Trsór Rsps m Rgm Prm Exmpls d ssms d prmr rdm Tqu d águ crld pr um bó Tx d vrçã lur é prprcl (H-h) dh k( H h) k h H ( ) Ssm RC, cpcr m sér cm rssr dv C RC ( V V C ) V C RC

Leia mais

AULA 9. Universidade Tecnológica Federal do Paraná Campus Toledo Curso de Engenharia Eletrônica Desenho Técnico Prof. Dr.

AULA 9. Universidade Tecnológica Federal do Paraná Campus Toledo Curso de Engenharia Eletrônica Desenho Técnico Prof. Dr. Univrsidd Tcnológic Fdrl do Prná Cmpus Toldo d Engnhri Eltrônic Dsnho Técnico AULA 9 PROGRAMA DA AULA: Projçõs ortogonis: Posiçõs ds Figurs plns m rlção um plno d projção. Estudo d sólidos gométricos no

Leia mais

Derivadas parciais de ordem superior à primeira. Teorema de Schwarz.

Derivadas parciais de ordem superior à primeira. Teorema de Schwarz. Drivadas parciais d ordm suprior à primira. Torma d Scwarz. As drivadas das primiras drivadas são as sgundas drivadas assim sucssivamnt. Então, para uma unção d duas variávis podmos considrar, s istirm,

Leia mais

A Função Densidade de Probabilidade

A Função Densidade de Probabilidade Prof. Lorí Vili, Dr. vili@mt.ufrgs.r http://www.mt.ufrgs.r/~vili/ Sj X um vriávl ltóri com conjunto d vlors X(S). S o conjunto d vlors for infinito não numrávl ntão vriávl é dit contínu. A Função Dnsidd

Leia mais

Alteração da seqüência de execução de instruções

Alteração da seqüência de execução de instruções Iníci Busc d próxim Excut Prd Cicl busc Cicl xcuçã Prgrm Sqüênci instruçõs m mmóri Trdutr : Cmpilr X Intrprtr / Linkditr Cnvrt prgrm-fnt m prgrm bjt (lingugm máqui) Prgrm cmpil = mis rápi Prgrm Intrprt

Leia mais

+ = x + 3y = x 1. x + 2y z = Sistemas de equações Lineares

+ = x + 3y = x 1. x + 2y z = Sistemas de equações Lineares Sisms d quçõs Linrs Equção Linr Tod qução do ipo:.. n n Ond:,,., n são os ofiins;,,, n são s inógnis; é o rmo indpndn. E.: d - Equção Linr homogên qundo o rmo indpndn é nulo ( ) - Um qução linr não prsn

Leia mais

RESOLUÇÃO DE EQUAÇÕES POR MEIO DE DETERMINANTES

RESOLUÇÃO DE EQUAÇÕES POR MEIO DE DETERMINANTES RESOLUÇÃO DE EQUAÇÕES POR EIO DE DETERINANTES Dtrmt um mtrz su orm Sj mtrz: O trmt st mtrz é: Emlo: Vmos suor o sstm us quçõs om us óts y: y y Est sstm quçõs o sr srto orm mtrl: y Est qução r três mtrzs:.

Leia mais

8 = 1 GRUPO II. = x. 1 ln x

8 = 1 GRUPO II. = x. 1 ln x Tst Itrmédio Mtmátic A Rsolução (Vrsão ) Durção do Tst: 90 miutos 0.04.04.º Ao d Escolridd RESOLUÇÃO GRUPO I. Rspost (A) Tm-s: log^00h log00 + log + 04 06. Rspost (B) S c + m ou s +, tm-s lim. Como lim

Leia mais

ELECTROMAGNETISMO. TESTE 1 17 de Abril de 2010 RESOLUÇÕES. campo eléctrico apontam ambas para a esquerda, logo E 0.

ELECTROMAGNETISMO. TESTE 1 17 de Abril de 2010 RESOLUÇÕES. campo eléctrico apontam ambas para a esquerda, logo E 0. LTROMAGNTIMO TT 7 d Ail d 00 ROLUÇÕ Ao longo do io dos yy, o vcto cmpo léctico é pllo o io dos pont p squd Isto dv-s o fcto qu qulqu ponto no io dos yy stá quidistnt d dus ptículs cujs cgs são iguis m

Leia mais

CAPÍTULO 3. Exercícios é contínua, decrescente e k 2 positiva no intervalo [ 3, [. De ln x 1 para x 3, temos. dx 3.

CAPÍTULO 3. Exercícios é contínua, decrescente e k 2 positiva no intervalo [ 3, [. De ln x 1 para x 3, temos. dx 3. CAPÍTULO Exrcícios.. b) Sj séri. A fução f( x) é cotíu, dcrsct l x l x positiv o itrvlo [, [. D l x pr x, tmos dx dx. x l x x dx x covrgt Þ l x covrgt. l d) Sj séri 0 m [ 0, [. Tmos: x 4. A fução f( x)

Leia mais

Aulas práticas: Introdução à álgebra geométrica

Aulas práticas: Introdução à álgebra geométrica Auls prátics: Introdução à álgr gométric Prolm Mostr qu ár A do prllogrmo d figur nx é dd por A= = αβ αβ y β α α β β A = αβ αβ α x α β = α + α, = β + β = = αβ + αβ = = ( αβ αβ)( ) = + = = 0 = = = 0 = Prolm

Leia mais

Estruturas cristalinas - aplicações [6]

Estruturas cristalinas - aplicações [6] [6] Questã 1: Clcule númer de átms existentes em um grm de chumb (Pb), sbend-se que su mss tômic crrespnde 07,. Resluçã: cm mss tômic crrespnde um ml de átms, de um regr de três simples tem-se 6,0. 10

Leia mais

FLUXO EM SOLOS SOB CONDIÇÃO SATURADA. Análise Numérica Método das Diferenças Finitas

FLUXO EM SOLOS SOB CONDIÇÃO SATURADA. Análise Numérica Método das Diferenças Finitas FLUXO EM SOLOS SOB CONDIÇÃO SATURADA Análise Numéric Métd ds Diferençs Finits CONTEÚDO. ANÁLISE NUMÉRICA MÉTODO DAS FIFERENÇAS FINITAS..... CONDIÇÕES ESPECIAIS... 5... Superfície impermeável... 5... Diferentes

Leia mais

VARIÁVEIS ALEATÓRIAS CONTÍNUAS. Vamos agora estudar algumas variáveis aleatórias contínuas e respectivas propriedades, nomeadamente:

VARIÁVEIS ALEATÓRIAS CONTÍNUAS. Vamos agora estudar algumas variáveis aleatórias contínuas e respectivas propriedades, nomeadamente: 86 VARIÁVIS ALATÓRIAS CONTÍNUAS Vmos gor studr lgums vriávis ltóris contínus rspctivs propridds, nomdmnt: uniform ponncil norml qui-qudrdo t-studnt F DISTRIBUIÇÃO UNIFORM Considr-s qu função dnsidd d proilidd

Leia mais

TÉCNICAS DE INTEGRAÇÃO. 1.1 Integrais por Substituição Mudança de Variáveis

TÉCNICAS DE INTEGRAÇÃO. 1.1 Integrais por Substituição Mudança de Variáveis UFP VIRTUL Liccitr m Mtmátic Distâci Discipli: álclo Difrcil Irl II Prof Jorg ost Drt Filho Ttor: Moisés Vi F d Olivir TÉNIS DE INTEGRÇÃO Técics d Irção Iris por Sbstitição Mdç d Vriávis Sjm f g fçõs tis

Leia mais

4 Modelos para rochas consolidadas e não consolidadas

4 Modelos para rochas consolidadas e não consolidadas 4 Molos para rochas consoliaas não consoliaas No capítulo antrior, aprsntou-s um molo física rochas calibrávl para o rsrvatório m qustão, qu é o molo proposto para ralizar stimativas prssõs poros, qu srá

Leia mais

Associação de Resistores e Resistência Equivalente

Associação de Resistores e Resistência Equivalente Associção d sistors sistêci Equivlt. Itrodução A ális projto d circuitos rqurm m muitos csos dtrmição d rsistêci quivlt prtir d dois trmiis quisqur do circuito. Além disso, pod-s um séri d csos práticos

Leia mais

Instituto de Física USP Física V - Aula 7

Instituto de Física USP Física V - Aula 7 Institut d Física USP Física V - Aula 7 Prfssra: Mazé Bchara Aula 07 Mvimnts na atmfsfra ns cnstituints ds sólids.. A distribuiçã spacial ds gass da atmsfra: (a) dsprzand a frça da gravidad; (b) cnsidrand

Leia mais

Análise e Síntese de Algoritmos

Análise e Síntese de Algoritmos Anális Sínts Aloritmos Aloritmos Elmntrs m Gros [CLRS, Cp. 22] 2014/2015 Contxto Rvisão [CLRS, Cp.1-13] Funmntos; notção; xmplos Aloritmos m Gros [CLRS, Cp.21-26] Aloritmos lmntrs Árvors rnnts Cminos mis

Leia mais

10.7 Área da Região Limitada por duas Funções Nesta seção, consideraremos a região que está entre os gráficos de duas funções.

10.7 Área da Região Limitada por duas Funções Nesta seção, consideraremos a região que está entre os gráficos de duas funções. 0.7 Ár d Rgião Limitd por dus Funçõs Nst sção, considrrmos rgião qu stá ntr os gráficos d dus funçõs. S f g são contínus f () g() 0 pr todo m [,], ntão ár A d rgião R, limitd plos gráficos d f, g, = =,

Leia mais

MOVIMENTOS SOB A AÇÃO DE UMA FORÇA RESULTANTE DE INTENSIDADE CONSTANTE

MOVIMENTOS SOB A AÇÃO DE UMA FORÇA RESULTANTE DE INTENSIDADE CONSTANTE MOVIMENTOS SOB A AÇÃO DE UMA ORÇA RESULTANTE DE INTENSIDADE CONSTANTE Trjóris Tmos os sguins csos: 1º) S forç rsuln ivr dirção d vlocidd só vrirá o módulo ds rjóri srá rilín. v R Ou R v º) S forç rsuln

Leia mais

Lista 3 - Resolução. 1. Verifique se os produtos abaixo estão bem definidos e, em caso afirmativo, calcule-os.

Lista 3 - Resolução. 1. Verifique se os produtos abaixo estão bem definidos e, em caso afirmativo, calcule-os. GN7 Introução à Álgr Linr Prof n Mri Luz List - Rsolução Vrifiqu s os proutos ixo stão m finios, m so firmtivo, lul-os ) [ / ] / ) / [ / ] ) ) Solução ) orm primir mtriz é x sgun é x, logo o prouto stá

Leia mais

Definição de Área entre duas curvas - A área A entre região limitada pelas curvas. x onde f e g são contínuas e x g x

Definição de Área entre duas curvas - A área A entre região limitada pelas curvas. x onde f e g são contínuas e x g x Aula Capítulo 6 Aplicaçõs d Intração (pá. 8) UFPA, d junho d 5 Ára ntr duas curvas Dinição d Ára ntr duas curvas - A ára A ntr rião limitada plas curvas a y plas rtas a,, é ond são contínuas A a d y para

Leia mais

= 1, independente do valor de x, logo seria uma função afim e não exponencial.

= 1, independente do valor de x, logo seria uma função afim e não exponencial. 6. Função Eponncil É todo função qu pod sr scrit n form: f: R R + = Em qu é um númro rl tl qu 0

Leia mais

ln xdx 1 TÉCNICAS DE INTEGRAÇÃO

ln xdx 1 TÉCNICAS DE INTEGRAÇÃO Cpítlo Técnics d Inrção - TÉCNICAS DE INTEGRAÇÃO. INTEGRAÇÃO POR PARTES Um técnic d inrção mito útil é inrção por prts, q dpnd d fórml pr difrncil d m prodto. Sjm f g fnçõs difrnciávis d. Então, pl rgr

Leia mais

1 Capítulo 2 Cálc l u c lo l I ntegra r l l em m R

1 Capítulo 2 Cálc l u c lo l I ntegra r l l em m R píulo álculo Ingrl m R píulo - álculo Ingrl SUMÁRIO rimiivs imdis ou qus-imdis rimiivção por prs por subsiuição rimiivção d unçõs rcionis Ingris órmul d Brrow ropridds do ingrl dinido Ingris prméricos

Leia mais

5.10 EXERCÍCIO pg. 215

5.10 EXERCÍCIO pg. 215 EXERCÍCIO pg Em cada um dos sguints casos, vriicar s o Torma do Valor Médio s aplica Em caso airmativo, achar um númro c m (a, b, tal qu (c ( a - ( a b - a a ( ; a,b A unção ( é contínua m [,] A unção

Leia mais

3 Freqüências Naturais e Modos de Vibração

3 Freqüências Naturais e Modos de Vibração 3 Frqüêncis Nturis Modos d Vibrção Aprsnt-s nst cpítulo ddução ds quçõs difrnciis prciis d movimnto com s rspctivs condiçõs d contorno prtir do funcionl d nrgi.3. Tm-s ssim um problm d vlor d contorno

Leia mais

BALIZA. Cor central.da PLAYMOBIL podes fazer passes. verde-claro curtos, passes longos e, até, rematar para com a nova função de rotação.

BALIZA. Cor central.da PLAYMOBIL podes fazer passes. verde-claro curtos, passes longos e, até, rematar para com a nova função de rotação. PONTAP DE SAÍDA TCNICAS DE Pntpé bliz Est lnc cntc n iníci jg pós cd gl. Est Gnhs cntr p dis"d jg- bl qund cm dis st jgdrs cir list d cmp tu d quip: pntpé é dd REMATE ntr d círcul cntrl. Os jgdrs jg cm

Leia mais

Instituto de Física USP. Física Moderna I. Aula 29. Professora: Mazé Bechara

Instituto de Física USP. Física Moderna I. Aula 29. Professora: Mazé Bechara Institut d Físic USP Físic Mdn I Aul 9 Pfss: Mzé Bch Aul 9 O átm d hidgêni n ti d Schding 1. A sluçã d átm d H n ti d Schding. Cmpçã cm s sultds d Bh.. Os stds dgnds m ngi: stds d msm ngi divss móduls

Leia mais

Resoluções de Exercícios

Resoluções de Exercícios sluçõs Ecícis MTEMÁTI IV LOO 0 nhcimnts lgébics pítul 0 Funçõs Tignmétics 0 p.( p-)( p-b).( p- c), n + b+ c 8+ + p 8 8.0...9..... LOO 0 0 D + D sn cs tg 0 + 0... sn +.,8.,8. sn 0. +,.,8. +, cm. sn 0 0

Leia mais

(22) Data do Depósito: 08/05/2012. (43) Data da Publicação: 12/04/2016 (RPI 2362)

(22) Data do Depósito: 08/05/2012. (43) Data da Publicação: 12/04/2016 (RPI 2362) INPI (21) BR 102012010884-4 A2 (22) Dt d Dpósit: 08/05/2012 *BR102012010884A Rpúblic Fdrtiv d Brsil Ministri d Dsnvlvimnt, Indústri d Cmrci Extrir Institut Ncinl d Prpridd Industril (43) Dt d Publicçã:

Leia mais

MATRIZES. Matriz é uma tabela de números formada por m linhas e n colunas. Dizemos que essa matriz tem ordem m x n (lê-se: m por n), com m, n N*

MATRIZES. Matriz é uma tabela de números formada por m linhas e n colunas. Dizemos que essa matriz tem ordem m x n (lê-se: m por n), com m, n N* MTRIZES DEFINIÇÃO: Mtriz é um tl d númros formd por m linhs n coluns. Dizmos qu ss mtriz tm ordm m n (lê-s: m por n), com m, n N* Grlmnt dispomos os lmntos d um mtriz ntr prêntss ou ntr colchts. m m m

Leia mais

Adição dos antecedentes com os consequentes das duas razões

Adição dos antecedentes com os consequentes das duas razões Adição dos ntcdnts com os consqunts ds dus rzõs Osrv: 0 0 0 0, ou sj,, ou sj, 0 Otnh s trnsformds por mio d dição dos ntcdnts com os consqünts: ) ) ) 0 0 0 0 0 0 0 0 ) 0 0 0 0 ) 0 0 0 0 ) Osrv gor como

Leia mais

O sinal. Exemplos: impulso rectangular. Função exponencial. Aplica-se a sinais de energia finita. função sinc(λ) Transformada de Fourier 2/T 1/T T/2

O sinal. Exemplos: impulso rectangular. Função exponencial. Aplica-se a sinais de energia finita. função sinc(λ) Transformada de Fourier 2/T 1/T T/2 rsrmd d Furir. d [ ]. d pli-s siis d ri ii [ ]. d < lmuiçõs EC Fuçã si λ si λ 3 si λ λ λ sd [ si ] r [ r ] si lmuiçõs EC 3 Exmpls: impuls rulr. r / / s / Fuçã six/x é mui mum. Csum usr-s pr iss uçã siλ

Leia mais

Exame de Proficiência de Pré-Cálculo

Exame de Proficiência de Pré-Cálculo +//+ Em d Profiiêni d Pré-Cálulo - Informçõs instruçõs. Cro studnt, sj bm-vindo à Univrsidd Fdrl d Snt Ctrin! Em oposição o vstibulr, st m não tm rátr sltivo. O objtivo qui é mdir su onhimnto m mtmáti

Leia mais

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período Rsolução da Prova d Física Tórica Turma C2 d Engnharia Civil Príodo 2005. Problma : Qustõs Dados do problma: m = 500 kg ; v i = 4; 0 m=s ;! a = 5! g d = 2 m. Trabalho ralizado por uma força constant: W

Leia mais

tese. meus tese. estudo. o trabalho na com exames e seu trabalho na sua privada (Med

tese. meus tese. estudo. o trabalho na com exames e seu trabalho na sua privada (Med 1999 E Algr, 1999 m ts. sua na mus m trabalh na ts. stud. privada (Md su trabalh na cm xams AG v c m nrt u s ts. dst stud. as filhs pl m a a vi s XV 1 3 4-2 2 18 18 18 19 da tiróid........ 1-3- 5- vi

Leia mais

CAPÍTULO 3 - CÁLCULO DIFERENCIAL DE FUNÇÕES DE VÁRIAS VARIÁVEIS

CAPÍTULO 3 - CÁLCULO DIFERENCIAL DE FUNÇÕES DE VÁRIAS VARIÁVEIS CAPÍTULO - CÁLCULO DIFERENCIAL DE FUNÇÕES DE VÁRIAS VARIÁVEIS. Introdução A dinição d unção d um vriávl indpndnt pod sr dd por: é um unção d vriávl ou sj é um unção d vriávl dpndnt s cd vlor d corrspond

Leia mais

(22) Data do Depósito: 11/02/2015. (43) Data da Publicação: 24/01/2017

(22) Data do Depósito: 11/02/2015. (43) Data da Publicação: 24/01/2017 INPI (21) BR 102015003018-5 A2 (22) Dt do Dpósito: 11/02/2015 *BR102015003018A Rpúblic Fdrtiv do Brsil Ministério d Indústri, Comércio Extrior Srviços Instituto Ncionl d Propridd Industril (43) Dt d Publicção:

Leia mais

INFORMATIVO 02 / 2009 LEI COMPLEMENTAR 128/08 - SIMPLES NACIONAL - CONTRIBUIÇÃO PREVIDENCIÁRIA PARA CERTOS PRESTADORES DE SERVIÇO

INFORMATIVO 02 / 2009 LEI COMPLEMENTAR 128/08 - SIMPLES NACIONAL - CONTRIBUIÇÃO PREVIDENCIÁRIA PARA CERTOS PRESTADORES DE SERVIÇO 2inf08 HMF (23.01.29) INFORMATIVO 02 / 29 LEI COMPLEMENTAR 128/08 - SIMPLES NACIONAL - CONTRIBUIÇÃO PREVIDENCIÁRIA PARA CERTOS PRESTADORES DE SERVIÇO Em 22.12.28 foi publicd Li Complmntr 128. El ltrou

Leia mais

CAPÍTULO 9 COORDENADAS POLARES

CAPÍTULO 9 COORDENADAS POLARES Luiz Frncisco d Cruz Drtmnto d Mtmátic Uns/Buru CAPÍTULO 9 COORDENADAS POLARES O lno, tmbém chmdo d R, ond R RR {(,)/, R}, ou sj, o roduto crtsino d R or R, é o conjunto d todos os rs ordndos (,), R El

Leia mais

Taxi: Opção mais rápida e cara. Deve ser evitada, a não ser que você privilegie o conforte

Taxi: Opção mais rápida e cara. Deve ser evitada, a não ser que você privilegie o conforte Vi vijr pr? Situ-s com nosss dics roportos trns mtrôs Chgd m Avião: Aroporto Hthrow: Situdo crc 20 km ost um dos mis movim ntdos d Europ possui cinco trminis Dpois pssr pls formlids imigrção pgr su bggm

Leia mais

J. A. M. Felippe de Souza 7 Séries de Fourier

J. A. M. Felippe de Souza 7 Séries de Fourier 7 Séris d Furir 7. Itrduçã à Aális d Furir 3 7. Séri trigmétri d Furir pr siis tíus 5 7.3 rm d Furir 6 Exmpl 7. 7 7. Um itrprtçã d Séri d Furir 3 7.5 Séri xpil d Furir pr siis tíus 7 Exmpl 7. 9 7.6 Equivlêi

Leia mais

Análises de sistemas no domínio da frequência

Análises de sistemas no domínio da frequência prmno d Engnhri Químic d Prólo UFF iciplin: TEQ0- COTROLE E PROCESSOS náli d im no domínio d frquênci Prof inok Boorg Rpo d Frquênci Cliqu pr dir o ilo do xo mr COCEITO: Coni d um méodo gráfico-nlíico

Leia mais

Prgrmçã O Mu s u Év r, p r l ém f rcr s s i g ns «vi s i t s cl áss i cs» qu cri m s p nt s c nt ct nt r s di v rs s p úb l ic s qu vi s it m s c nt ú d s d s u ri c s p ó l i, p r cu r, c nc m i t nt

Leia mais

ELEMENTOS ELETROMECÂNICOS

ELEMENTOS ELETROMECÂNICOS ELEMENTOS ELETROMECÂNICOS Ptenciôetr Mtr elétric Gerdr Eleent Ptenciôetr Mtr elétric Gerdr Entrd Psiçã d cntt desliznte Diferenç de ptencil Rtçã d eix Síd Diferenç de ptencil Rtçã d tr Diferenç de ptencil

Leia mais

Notas sobre Integrais Impróprios em R. Pedro Lopes Departamento de Matemática Instituto Superior Técnico 1o. Semestre 2009/2010

Notas sobre Integrais Impróprios em R. Pedro Lopes Departamento de Matemática Instituto Superior Técnico 1o. Semestre 2009/2010 Nots sobr Intris Impróprios m R Pdro Lops Dprtmnto d Mtmátic Instituto Suprior Técnico o. Smstr 29/2 Ests nots constitum um mtril d poio o curso d Cálculo Dirncil Intrl II pr s licnciturs m Ennhri Inormátic,

Leia mais

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ PR UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Prof Mc ARMANDO PAULO DA SILVA Prof Mc JOSÉ DONIZETTI DE LIMA INTEGRAIS IMPRÓPRIAS A TRANSFORMADA DE LAPLACE g ()d = lim R R g()d o limit it Qudo o limit it

Leia mais

TÓPICOS. Melhor aproximação. Projecção num subespaço. Mínimo erro quadrático.

TÓPICOS. Melhor aproximação. Projecção num subespaço. Mínimo erro quadrático. Not m: litur dsts pontmntos não dispns d modo lgum litur tnt d iliogrfi principl d cdir Chm-s tnção pr importânci do trlho pssol rlizr plo luno rsolvndo os prolms prsntdos n iliogrfi, sm consult prévi

Leia mais

ERROS ESTACIONÁRIOS. Controle em malha aberta. Controle em malha fechada. Diagrama completo. Análise de Erro Estacionário CONSTANTES DE ERRO

ERROS ESTACIONÁRIOS. Controle em malha aberta. Controle em malha fechada. Diagrama completo. Análise de Erro Estacionário CONSTANTES DE ERRO ERROS ESTACIONÁRIOS Control Mlh Abrt Fhd Constnts d rro Tios d sistms Erros unitários Exmlo Control m mlh brt Ação bási, sm rlimntção A ntrd do ontroldor é um sinl d rrêni A síd do ontroldor é o sinl d

Leia mais

Prova de Conhecimentos Específicos 1 a QUESTÃO: (3,0 pontos)

Prova de Conhecimentos Específicos 1 a QUESTÃO: (3,0 pontos) Prov de Conhecimentos Específicos 1 QUESTÃO: (3,0 pontos) Um mol de um gás idel é comprimido, isotermicmente, de modo que su pressão e volume vrim do estdo pr o estdo b, de cordo com o gráfico o ldo. Ddos:

Leia mais

Lista de Exercícios 4 Cálculo I

Lista de Exercícios 4 Cálculo I Lista d Ercícis 4 Cálcul I Ercíci 5 página : Dtrmin as assínttas vrticais hrizntais (s istirm) intrprt s rsultads ncntrads rlacinand-s cm cmprtamnt da funçã: + a) f ( ) = Ants d cmçar a calcular s its

Leia mais

Microeconomia II. Prof. Elaine Toldo Pazello. Capítulo 24

Microeconomia II. Prof. Elaine Toldo Pazello. Capítulo 24 Microconomia II Rsolução 4 a Lista d Exrcícios Prof. Elain Toldo Pazllo Capítulo 24 1. Exrcícios 2, 3, 4, 7, 8, 9, 11 12 do Capítulo 24 do Varian. s no final do livro. 2. Uma mprsa monopolista opra com

Leia mais

MOVIMENTO RELATIVO. Não existe um referencial absoluto. Velocidade Relativa. v B. v A. Velocidades de A e B medidas pelo observador O B = A = dr

MOVIMENTO RELATIVO. Não existe um referencial absoluto. Velocidade Relativa. v B. v A. Velocidades de A e B medidas pelo observador O B = A = dr 1 MOVIMEO ELIVO O mimen é um cncei reli cu descriçã depende de um referencil específic esclhid pel bserdr. Diferenes bserdres usnd sisems referenciis diferenes bém diferenes descrições de um mesm mimen.

Leia mais

VILANCICOS. José Alberto Kaplan. Sesc Partituras

VILANCICOS. José Alberto Kaplan. Sesc Partituras VILANCICOS Jsé Albrt Kaplan NOTA As mldias ds Vilancics: Anunciaçã; Ofrta, frta pastra; Gl xcl fram xtraídas, cm s rspctivs txts, da bra Aut das pastrhas, cligid rcnstituíd pr Ciçã d Barrs Barrt. Obs:

Leia mais

Módulo 03. Determinantes. [Poole 262 a 282]

Módulo 03. Determinantes. [Poole 262 a 282] Móulo Not m, ltur sts potmtos ão sps moo lum ltur tt lor prpl r Cm-s à tção pr mportâ o trlo pssol rlzr plo luo rsolvo os prolms prstos lor, sm osult prév s soluçõs proposts, áls omprtv tr s sus rspost

Leia mais

Metodologia de Walker e Skogerboe para avaliação de irrigação por sulcos

Metodologia de Walker e Skogerboe para avaliação de irrigação por sulcos UNIERSIDADE FEDERA DO CEARÁ CENTRO DE CIÊNCIAS AGRÁRIAS DEPARTAMENTO DE ENGENHARIA AGRÍCOA CURSO DE MESTRADO EM IRRIGAÇÃO E DRENAGEM DISCIPINA: AD 73 - IRRIGAÇÃO POR SUPERFÍCIE Prof.: Rimundo Nonto Távor

Leia mais

PROPRIEDADES DO ELIPSÓIDE

PROPRIEDADES DO ELIPSÓIDE . Elis grdor N Godsi é o lisóid d rvolução (ª roximção) qu srv como rfrênci no osicionmnto godésico; N mior rt dos cálculos d Godsi Gométric é usd gomtri do Elisóid d volução; O Elisóid é formdo l rvolução

Leia mais

Problema do Caixeiro Viajante. Solução força bruta. Problema do Caixeiro Viajante. Projeto e Análise de Algoritmos. Problema do Caixeiro Viajante

Problema do Caixeiro Viajante. Solução força bruta. Problema do Caixeiro Viajante. Projeto e Análise de Algoritmos. Problema do Caixeiro Viajante Projto Anális Aloritmos Prolm o Cixiro Vijnt Altirn Sors Silv Univrsi Frl o Amzons Instituto Computção Prolm o Cixiro Vijnt Um vim (tour) m um ro é um ilo qu pss por toos os vértis. Um vim é simpls quno

Leia mais

a, pois dois vértices desse triângulo são pontos

a, pois dois vértices desse triângulo são pontos UFJF MÓDULO DO PSM TRÊNO 0-0 REFERÊNC DE CORREÇÃO D PROV DE MTEMÁTC PR O DESENVOLVMENTO E RESPOST DS QUESTÕES, SÓ SERÁ DMTDO USR CNET ESFEROGRÁFC ZUL OU PRET Questão Um empres promoveu um concurso pr que

Leia mais

Capítulo 9. Chopper(conversor CC-CC)

Capítulo 9. Chopper(conversor CC-CC) píulo 9 onrsor nrodução hoppr(conrsor rg Alimnção: nsão ix rg: nsão riál Equiln d um rnsormdor A A nsão d síd do conrsor pod sr mior ou mnor qu nsão d nrd Normlmn uilizdos m limnção d disposiios lromcânicos

Leia mais

O sinal Impulso Unitário 1. Definição

O sinal Impulso Unitário 1. Definição O sinl mpuls Uniári. Dfiniçã mpuls uniári mp iscr [n] [ n], n, cs cnrári mpuls uniári mp cnínu, 2. Hisóric O sinl l Dirc fi cri pl físic inglês Pul A. Muric Dirc 92-984 p sr is cm quiln cnínu l Krnckr

Leia mais

Transformada de Laplace. Prof. Eng. Antonio Carlos Lemos Júnior

Transformada de Laplace. Prof. Eng. Antonio Carlos Lemos Júnior Trormd d plc Pro. Eg. oio Crlo mo Júior GEND Diição d Trormd d plc Trormd d plc d lgu ii Propridd d Trormd d plc Exrcício Corol d Sm Mcâico Trormd d plc Obivo: O obivo d ção é zr um irodução à Trormd d

Leia mais

Corrected. Exame de Proficiência de Pré-Cálculo (2018.2)

Corrected. Exame de Proficiência de Pré-Cálculo (2018.2) Em d Profiiêni d Pré-Cálulo (. Informçõs instruçõs. Cro studnt, sj m-vindo à Univrsidd Fdrl d Snt Ctrin! Em oposição o vstiulr, st m não tm rátr sltivo. O ojtivo qui é mdir su onhimnto m mtmáti dqur sus

Leia mais

Prova de Conhecimentos Específicos. 1 a QUESTÃO: (1,5 ponto) PROAC / COSEAC - Gabarito. Considere a função f definida por. f(x)=.

Prova de Conhecimentos Específicos. 1 a QUESTÃO: (1,5 ponto) PROAC / COSEAC - Gabarito. Considere a função f definida por. f(x)=. Prova d Conhcimntos Espcíficos 1 a QUESTÃO: (1,5 ponto) Considr a função f dfinida por Dtrmin: -x f(x). a) as quaçõs das assíntotas horizontais vrticais, caso xistam; b) as coordnadas dos pontos d máximo

Leia mais

Mecânica & Ondas. Módulo 10: O Oscilador harmónico. J. Seixas

Mecânica & Ondas. Módulo 10: O Oscilador harmónico. J. Seixas Mcânc & Onds Oscldor hrónco Spls Co ro Forçdo Oscldors copldos qução ds onds Módulo : O Oscldor hrónco J. Ss Prlnr: Poncs U forç dz - s consrv v s s u l qu du F d Por plo, grvdd é consrv v dgz F g F -

Leia mais

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ - UTFPR CAMPUS CORNÉLIO PROCÓPIO

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ - UTFPR CAMPUS CORNÉLIO PROCÓPIO MINISÉRIO DA EDUCAÇÃO UNIVERSIDADE ECNOLÓGICA FEDERAL DO PARANÁ - UFPR CAMPUS CORNÉLIO PROCÓPIO PR UNIVERSIDADE ECNOLÓGICA FEDERAL DO PARANÁ Noçõs básicas d unçõs d várias variávis FUNÇÕES DE VARIAS VARIÁVEIS

Leia mais

09. Se. 10. Se. 12. Efetue: 13. Calcule C. a é:, determine a matriz X

09. Se. 10. Se. 12. Efetue: 13. Calcule C. a é:, determine a matriz X LIST DE EER MTRIZES E DETERMINNTES PROF ROGERINHO º ENSINO MÉDIO NOME Nº TURM Rrsn n for d l rz, co s, s, Dd rz, co, scrv rz (M O rço d u rz qudrd é so dos lnos d su dgonl rncl O rço d rz ) (, l qu é:

Leia mais

Eletromagnetismo I. Eletromagnetismo I - Eletrostática. Equação de Laplace (Capítulo 6 Páginas 119 a 123) Eq. de Laplace

Eletromagnetismo I. Eletromagnetismo I - Eletrostática. Equação de Laplace (Capítulo 6 Páginas 119 a 123) Eq. de Laplace Eletromgnetismo I Prof. Dniel Orquiz Eletromgnetismo I Prof. Dniel Orquiz de Crvlo Equção de Lplce (Cpítulo 6 Págins 119 123) Eq. de Lplce Solução numéric d Eq. de Lplce Eletromgnetismo I 2 Prof. Dniel

Leia mais

AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Ficha de Trabalho nº 0B Funções exponenciais e logarítmicas - 12º ano

AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Ficha de Trabalho nº 0B Funções exponenciais e logarítmicas - 12º ano AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Fich d Trblho nº B Funçõs ponnciis logrítmics - º no Mts (C.A.). Clcul os sguints limits: n n.. lim.. lim.. lim n n n n n n n n.. lim.. lim.6. lim n n n n. Clcul, m,

Leia mais

INTEGRAÇÃO MÉTODO DA SUBSTITUIÇÃO

INTEGRAÇÃO MÉTODO DA SUBSTITUIÇÃO INTEGRAÇÃO MÉTODO DA UBTITUIÇÃO o MUDANÇA DE VARIAVEL PARA INTEGRAÇÃO Emplos Ercícios MÉTODO DA INTEGRAÇÃO POR PARTE Emplos Ercícios7 INTEGRAL DEFINIDA8 Emplos Ercícios REFERÊNCIA BIBLIOGRÁFICA INTRODUÇÃO:

Leia mais

Série de Fourier tempo contínuo

Série de Fourier tempo contínuo Fculdd d Engnhri Séri d Fourir mpo conínuo.5.5.5.5 -.5 - -.5 - -.5.5.5 SS MIEIC 7/8 Séri d Fourir m mpo conínuo ul d hoj Fculdd d Engnhri Rspos d SLIs conínuo ponnciis Eponnciis imgináris hrmonicmn rlcionds

Leia mais

Cosmologia quântica sem singularidades

Cosmologia quântica sem singularidades 13 rtig grl VOL. 40 - N. 2 Csmlgi quântic s singulrids Jsé M. Vlhinh Univrsid d Bir Intrir, R. Mrquês D Ávil Blm, 6201-001 Cvilhã jvlhi@ubi.pt Rsum A Rltivid Grl plicd univrs cm um td cnduz à chmd tri

Leia mais

UFS - DComp Adaptados a partir do material da Profa. Kenia Kodel Cox

UFS - DComp Adaptados a partir do material da Profa. Kenia Kodel Cox UFS - DCmp Aps p m Pf. Kn K Cx Busc m Tx Busc m x, u psqus g, u csmn põs, u csmn cs, cnss n psqus um susquênc síms num squênc ss (síms). Busc m Tx P cm jv ncn s s cêncs, u smn pm, um susquênc num squênc;

Leia mais

Métodos Computacionais em Engenharia DCA0304 Capítulo 4

Métodos Computacionais em Engenharia DCA0304 Capítulo 4 Métodos Computciois m Eghri DCA34 Cpítulo 4 4 Solução d Equçõs Não-lirs 4 Técic d isolmto d rízs ris m poliômios Cosidrdo um poliômio d orm: P L Dsj-s cotrr os limits ds rízs ris dst poliômio Chmrmos d

Leia mais

Uniforme Exponencial Normal Gama Weibull Lognormal. t (Student) χ 2 (Qui-quadrado) F (Snedekor)

Uniforme Exponencial Normal Gama Weibull Lognormal. t (Student) χ 2 (Qui-quadrado) F (Snedekor) Prof. Lorí Vili, Dr. vili@pucrs.br vili@m.ufrgs.br hp://www.pucrs.br/fm/vili/ hp://www.m.ufrgs.br/~vili/ Uniform Exponncil Norml Gm Wibull Lognorml (Sudn) χ (Qui-qudrdo) F (Sndkor) Um VAC X é uniform no

Leia mais

Material envolvendo estudo de matrizes e determinantes

Material envolvendo estudo de matrizes e determinantes E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este

Leia mais

Eu sou feliz, tu és feliz CD Liturgia II (Caderno de partituras) Coordenação: Ir. Miria T. Kolling

Eu sou feliz, tu és feliz CD Liturgia II (Caderno de partituras) Coordenação: Ir. Miria T. Kolling Eu su iz, s iz Lirgi II (drn d prtirs) rdnçã: Ir. Miri T. King 1) Eu su iz, s iz (brr) & # #2 4. _ k.... k. 1 Eu su "Eu su iz, s iz!" ( "Lirgi II" Puus) iz, s _ iz, & # º #.. b... _ k _. Em cm Pi n cn

Leia mais

Temática Circuitos Eléctricos Capítulo Sistemas Trifásicos LIGAÇÃO DE CARGAS INTRODUÇÃO

Temática Circuitos Eléctricos Capítulo Sistemas Trifásicos LIGAÇÃO DE CARGAS INTRODUÇÃO www.-l.nt Tmática Circuitos Eléctricos Capítulo Sistmas Trifásicos GAÇÃO DE CARGAS NTRODÇÃO Nsta scção, studam-s dois tipos d ligação d cargas trifásicas (ligação m strla ligação m triângulo ou dlta) dduzindo

Leia mais