O Jogo do Solitaire. Objetivos. Conteúdos abordados. Metodologia. Materiais. Programa PIBID/CAPES Departamento de Matemática Universidade de Brasília

Tamanho: px
Começar a partir da página:

Download "O Jogo do Solitaire. Objetivos. Conteúdos abordados. Metodologia. Materiais. Programa PIBID/CAPES Departamento de Matemática Universidade de Brasília"

Transcrição

1 Programa PIBID/CAPES Departamento de Matemática Universidade de Brasília Objetivos Desenvolver o raciocínio lógico e a habilidade de organiação de estratégias de ação e de seleção de métodos de resolução. Conteúdos abordados Representação gráfica; Função; Sequências numéricas; Metodologia Por meio da análise de um quebra-cabeça o aluno é levado a descobrir novas estratégias para solução do mesmo. Com auílio de conceitos construídos ao longo do caderno, o aluno adquire ferramentas que o permite tirar conclusões sobre a solubilidade do quebra-cabeça estudado. Materiais Tabuleiro; Canetas Autor Thafarel Rodrigues da Costa Orientador Prof. Gu Grebot

2 Resumo teórico O Resta Um é um jogo muito simples cujas leis que governam suas soluções podem ser estudadas com auílio de conceitos matemáticos. Dentre as várias questões que podem ser levantadas, são destacadas: qual é o mínimo de movimentos para resolver o problema? Essa sequência de movimentos é única? Eistem problemas equivalentes? O maior desafio ao estudar este jogo é determinar o número mínimo de movimentos necessários para resolvê-lo. Vários matemáticos e criadores de jogos se dedicaram a este estudo. Henr Ernest Dudene foi um matemático inglês e autor de livros e jogos de lógica, que publicou uma solução para o Resta Um com 9 movimentos. Quatro anos depois, Ernest Bergholt publicou [] em uma revista chamada The Queen uma solução com 8 movimentos (ver aneo). Em 964, anos após a publicação de Bergholt, John Beasle [] provou que uma solução com menos de 8 movimentos não é possível. Para facilitar o estudo do Resta Um, usaremos, a partir de agora, a seguinte notação com objetivo de localiar cada casa dentro do tabuleiro e faer referência a alguns problemas. a a 4 a b b 4 b c c c c 4 c c 6 c 7 d d d d 4 d d 6 d 7 Figura : Notação para descrever cada casa do tabuleiro. e e e e 4 e e 6 e 7 f f 4 f g g 4 g Resolver o quebra-cabeça, de acordo com a notação acima, consiste em remover, por meio de movimentos válidos, todas as peças do tabuleiro e deiar apenas uma peça na posição d4 (d4-complementar). A seguir, há um estudo sobre esse problema e ainda uma ferramenta fundamental para determinar se uma jogada realiada impossibilita ou não a resolução do problema.. Teoria de Grupos Sejam, e, os valores de três casas adjacentes numa mesma linha, ou coluna, do tabuleiro. Definiremos a operação + para descrever movimentos válidos, onde + = indica que a peça da casa saltou sobre a peça da casa e parou na casa de valor. Temos, de modo análogo, + =. Assim, a casa está entre as casas e. Logo, pular a casa duas vees seguidas em sentidos opostos, leva à identidade. Este fato pode ser interpretado por e podemos impor que ( + ) + = ( + ) + = + ( + ) = Programa PIBID/CAPES- Departamento de Matemática, Universidade de Brasília

3 e + = 0. O símbolo 0 tradu a invariância do movimento. Dessa forma, temos então o conjunto G = {0,,, } e vamos mostrar que (G, +) define uma estrutura de grupo associada às casas do tabuleiro. Lema A primeira e a quarta casa de uma sequência de 4 casas seguidas numa mesma linha ou coluna, assumem o mesmo valor. Demonstração do Lema Sejam a,,, e b casas seguidas do tabuleiro; logo são válidas as operações + = b e + = a. Da primeira temos: e portanto, + = b + + = b a + = b = a = a + a + = b =. Analogamente, para a segunda operação temos + = a + + = a + + = + a = + a + = + a + + a = + a = a = + =. Esse processo pode ser repetido para qualquer casa do tabuleiro, o que mostra a afirmação. Dessa forma é possível mapear cada casa do tabuleiro e chegar a seguinte configuração: Figura : Notação para descrever cada casa do tabuleiro. Com auílio do mapeamento realiado podemos montar uma tabela que contém todos os movimentos para a operação definida anteriormente A operação de quaisquer dois elementos de G está representada na tabela que nos mostra ainda, a comutatividade dos movimentos realiados. Programa PIBID/CAPES- Departamento de Matemática, Universidade de Brasília

4 Lema A soma de três casas adjacente numa mesma linha, ou coluna, é ero. Demonstração do Lema + + = + = 0. Da afirmação anterior, concluímos que a soma das triplas (,, ) presentes no tabuleiro é constante e igual à ero. O problema do quebra-cabeça é o d4-complementar, ou seja, a única casa vaia no início do jogo é a central que possui valor. Para essa configuração teremos triplas que somadas resultam em ero e a soma + =. Logo, a soma total do tabuleiro é. Note que a operação + = implica que as casas e serão substituídas por uma casa. Este fato mostra que o valor de qualquer configuração é invariante se forem realiados movimentos válidos. Em particular, podemos afirmar que qualquer posição derivada da configuração d4-complementar possui valor.. Função Pagoda A função Pagoda é uma importante ferramenta para verificar se certa configuração do tabuleiro possui ou não solução e permite decidir se determinado movimento impossibilita, ou não, resolver o problema. O princípio por trás de uma Função Pagoda (referência) é atribuir valores para cada casa do tabuleiro de tal forma que se P, Q e R são valores atribuídos a três casas adjacentes, numa mesma linha ou coluna, então P + Q R. Para atribuir esses valores, algumas condições devem ser seguidas: (a) Casas que podem ser saltadas não podem possuir valores negativos; (b) Duas casas adjacentes a uma com valor ero possuem mesmo valor numérico; (c) Se duas casas adjacentes, numa linha ou coluna, possuem valor ero, então toda casa dessa linha, ou coluna, também possuirá valor ero. Essas condições podem ser verificadas facilmente. No caso de (a), se Q é o valor entre P e R, então P + Q R e R + Q P o que implica Q 0. Para a condição (b), se P e R são duas casas adjacentes a um ero, numa mesma linha ou coluna, então P + 0 R e R + 0 P e assim concluímos que R = P. A condição (c) decorre imediatamente de (b). Programa PIBID/CAPES- Departamento de Matemática, Universidade de Brasília 4

5 Orientações para a aplicação das atividades. Atividade.. Na figura 9 estão representados 4 blocos distintos, onde as casas preenchidas representam as peças contidas no bloco e as casas com bolas brancas representam as possíveis posições da peça pivô do bloco. Nessas disposições é possível eliminar todas as peças e deiar apenas a peça pivô em sua posição original. O mediador deve faer o aluno perceber que apenas o bloco C possui uma casa inicial vaia, além da outra casa em que a peça pivô poderia estar localiada. Deve ainda se observado que, na eliminação dos grupos, não se utilia peças fora do mesmo e é este fato que torna essa estratégia de resolução interessante. Definidos os grupos é possível pavimentar todo tabuleiro utiliando os grupos e removêlos seguindo uma ordem. Na figura seguinte há uma possível pavimentação do tabuleiro construída com os grupos definidos anteriormente. 6 4 Figura : Uma solução usando blocos. Para resolver o jogo basta seguir a ordem indicada e eliminar os grupos numerados com o bloco correspondente conforme a tabela seguinte. Grupo Bloco usado A B A 4 B ou C C 6 D Programa PIBID/CAPES- Departamento de Matemática, Universidade de Brasília

6 Caderno: Resta. O Jogo Solitaire é um jogo de tabuleiro bem simples e muito curioso, no Brasil esse jogo é conhecido popularmente como Resta Um. Sua origem é incerta, eistem histórias que afirmam que ele foi inventado por um prisioneiro numa solitária durante a Revolução Francesa (789) a partir de um jogo antigo chamado Raposas e Gansos. Soinho em sua cela ele tinha apenas um tabuleiro deste jogo que devia ser jogado por duas pessoas, a falta de um parceiro o fe adaptar as regras e assim criar o Resta Um, para um só jogador, que lhe serviu de passatempo durante sua prisão.. Regras Figura 4: O tabuleiro do solitaire No início do jogo, há peças no tabuleiro dispostas como na figura acima. O jogador deve realiar movimentos válidos para retirar as peças. Um movimento consiste em pegar uma peça e faê-la saltar sobre outra peça, sempre na horiontal ou na vertical, terminando em um espaço vaio. A peça que foi saltada é retirada do tabuleiro. O jogo acaba quando não é possível faer nenhum movimento. O jogador ganha se restar apenas uma peça no tabuleiro, mas o objetivo maior é deiar a peça restante na posição central do tabuleiro. Programa PIBID/CAPES- Departamento de Matemática, Universidade de Brasília 6

7 .. Atividade: conhecendo o jogo. Tente resolver o quebra cabeça.. Quantas peças você deiou?. Você utiliou alguma estratégia para resolver o problema? Qual?.. Atividade: desafios iniciais. Use movimentos válidos para resolver cada uma das configurações abaio (Figuras e 6). Figura : Configuração. Figura 6: Configuração.. Observe as configurações abaio (Figuras 7 e 8) e faça o mesmo que o item anterior. Figura 7: Configuração. Figura 8: Configuração 4.. Qual desafio você teve mais dificuldade para resolver? Por quê?.. Atividade: uma estratégia de resolução. Material: tabuleiro Uma estratégia de resolução do quebra-cabeça consiste em dividir o tabuleiro em blocos de peças que possam ser removidas sem que seja necessário ultiliar outras peças ou posições fora desse bloco. Na Figura 9 as casas pretas representam as peças do bloco e as casas brancas representam as possíveis posições da peça pivô (peça que inicia a jogada).. Em cada bloco realie movimentos válidos e faça restar apenas uma peça. Programa PIBID/CAPES- Departamento de Matemática, Universidade de Brasília 7 Programa PIBID/CAPES- Departamento de Matemática, Universidade de Brasília 7 Programa PIBID/CAPES- Departamento de Matemática, Universidade de Brasília 7

8 A B C A B C D 4 A B C D 4 A B C A B C D Figura 9: Blocos para a estratégia de resolução. O que afirmar sobre a posição da peça restante?. Usando cores distintas para cada bloco, delimite-os no tabuleiro de acordo com o esquema abaio (Figura 0). Figura 0: Blocos para a estratégia de resolução 4. Selecione uma sequência para a eliminação dos blocos delimitados no item anterior e faça a jogada para verificar se a sequência escolhida resolve o problema.. Compare as tuas escolhas com as dos teus colegas.. A Função Pagoda A função Pagoda é uma importante ferramenta para verificar se certa configuração do tabuleiro possui ou não solução e que permite decidir se determinado movimento impossibilita, ou não, a resolução do problema. O princípio por trás de uma Função Pagoda é atribuir valores para cada casa do tabuleiro de tal forma que se P, Q e R são valores atribuídos a três casas adjacentes numa linha ou coluna, então P + Q R. Para atribuir esses valores algumas condições devem ser seguidas: a Casas que podem ser saltadas não podem possuir valores negativos; Programa PIBID/CAPES- Departamento de Matemática, Universidade de Brasília 8

9 b Duas casas adjacentes a uma com valor ero, numa mesma linha ou coluna, possuem mesmo valor numérico; c Se duas casas adjacentes, numa linha ou coluna, possuem valor ero, então toda casa dessa linha ou coluna também possuirá valor ero... Atividade. De acordo com a definição acima, quais posições do tabuleiro ocupam as casas que podem possuir valores negativos?. Considere valores consecutivos sobre uma mesma linha ou coluna dados por A, B, C, D, E,. Como se relacionam esses valores?. Restringindo a condição da função pagoda à igualdade, monte uma sequência que defina tal função sobre uma linha ou coluna. 4. Construa uma função Pagoda a partir de um canto. Essa sequência pode ter valores negativos?. De acordo com a Pagoda apresentada à esquerda (Figura ), qual é a soma dos valores da configuração à direita (Figura )? Figura : Função Pagoda Figura : Configuração... Atividade Nas seguintes configurações (Figura ), as casas preenchidas com bolinhas pretas representam peças no tabuleiro e as casas com X representam a posição final do problema.. Tente resolver os dois problemas das configurações acima.. Use a Função Pagoda da atividade anterior e determine os valores das somas das posições inicial e final em cada configuração. Complete, na tabela abaio, a coluna FINAL com o respectivo valor da soma da posição final para cada configuração.. Realie movimentos válidos e preencha a tabela abaio usando a Função Pagoda da Figura. 4. Com base nos itens anteriores, qual é a condição para que seja possível partir de uma configuração inicial e chegar a uma configuração alvo? Programa PIBID/CAPES- Departamento de Matemática, Universidade de Brasília 9

10 X X Configuração Configuração Figura : Configurações a serem resolvidas Jogada Configuração Configuração Valor pré-jogada final diferença Valor pré-jogada final diferença Tabela : Tabela de valores por jogada. Qual é a posição final no tabuleiro para a qual a configuração II possui solução? Justifique sua resposta. Programa PIBID/CAPES- Departamento de Matemática, Universidade de Brasília 0

11 .. Desafio Na configuração abaio (Figura 4), as casas preenchidas com o estão inicialmente vaias e as casas com X representam a posição final do problema. As casas vaias estão inicialmente preenchidas e devem ficar vaia no final do problema. Termine a construção X X X X Figura 4: Desafio de uma Função Pagoda iniciada no esquema da Figura 4 que mostre que este problema não tem solução. Programa PIBID/CAPES- Departamento de Matemática, Universidade de Brasília

12 Bibliografia [] Berlekamp E., Conwa J.H, Gu R. (00) Winning Was for Your Mathematical Plas Volume. AK Peters, Ltd. [] Bergholt E. (9) The game of solitaire. [] Beasle, J. D. (98) The Ins and Outs of Peg Solitaire. Alden Press, Universidade de Oford. [4] Allevato N.S.G. e Onuchic L.R.. (006) Ensino-aprendiagem-avaliação de matemática através da resolução de problemas: uma nova possibilidade para o trabalho em sala de aula. Actas da VII Reunião de Didática da Matemática do Cone Sul. Águas de Lindóia-SP. Programa PIBID/CAPES- Departamento de Matemática, Universidade de Brasília

13 Aneo Figura : Solução com 8 movimentos. Programa PIBID/CAPES- Departamento de Matemática, Universidade de Brasília Programa PIBID/CAPES- Departamento de Matemática, Universidade de Brasília Programa PIBID/CAPES- Departamento de Matemática, Universidade de Brasília

Jogo do Feche a caixa

Jogo do Feche a caixa Programa PIBID/CAPES Departamento de Matemática Universidade de Brasília Objetivos Introduzir o conceito de probabilidade. Conteúdos abordados Raciocínio combinatório; Probabilidade; Inequações. Metodologia

Leia mais

Matemática Recreativa

Matemática Recreativa Matemática Recreativa Editores: Jorge Picado e Paula Mendes Martins Análise de um jogo solitário com a ajuda do corpo de Galois GF(4) Paula Mendes Martins e Jorge Picado Resumo: Nesta pequena nota apresentamos

Leia mais

4. Corpos finitos. Aula 22 - Álgebra II. [Conclusão da aula anterior: exemplos de polinómios resolúveis e polinómios não resolúveis]

4. Corpos finitos. Aula 22 - Álgebra II. [Conclusão da aula anterior: exemplos de polinómios resolúveis e polinómios não resolúveis] [Conclusão da aula anterior: exemplos de polinómios resolúveis e polinómios não resolúveis] Corpos finitos Neste capítulo final vamos estudar as propriedades fundamentais dos corpos finitos e descrever

Leia mais

Palavras-chave: Probabilidade; Experimento aleatório; Resolução de Problemas.

Palavras-chave: Probabilidade; Experimento aleatório; Resolução de Problemas. O EXPERIMENTO ALEATÓRIO COMO FERRAMENTA DE APRENDIZAGEM NO ESTUDO DE PROBABILIDADE. ELABORAÇÃO E ANÁLISE DE SEQUENCIA DIDÁTICA, BASEADA NA METODOLOGIA DE RESOLUÇÃO DE PROBLEMA Thafarel Rodrigues da Costa

Leia mais

Jogos e Brincadeiras II

Jogos e Brincadeiras II Polos Olímpicos de Treinamento Curso de Combinatória - Nível 1 Prof. runo Holanda ula 2 Jogos e rincadeiras II Neste artigo continuaremos o assunto iniciado no material anterior. O primeiro exercício,

Leia mais

Jogos e Brincadeiras I. 1. Brincadeiras

Jogos e Brincadeiras I. 1. Brincadeiras Polos Olímpicos de Treinamento Curso de Combinatória - Nível 1 Prof. Bruno Holanda Aula 1 Jogos e Brincadeiras I 1. Brincadeiras Nesta primeira parte da aula resolveremos duas questões retiradas da Olimpíada

Leia mais

PEGUE 10. Quantidade: 08 unidades

PEGUE 10. Quantidade: 08 unidades 1 PEGUE 10 Materiais Um tabuleiro e 66 cartas redondas com os numerais de 1 a 7 nas seguintes quantidades: 1 22 cartas; 6-2 cartas; 2-16 cartas; 7-2 cartas; 3-12 cartas; Coringa 1 carta. 4-7 cartas; 5-4

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ Nível 1 - POTI Aula 1 - Combinatória

UNIVERSIDADE FEDERAL DO PARANÁ Nível 1 - POTI Aula 1 - Combinatória UNIVERSIDADE FEDERAL DO PARANÁ Nível 1 - POTI Aula 1 - Combinatória Exercícios: 1. Maria inventou uma brincadeira. Digitou alguns algarismos na primeira linha de uma folha. Depois, no segunda linha, fez

Leia mais

JOGOS Bruno Holanda, Fortaleza CE

JOGOS Bruno Holanda, Fortaleza CE JOGOS Bruno Holanda, Fortaleza CE Nível Iniciante Problemas sobre jogos estão entre os mais atrativos para a maioria dos alunos que estão iniciando o seu gosto pela matemática e, por isso, vêm ganhando

Leia mais

É possível levar um sapo ao lago?

É possível levar um sapo ao lago? É possível levar um sapo ao lago? Resumo da atividade Nesta atividade o professor proporá aos alunos um jogo de tabuleiro, sem contar para os alunos que o objetivo do jogo é impossível de se alcançar.

Leia mais

Caderno de Acompanhamento Progressão Aritmética e Função Afim Escola Estadual Judith Vianna. Estudante: Turma:

Caderno de Acompanhamento Progressão Aritmética e Função Afim Escola Estadual Judith Vianna. Estudante: Turma: Estudante: Turma: Sequências A natureza apresenta padrões e regularidades. Dessa forma, muitas teorias matemáticas são desenvolvidas a partir do estudo desses padrões e regularidades. Por exemplo, o estudo

Leia mais

Buscando um Invariante

Buscando um Invariante Resolução de Problemas Lista 01 com dicas e discussão Faça mentalmente as seguintes multiplicações: 1. 27 37 2. 21 23 Invente e resolva um problema, usando como inspiração o problema anterior. Decida o

Leia mais

Do Coração para o Ovo

Do Coração para o Ovo Programa PIBID/CAPES Departamento de Matemática Universidade de Brasília Objetivos: construir epiciclóides a partir de circunferências dadas; investigar padrões; identificar simetrias; relacionar a cardióide

Leia mais

Polos Olímpicos de Treinamento. Aula 1. Curso de Combinatória - Nível 2. Prof. Bruno Holanda

Polos Olímpicos de Treinamento. Aula 1. Curso de Combinatória - Nível 2. Prof. Bruno Holanda Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 1 Lógica Nos últimos anos, a participação brasileira em competições internacionais de matemática vem melhorado significamente.

Leia mais

OBMEP 2010 Soluções da prova da 2ª Fase Nível 2. Questão 1

OBMEP 2010 Soluções da prova da 2ª Fase Nível 2. Questão 1 Questão a) Para saber o número que deve dizer ao matemágico, Joãozinho deve fazer quatro contas: ª conta: multiplicar o número no cartão escolhido por 2; 2ª conta: somar 3 ao resultado da primeira conta;

Leia mais

Material Teórico - Módulo Matrizes e Sistemas Lineares. Sistemas Lineares - Parte 2. Terceiro Ano do Ensino Médio

Material Teórico - Módulo Matrizes e Sistemas Lineares. Sistemas Lineares - Parte 2. Terceiro Ano do Ensino Médio Material Teórico - Módulo Matrizes e Sistemas Lineares Sistemas Lineares - Parte 2 Terceiro Ano do Ensino Médio Autor: Prof Fabrício Siqueira Benevides Revisor: Prof Antonio Caminha M Neto 1 A representação

Leia mais

Oficina Operações. b) Quantos quilômetros a mais ele percorreu na terça feira em relação à quinta feira?

Oficina Operações. b) Quantos quilômetros a mais ele percorreu na terça feira em relação à quinta feira? Oficina Operações PROBLEMA 1 Um atleta, preparando-se para a corrida de São Silvestre, realizou os seguintes treinos na semana que antecedeu a prova: Segunda-feira: 18 km Terça feira: 20 km Quarta feira:

Leia mais

Capítulo 1 Números Reais

Capítulo 1 Números Reais Departamento de Matemática Disciplina MAT154 - Cálculo 1 Capítulo 1 Números Reais Conjuntos Numéricos Conjunto dos naturais: N = {1,, 3, 4,... } Conjunto dos inteiros: Z = {..., 3,, 1, 0, 1,, 3,... } {

Leia mais

Polos Olímpicos de Treinamento. Aula 1. Curso de Combinatória - Nível 2. Prof. Bruno Holanda

Polos Olímpicos de Treinamento. Aula 1. Curso de Combinatória - Nível 2. Prof. Bruno Holanda Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 1 Lógica Nos últimos anos, a participação brasileira em competições internacionais de matemática vem melhorado significamente.

Leia mais

OLIMPÍADA DE MATEMÁTICA DO ESTADO DO RIO GRANDE DO NORTE LISTA SEMANAL N o 10 - Data 04/04/2016

OLIMPÍADA DE MATEMÁTICA DO ESTADO DO RIO GRANDE DO NORTE LISTA SEMANAL N o 10 - Data 04/04/2016 OLIMPÍADA DE MATEMÁTICA DO ESTADO DO RIO GRANDE DO NORTE LISTA SEMANAL N o 1 - Data 4/4/16 PROBLEMA PARA O NÍVEL I Escreve-se um número em cada uma das 16 casas de um tabuleiro 4 4. Para qualquer casa,

Leia mais

Observando incógnitas...

Observando incógnitas... Reforço escolar M ate mática Observando incógnitas... Dinâmica 2 2ª Série 4º Bimestre DISCIPLINA Série CAMPO CONCEITO Matemática Ensino Médio 2ª Algébrico-Simbólico Sistemas Lineares. Aluno Primeira etapa

Leia mais

Lógica Proposicional Parte 3

Lógica Proposicional Parte 3 Lógica Proposicional Parte 3 Nesta aula, vamos mostrar como usar os conhecimentos sobre regras de inferência para descobrir (ou inferir) novas proposições a partir de proposições dadas. Ilustraremos esse

Leia mais

Polos Olímpicos de Treinamento. Aula 8. Curso de Combinatória - Nível 1. Prof. Bruno Holanda

Polos Olímpicos de Treinamento. Aula 8. Curso de Combinatória - Nível 1. Prof. Bruno Holanda Polos Olímpicos de Treinamento Curso de Combinatória - Nível 1 Prof. Bruno Holanda Aula 8 Configurações Mágicas De maneira geral, podemos dizer que as configurações mágicas são tipos especiais de diagramas

Leia mais

Cada questão da parte A vale 4 pontos e cada questão da parte B vale 10 pontos (total de pontos do nível III-fase de seleção = 60 pontos).

Cada questão da parte A vale 4 pontos e cada questão da parte B vale 10 pontos (total de pontos do nível III-fase de seleção = 60 pontos). III OLIMPÍADA REGIONAL DE MATEMÁTICA Nível III Ensino Médio DE RIEIRÃO PRETO FASE DE SELEÇÃO - 7 de setembro de 008 Cada questão da parte A vale 4 pontos e cada questão da parte vale 10 pontos (total de

Leia mais

Cubo Mágico. Tutorial de Resolução. Nível Básico. Método das Camadas. Autor: Rinaldo Pitzer Junior.

Cubo Mágico. Tutorial de Resolução. Nível Básico. Método das Camadas. Autor: Rinaldo Pitzer Junior. Cubo Mágico Tutorial de Resolução Nível Básico Método das Camadas Autor: Rinaldo Pitzer Junior www.artedocubo.com.br Tópicos Abordados Curiosidades As Peças do Cubo Algoritmos Resolução Links Úteis Agradecimentos

Leia mais

DAMA DAS EQUAÇÕES DO 1º GRAU

DAMA DAS EQUAÇÕES DO 1º GRAU 1 DAMA DAS EQUAÇÕES DO 1º GRAU Resolver equações de 1 grau; Estimular o raciocínio. Duplas. Material (um para cada dupla): Tabuleiro8x8 com 64 casas. 64 peças. O jogo é composto por um tabuleiro 8x8 com

Leia mais

XXXIV Olimpíada Cearense de Matemática Nível 1 - Sexto e Sétimo Anos

XXXIV Olimpíada Cearense de Matemática Nível 1 - Sexto e Sétimo Anos XXXIV Olimpíada Cearense de Matemática Nível 1 - Sexto e Sétimo Anos Reservado para a correção Prova Probl. 1 Probl. 2 Probl. 3 Probl. 4 Probl. 5 otal # 0 Nota Instruções e Regulamento: 1. Identifique

Leia mais

Polos Olímpicos de Treinamento. Aula 8. Curso de Combinatória - Nível 1. Prof. Bruno Holanda

Polos Olímpicos de Treinamento. Aula 8. Curso de Combinatória - Nível 1. Prof. Bruno Holanda Polos Olímpicos de Treinamento Curso de Combinatória - Nível 1 Prof. Bruno Holanda Aula 8 Configurações Mágicas De maneira geral, podemos dizer que as configurações mágicas são tipos especiais de diagramas

Leia mais

Sudokus quase mágicos

Sudokus quase mágicos Seminário Brasileiro de Análise - SBA Instituto de Matemática e Estatatística - US Edição N 0 68 Novembro 2008 Sudokus quase mágicos a. barone & e. oda Resumo Nesta nota provamos uma surpreendente unicidade

Leia mais

PROJETO KALI MATEMÁTICA B AULA 1

PROJETO KALI MATEMÁTICA B AULA 1 PROJETO KALI - 2015 MATEMÁTICA B AULA 1 Introdução Estudar e entender Matemática exige do aluno um esforço contínuo. Os conteúdos mais básicos são usados no aprendizado dos mais complexos e o raciocínio

Leia mais

SOLUÇÕES NÍVEL 1 2ª. FASE 2017

SOLUÇÕES NÍVEL 1 2ª. FASE 2017 SOLUÇÕES NÍVEL 1 2ª. FASE 2017 N1Q1 Solução item a) Como a casa pintada está na linha 3, Ana sorteou o número 3 e, como ela também está na coluna 4, concluímos que Pedro sorteou o número 1, pois 4 3 =

Leia mais

XXXVIII Olimpíada Cearense de Matemática Nível 2 - Oitavo e Nono Anos

XXXVIII Olimpíada Cearense de Matemática Nível 2 - Oitavo e Nono Anos XXXVIII Olimpíada Cearense de Matemática Nível 2 - Oitavo e Nono Anos Problema 1. Antônio e Bruno compraram ingressos para um evento. Ao chegarem em casa, eles perceberam que os ingressos eram numerados

Leia mais

Backtracking. Pequenos Bispos

Backtracking. Pequenos Bispos Universidade Federal de Ouro Preto UFOP Instituto de Ciências Exatas e Biológicas ICEB Departamento de Computação DECOM Disciplina: BCC202 - Estruturas de Dados I Professores: Túlio A. Machado Toffolo

Leia mais

Hewlett-Packard CONJUNTOS NUMÉRICOS. Aulas 01 a 08. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos

Hewlett-Packard CONJUNTOS NUMÉRICOS. Aulas 01 a 08. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Hewlett-Packard CONJUNTOS NUMÉRICOS Aulas 01 a 08 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Ano: 2019 Sumário CONJUNTOS NUMÉRICOS... 2 Conjunto dos números Naturais... 2 Conjunto dos números

Leia mais

DOMINÓ DAS QUATRO CORES

DOMINÓ DAS QUATRO CORES DOMINÓ DAS QUATRO CORES Aparecida Francisco da SILVA 1 Hélia Matiko Yano KODAMA 2 Resumo: O jogo Quatro Cores tem sido objeto de estudo de muitos profissionais que se dedicam à pesquisa da aplicação de

Leia mais

2. Números Inteiros. A representação gráfica dos números Inteiros Os números podem ser representados numa reta horizontal, a reta numérica:

2. Números Inteiros. A representação gráfica dos números Inteiros Os números podem ser representados numa reta horizontal, a reta numérica: . Números Inteiros Sempre que estamos no inverno as temperaturas caem. Algumas cidades do Sul do Brasil chegam até mesmo a nevar. Quando isso acontece, a temperatura está menor do que zero. Em Urupema,

Leia mais

GEOMETRIA PROJETIVA: O JOGO DOBBLE. Palavras-chave: Metodologia de resolução de problemas; Geometria projetiva; Jogo Dobble.

GEOMETRIA PROJETIVA: O JOGO DOBBLE. Palavras-chave: Metodologia de resolução de problemas; Geometria projetiva; Jogo Dobble. GEOMETRIA PROJETIVA: O JOGO DOBBLE Andréia Cardoso Ferreira 1 Universidade de Brasília Andreia.matunb@yahoo.com.br Resumo: O minicurso tem como objetivo a construção do Jogo Dobble, através da metodologia

Leia mais

Olimpíada Pernambucana de Matemática Caderno de Questões Com Resoluções

Olimpíada Pernambucana de Matemática Caderno de Questões Com Resoluções Olimpíada Pernambucana de Matemática 07 NÍVEL Caderno de Questões Com Resoluções LEIA COM ATENÇÃO 0. Só abra este caderno após ler todas as instruções e quando for autorizado pelos fiscais da sala. 0.

Leia mais

VERMELHOS E AZUIS TRABALHANDO COM NÚMEROS INTEIROS E EXPRESSÕES LINEARES. TÂNIA SCHMITT UNIVERSIDADE DE BRASÍLIA

VERMELHOS E AZUIS TRABALHANDO COM NÚMEROS INTEIROS E EXPRESSÕES LINEARES. TÂNIA SCHMITT UNIVERSIDADE DE BRASÍLIA VERMELHOS E AZUIS TRABALHANDO COM NÚMEROS INTEIROS E EXPRESSÕES LINEARES TÂNIA SCHMITT UNIVERSIDADE DE BRASÍLIA tânia@mat.unb.br CAPÍTULO 1 JOGOS E ATIVIDADES PARA INTRODUÇÃO DE NÚMEROS NEGATIVOS A idéia

Leia mais

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional

Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional MA12 Matemática Discreta Avaliação - GABARITO AV 3 - MA 12 13 de julho de 2013 1. (2,0) Seja (a n ) uma progressão

Leia mais

Concurso Público Conteúdo

Concurso Público Conteúdo Concurso Público 2016 Conteúdo 1ª parte Números inteiros e racionais: operações (adição, subtração, multiplicação, divisão, potenciação); expressões numéricas; múltiplos e divisores de números naturais;

Leia mais

Volume de pirâmides. Dinâmica 5. Aluno PRIMEIRA ETAPA COMPARTILHAR IDEIAS. 2ª Série 3º Bimestre ATIVIDADE QUAL É A SUA ÁREA?

Volume de pirâmides. Dinâmica 5. Aluno PRIMEIRA ETAPA COMPARTILHAR IDEIAS. 2ª Série 3º Bimestre ATIVIDADE QUAL É A SUA ÁREA? Reforço escolar M ate mática Volume de pirâmides Dinâmica 5 2ª Série º Bimestre Matemática 2 Série do Ensino Médio Geométrico Geometria Espacial: Pirâmides e Cones. Aluno PRIMEIRA ETAPA COMPARTILHAR IDEIAS

Leia mais

Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática. MTM Pré-cálculo

Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática. MTM Pré-cálculo Universidade Federal de Santa Catarina Centro de Ciências Físicas e Matemáticas Departamento de Matemática MTM3 - Pré-cálculo a lista complementar de eercícios (6//7 a 7//7) Diga quais dos conjuntos abaio

Leia mais

INTEIROS. Luciana Santos da Silva Martino. lulismartino.wordpress.com PROFMAT - Colégio Pedro II. 25 de agosto de 2017

INTEIROS. Luciana Santos da Silva Martino. lulismartino.wordpress.com PROFMAT - Colégio Pedro II. 25 de agosto de 2017 Sumário REPRESENTAÇÃO DOS NÚMEROS INTEIROS Luciana Santos da Silva Martino lulismartino.wordpress.com lulismartino@gmail.com PROFMAT - Colégio Pedro II 25 de agosto de 2017 Sumário 1 Sistemas de Numeração

Leia mais

Números Inteiros Axiomas e Resultados Simples

Números Inteiros Axiomas e Resultados Simples Números Inteiros Axiomas e Resultados Simples Apresentamos aqui diversas propriedades gerais dos números inteiros que não precisarão ser provadas quando você, aluno, for demonstrar teoremas nesta disciplina.

Leia mais

Referências e materiais complementares desse tópico

Referências e materiais complementares desse tópico Notas de aula: Análise de Algoritmos Centro de Matemática, Computação e Cognição Universidade Federal do ABC Profa. Carla Negri Lintzmayer Conceitos matemáticos e técnicas de prova (Última atualização:

Leia mais

Módulo de Princípios Básicos de Contagem. Segundo ano

Módulo de Princípios Básicos de Contagem. Segundo ano Módulo de Princípios Básicos de Contagem Permutação simples Segundo ano Permutação Simples 1 Exercícios Introdutórios Exercício 1. De quantas formas se pode dispor quatro pessoas em fila indiana? Exercício

Leia mais

SOLUÇÕES NÍVEL 2 2ª. FASE 2017

SOLUÇÕES NÍVEL 2 2ª. FASE 2017 SOLUÇÕES NÍVEL ª. FASE 017 NQ1 Solução Há 10 botões pretos na figura do. Quando apertarmos o botão indicado, os dois botões vizinhos que são inicialmente pretos passarão a ser amarelos. Com isso, teremos

Leia mais

Percebendo Padrões. Vitor T T T F T T T F T T T F T T T F T T T F Maria T T T T T T T F F F T T T T T T T F F F

Percebendo Padrões. Vitor T T T F T T T F T T T F T T T F T T T F Maria T T T T T T T F F F T T T T T T T F F F Polos Olímpicos de Treinamento Curso de Combinatória - Nível 1 Prof. Bruno Holanda Aula 6 Percebendo Padrões Uma das principais habilidades que deve ser desenvolvida pelos alunos que desejam ter um bom

Leia mais

Roda Numérica. Equipe:

Roda Numérica. Equipe: Roda Numérica Equipe: Aniura Milanés Barrientos Carmen Rosa Giraldo Vergara Leandro Augusto Rodrigues Araújo Nora Olinda Cabrera Zúñiga Taciany da Silva Pereira Universidade Federal de Minas Gerais Descrição

Leia mais

Matéria: Raciocínio Lógico-Matemático Concurso: Técnico Legislativo CLDF 2018 Professor: Alex Lira

Matéria: Raciocínio Lógico-Matemático Concurso: Técnico Legislativo CLDF 2018 Professor: Alex Lira Concurso: Técnico Legislativo CLDF 2018 Professor: Alex Lira Prova comentada: Técnico Legislativo CLDF 2018 Raciocínio Lógico-Matemático SUMÁRIO CONTEÚDO PROGRAMÁTICO PREVISTO NO EDITAL... 3 QUESTÕES COMENTADAS...

Leia mais

SOLUÇÕES N item a) Basta continuar os movimentos que estão descritos no enunciado:

SOLUÇÕES N item a) Basta continuar os movimentos que estão descritos no enunciado: N1Q1 Solução SOLUÇÕES N1 2015 Basta continuar os movimentos que estão descritos no enunciado: Basta continuar por mais dois quadros para ver que a situação do Quadro 1 se repete no Quadro 9. Também é possível

Leia mais

O CIRCUITO QUATRO DESAFIOS. Atividade lúdica apoiada pelo Pensamento Computacional

O CIRCUITO QUATRO DESAFIOS. Atividade lúdica apoiada pelo Pensamento Computacional O CIRCUITO QUATRO DESAFIOS Atividade lúdica apoiada pelo Pensamento Computacional C. S. Gonçalves¹, L.R. R. Cunha¹, G. F. Guarda², I. F. Goulart² ¹ Departamento de Computação Universidade Católica de Brasília

Leia mais

MAT Geometria Analítica Licenciatura em Matemática

MAT Geometria Analítica Licenciatura em Matemática MAT010 - Geometria Analítica Licenciatura em Matemática 3 ā Prova - 29/06/2009 Nome: N ō USP: Instruções: 1- Preencha o cabeçalho a caneta. 2- A prova pode ser resolvida a lápis. 3- Justifique suas afirmações.

Leia mais

SEQUÊNCIA DIDÁTICA PODCAST ÁREA CIÊNCIAS DA NATUREZA I MATEMÁTICA - ENSINO MÉDIO

SEQUÊNCIA DIDÁTICA PODCAST ÁREA CIÊNCIAS DA NATUREZA I MATEMÁTICA - ENSINO MÉDIO SEQUÊNCIA DIDÁTICA PODCAST ÁREA CIÊNCIAS DA NATUREZA I MATEMÁTICA - ENSINO MÉDIO Título do Podcast Área Segmento Duração Progressão Geométrica Ciências da Natureza I Matemática Ensino médio 5min34seg Habilidades:

Leia mais

ESCOLA EMEF PROFª MARIA MARGARIDA ZAMBON BENINI - PIBID 08/10/2014, 29/10/2014 e 05/11/2014

ESCOLA EMEF PROFª MARIA MARGARIDA ZAMBON BENINI - PIBID 08/10/2014, 29/10/2014 e 05/11/2014 ESCOLA EMEF PROFª MARIA MARGARIDA ZAMBON BENINI - PIBID 08/10/2014, 29/10/2014 e 05/11/2014 Bolsistas: Mévelin Maus, Milena Poloni Pergher e Odair José Sebulsqui. Supervisora: Marlete Basso Roman Disciplina:

Leia mais

Problemas dos Círculos Matemáticos. Problemas extras para o Capítulo 4

Problemas dos Círculos Matemáticos. Problemas extras para o Capítulo 4 Problemas dos Círculos Matemáticos Problemas extras para o Capítulo 4 Problemas dos Círculos Matemáticos - Capítulo 4 1 Exercícios Introdutórios Exercício 1. Quantos triângulos existem na figura abaixo?

Leia mais

1.1. O jogo Neste jogo parte-se de um tabuleiro com um número ímpar de discos (no caso da figura abaixo são 9), dispostos em linha,

1.1. O jogo Neste jogo parte-se de um tabuleiro com um número ímpar de discos (no caso da figura abaixo são 9), dispostos em linha, 1. Jogo dos saltos 1.1. O jogo Neste jogo parte-se de um tabuleiro com um número ímpar de discos (no caso da figura abaixo são 9), dispostos em linha, e por um conjunto de fichas de 2 cores diferentes

Leia mais

Apresentação. Materiais

Apresentação. Materiais Cruzada Química Apresentação A atividade lúdica Cruzada Química é semelhante ao jogo popular conhecido como palavras-cruzadas. A atividade, neste caso, é utilizada para o estudo da nomenclatura de substâncias

Leia mais

Instituto Federal de Minas Gerais - Campus Bambuí

Instituto Federal de Minas Gerais - Campus Bambuí Instituto Federal de Minas Gerais - Campus Bambuí Curso de Tecnologia em Sistemas para Internet Disciplina de Linguagem de Programação I Prof. Msc. Marlon Marcon Data de Entrega: 27/06/2011 A nota do trabalho

Leia mais

Material Teórico - Inequações Produto e Quociente de Primeiro Grau. Inequações Quociente. Primeiro Ano do Ensino Médio

Material Teórico - Inequações Produto e Quociente de Primeiro Grau. Inequações Quociente. Primeiro Ano do Ensino Médio Material Teórico - Inequações Produto e Quociente de Primeiro Grau Inequações Quociente Primeiro Ano do Ensino Médio Autor: Prof. Fabrício Siqueira Benevides Revisor: Prof. Antonio Caminha M. Neto 27 de

Leia mais

Invariantes BRUNO HOLANDA

Invariantes BRUNO HOLANDA Invariantes BRUNO HOLANDA Neste artigo vamos estudar o princípio da invariância. Ou seja, vamos resolver problemas que, dada uma transformação, existe uma propriedade associada que nunca muda. 1 Analisando

Leia mais

Exemplos e Contra-Exemplos

Exemplos e Contra-Exemplos Polos Olímpicos de Treinamento Curso de Combinatória - Nível 1 Prof. Bruno Holanda Aula 7 Exemplos e Contra-Exemplos Você que já tentou resolver alguns problemas de provas anteriores de Olimpíada de Matemática

Leia mais

Definição. Diremos que um número inteiro d é um divisor de outro inteiro a, se a é múltiplo de d; ou seja, se a = d c, para algum inteiro c.

Definição. Diremos que um número inteiro d é um divisor de outro inteiro a, se a é múltiplo de d; ou seja, se a = d c, para algum inteiro c. Divisores Definição. Diremos que um número inteiro d é um divisor de outro inteiro a, se a é múltiplo de d; ou seja, se a = d c, para algum inteiro c. Quando a é múltiplo de d dizemos também que a é divisível

Leia mais

Unidade 8 Equações e Sistemas de Equações do 1º grau. Sentenças matemáticas

Unidade 8 Equações e Sistemas de Equações do 1º grau. Sentenças matemáticas Unidade 8 Equações e Sistemas de Equações do 1º grau Sentenças matemáticas A matemática pode ser considerada uma linguagem e, como todas elas, é preciso algum tempo para dominá-la. Sentenças, em matemática,

Leia mais

III Números reais - módulo e raízes Módulo ou valor absoluto Definição e exemplos... 17

III Números reais - módulo e raízes Módulo ou valor absoluto Definição e exemplos... 17 UFF/GMA - Matemática Básica I - Parte III Notas de aula - Marlene - 010-16 Sumário III Números reais - módulo e raízes 17 3.1 Módulo valor absoluto...................................... 17 3.1.1 Definição

Leia mais

UFF/GMA - Matemática Básica I - Parte III Notas de aula - Marlene

UFF/GMA - Matemática Básica I - Parte III Notas de aula - Marlene UFF/GMA - Matemática Básica I - Parte III Notas de aula - Marlene - 011-1 37 Sumário III Números reais - módulo e raízes 38 3.1 Módulo valor absoluto........................................ 38 3.1.1 Definição

Leia mais

Á lgebra para intermedia rios Ma ximos, mí nimos e outras ideias u teis

Á lgebra para intermedia rios Ma ximos, mí nimos e outras ideias u teis Á lgebra para intermedia rios Ma imos, mí nimos e outras ideias u teis 0) O que veremos na aula de hoje? Máimos e mínimos em funções do º grau Máimos e mínimos por trigonometria Máimos e mínimos por MA

Leia mais

ARGUMENTAÇÃO E PROVA ENVOLVENDO CONCEITOS DE MÚLTIPLOS E DIVISORES: UMA EXPERIÊNCIA COM ALUNOS DO ENSINO FUNDAMENTAL

ARGUMENTAÇÃO E PROVA ENVOLVENDO CONCEITOS DE MÚLTIPLOS E DIVISORES: UMA EXPERIÊNCIA COM ALUNOS DO ENSINO FUNDAMENTAL PONTIFÍCIA UNIVERSIDADE CATÓLICA DE SÃO PAULO PUC/SP MARCÍLIO FARIAS DA SILVA ARGUMENTAÇÃO E PROVA ENVOLVENDO CONCEITOS DE MÚLTIPLOS E DIVISORES: UMA EXPERIÊNCIA COM ALUNOS DO ENSINO FUNDAMENTAL MESTRADO

Leia mais

Tabuleiros. Problema 1. Determine se é possível cobrir ou não o tabuleiro abaixo (sem sobreposições) usando apenas dominós?

Tabuleiros. Problema 1. Determine se é possível cobrir ou não o tabuleiro abaixo (sem sobreposições) usando apenas dominós? Polos Olímpicos de Treinamento Curso de Combinatória - Nível Prof. Bruno Holanda Aula 9 Tabuleiros Quem nunca brincou de quebra-cabeça? Temos várias pecinhas e temos que encontrar uma maneira de unir todas

Leia mais

Olimpíada Pernambucana de Matemática Caderno de Questões Com Resoluções

Olimpíada Pernambucana de Matemática Caderno de Questões Com Resoluções Olimpíada Pernambucana de Matemática 017 NÍVEL Caderno de Questões Com Resoluções LEIA COM ATENÇÃO 01. Só abra este caderno após ler todas as instruções e quando for autorizado pelos fiscais da sala. 0.

Leia mais

Pirâmide, cone e esfera

Pirâmide, cone e esfera A UA UL LA Pirâmide, cone e esfera Introdução Dando continuidade à unidade de Geometria Espacial, nesta aula vamos estudar mais três dos sólidos geométricos: a pirâmide, o cone e a esfera. Nossa aula A

Leia mais

PROVA ESCRITA EDITAL DE SELEÇÃO

PROVA ESCRITA EDITAL DE SELEÇÃO PROVA ESCRITA EDITAL DE SELEÇÃO 2017 Vagas remanescentes Parte A: Conteúdos Específicos Nesta parte da prova, o candidato deve escolher apenas três questões. O valor de cada questão é 1,0 (um ponto). Circule,

Leia mais

Lista de Exercícios - Multiplicação

Lista de Exercícios - Multiplicação Nota: Os exercícios desta aula são referentes ao seguinte vídeo Matemática Zero 2.0 - Aula 6 - Multiplicação - (parte 1 de 2) Endereço: https://www.youtube.com/watch?v=gppmajolb1s Gabaritos nas últimas

Leia mais

(versão preliminar) exceto possivelmente para x = a. Dizemos que o limite de f(x) quando x tende para x = a é um numero L, e escrevemos

(versão preliminar) exceto possivelmente para x = a. Dizemos que o limite de f(x) quando x tende para x = a é um numero L, e escrevemos LIMITE DE FUNÇÕES REAIS JOSÉ ANTÔNIO G. MIRANDA versão preinar). Revisão: Limite e Funções Continuas Definição Limite de Seqüências). Dizemos que uma seqüência de números reais n convergente para um número

Leia mais

EXPRESSÕES RELACIONAIS

EXPRESSÕES RELACIONAIS AULA 7 EXPRESSÕES RELACIONAIS 7.1 Operadores relacionais Uma expressão relacional, ou simplesmente relação, é uma comparação entre dois valores de um mesmo tipo. Esses valores são representados na relação

Leia mais

Resolução de Problemas Lista 01

Resolução de Problemas Lista 01 Resolução de Problemas Lista 01 Relembramos algumas dicas discutidas no livro-texto para ajudar na resolução de um problema em Matemática. (D1) Ler bem o enunciado do problema e utilizar todas as informações

Leia mais

Raciocínio Lógico II. Solução. Vamos assumir que todos os retângulos são distintos. Os retângulos de menor

Raciocínio Lógico II. Solução. Vamos assumir que todos os retângulos são distintos. Os retângulos de menor Polos Olímpicos de Treinamento Curso de Combinatória - Nível 1 Prof. Bruno Holanda Aula 4 Raciocínio Lógico II Nesta aula continuaremos o processo de desenvolvimento do raciocínio lógico. Inicialmente,

Leia mais

Aula demonstrativa Apresentação... 2 Relação das Questões Comentadas... 8 Gabaritos... 11

Aula demonstrativa Apresentação... 2 Relação das Questões Comentadas... 8 Gabaritos... 11 Aula demonstrativa Apresentação... Relação das Questões Comentadas... 8 Gabaritos... 11 1 Apresentação Olá pessoal! Saiu o edital para o TJ-SP. A banca organizadora é a VUNESP e esta é a aula demonstrativa

Leia mais

Solução. Este problema pode ser resolvido de modo análogo ao problema anterior.

Solução. Este problema pode ser resolvido de modo análogo ao problema anterior. page 11 1.2 Sistema posicional de numeração 11 Solução. Este problema pode ser resolvido de modo análogo ao problema anterior. Exercício 15: Em um conjunto de 101 moedas, há 50 falsas e as demais são verdadeiras.

Leia mais

Caro(a) aluno(a), Coordenadoria de Estudos e Normas Pedagógicas CENP Secretaria da Educação do Estado de São Paulo Equipe Técnica de Matemática

Caro(a) aluno(a), Coordenadoria de Estudos e Normas Pedagógicas CENP Secretaria da Educação do Estado de São Paulo Equipe Técnica de Matemática Caro(a) aluno(a), Você saberia representar a soma dos n primeiros números naturais a partir do 1? Neste Caderno você terá a oportunidade de conhecer esse e outros casos que envolvem sequências e resolvê-los

Leia mais

Enunciados dos Exercícios Cap. 2 Russell & Norvig

Enunciados dos Exercícios Cap. 2 Russell & Norvig Enunciados dos Exercícios Cap. 2 Russell & Norvig 1. (2.2) Tanto a medida de desempenho quanto a função de utilidade medem o quanto um agente está desempenhando bem suas atividades. Explique a diferença

Leia mais

Operações com Números Naturais. 6 ano E.F. Professores Cleber Assis e Tiago Miranda

Operações com Números Naturais. 6 ano E.F. Professores Cleber Assis e Tiago Miranda Módulo Resolução de Exercícios Operações com Números Naturais 6 ano E.F. Professores Cleber Assis e Tiago Miranda Resolução de Exercícios Operações com Números Naturais 1 Exercícios Introdutórios Exercício

Leia mais

Potências e logaritmos, tudo a ver!

Potências e logaritmos, tudo a ver! Reforço escolar M ate mática Potências e logaritmos, tudo a ver! Dinâmica 1 2ª Série 1º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Aluno Matemática 2ª do Ensino Médio Algébrico simbólico Função Logarítmica

Leia mais

36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase

36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase 36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível 2 Segunda Fase Parte A CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 5 pontos para cada resposta correta e a pontuação

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 RELAÇÕES

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 RELAÇÕES FUNÇÃO DEFINIDA POR MAIS DE UMA SENTENÇA... MÓDULO... 6 PROPRIEDADES DO MÓDULO... 6 FUNÇÃO MODULAR... 9 GRÁFICO DA FUNÇÃO MODULAR... 9 EQUAÇÕES MODULARES... 7 INEQUAÇÕES MODULARES... 3 RESPOSTAS... 37

Leia mais

A = B, isto é, todo elemento de A é também um elemento de B e todo elemento de B é também um elemento de A, ou usando o item anterior, A B e B A.

A = B, isto é, todo elemento de A é também um elemento de B e todo elemento de B é também um elemento de A, ou usando o item anterior, A B e B A. Capítulo 1 Números Reais 1.1 Conjuntos Numéricos Um conjunto é uma coleção de elementos. A relação básica entre um objeto e o conjunto é a relação de pertinência: quando um objeto x é um dos elementos

Leia mais

NÍVEL 3 - Prova da 2ª fase - Soluções

NÍVEL 3 - Prova da 2ª fase - Soluções NÍVEL 3 - Prova da ª fase - Soluções QUESTÃO 1 (a) Se o Dodó colocar um número x no visor e apertar, aparece o valor x 3 4 3 5 de f ( x) =. Logo, para x = 4, o valor que vai aparecer é f (4) = = =,5. x

Leia mais

Tô na área! Dinâmica 6. Professor. 9º Ano 4º Bimestre. DISCIPLINA Ano CAMPO CONCEITO DINÂMICA. 9º do Ensino Fundamental

Tô na área! Dinâmica 6. Professor. 9º Ano 4º Bimestre. DISCIPLINA Ano CAMPO CONCEITO DINÂMICA. 9º do Ensino Fundamental Tô na área! Reforço escolar M ate mática Dinâmica 6 9º Ano 4º Bimestre DISCIPLINA Ano CAMPO CONCEITO Matemática 9º do Ensino Fundamental Geométrico. Polígonos regulares e áreas de figuras planas Professor

Leia mais

XX OLIMPÍADA DE MATEMÁTICA DO ESTADO DO RIO GRANDE DO NORTE - Em 19/09/2009

XX OLIMPÍADA DE MATEMÁTICA DO ESTADO DO RIO GRANDE DO NORTE - Em 19/09/2009 XX OLIMPÍADA DE MATEMÁTICA DO ESTADO DO RIO GRANDE DO NORTE - Em 19/09/2009 PROVA DA SEGUNDA ETAPA NÍVEL I (Estudantes da 6 a e 7 a Séries) Problema 1 A expressão E, a seguir, é o produto de 20 números:

Leia mais

Circuitos Hamiltorianos

Circuitos Hamiltorianos Circuitos Hamiltorianos Vimos que o teorema de euler resolve o problema de caracterizar grafos que tenham um circuito em que cada aresta apareça exatamente uma vez. Vamos estudar aqui uma questão relacionada.

Leia mais

Coletando Moedas. Equipe:

Coletando Moedas. Equipe: Coletando Moedas Equipe: Aniura Milanés Barrientos Carmen Rosa Giraldo Vergara Leandro Augusto Rodrigues Araújo Nora Olinda Cabrera Zúñiga Taciany da Silva Pereira Universidade Federal de Minas Gerais

Leia mais

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA

INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA INE5403 FUNDAMENTOS DE MATEMÁTICA DISCRETA PARA A COMPUTAÇÃO PROF. DANIEL S. FREITAS UFSC - CTC - INE Prof. Daniel S. Freitas - UFSC/CTC/INE/2007 p.1/26 3 - INDUÇÃO E RECURSÃO 3.1) Indução Matemática 3.2)

Leia mais

RESOLUÇÃO DCC-UFRJ MATEMÁTICA COMBINATÓRIA 2006/2 PROVA Considere a soma. S n = n 2 n 1

RESOLUÇÃO DCC-UFRJ MATEMÁTICA COMBINATÓRIA 2006/2 PROVA Considere a soma. S n = n 2 n 1 DCC-UFRJ MATEMÁTICA COMBINATÓRIA 2006/2 PROVA 1 1. Considere a soma S n = 1 2 0 + 2 2 1 + 3 2 2 + + n 2 n 1. Mostre, por indução finita, que S n = (n 1)2 n + 1. Indique claramente a base da indução, a

Leia mais

MÓDULO 3 - PROBLEMAS DE TRANSPORTE

MÓDULO 3 - PROBLEMAS DE TRANSPORTE UNESA Sistemas de Transportes Currículo 08 / 009- MÓDULO 3 - PROBLEMAS DE TRANSPORTE. PROBLEMA CLÁSSICO DE TRANSPORTE O Problema de Transporte constitui uma das principais aplicações da PL para auxiliar

Leia mais

O espião que me amava

O espião que me amava Reforço escolar M ate mática O espião que me amava Dinâmica 2 3ª Série 4º Bimestre DISCIPLINA Série CAMPO CONCEITO Matemática Ensino Médio 3ª Algébrico-Simbólico. Polinômios e Equações Algébricas. Aluno

Leia mais

UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS

UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS UNIVERSIDADE FEDERAL DO PARÁ BIBLIOTECA DE OBJETOS MATEMÁTICOS - TEXTO: Torre de Hanói e Triângulo de Sierpinski AUTOR: Mayara Brito (estagiária da BOM) André Brito (estagiário da BOM) ORIENTADOR: Prof.

Leia mais

Aplicação: Resolvendo Problemas Usando Lógica

Aplicação: Resolvendo Problemas Usando Lógica Aplicação: Resolvendo Problemas Usando Lógica Matemática Discreta I Rodrigo Ribeiro Departamento de Ciências Exatas e Aplicadas Universidade de Federal de Ouro Preto 11 de dezembro de 2012 Motivação (I)

Leia mais

ADAPTAÇÃO PEGA VARETAS (Números Inteiros Negativos)

ADAPTAÇÃO PEGA VARETAS (Números Inteiros Negativos) 1 ADAPTAÇÃO PEGA VARETAS (Números Inteiros Negativos) Objetivos Introduzir o conceito de números inteiros negativos; Desenvolvimento O professor confeccionará o jogo com os alunos ou distribuirá os jogos

Leia mais

OLIMPÍADA DE MATEMÁTICA DO ESTADO DO RIO GRANDE DO NORTE LISTA SEMANAL N o 01 - Data 00/02/2017

OLIMPÍADA DE MATEMÁTICA DO ESTADO DO RIO GRANDE DO NORTE LISTA SEMANAL N o 01 - Data 00/02/2017 OLIMPÍADA DE MATEMÁTICA DO ESTADO DO RIO GRANDE DO NORTE LISTA SEMANAL N o 01 - Data 00/02/2017 PROBLEMA PARA O NÍVEL I Uma folha de papel quadrada é dobrada na metade e, em seguida, dobrada novamente

Leia mais