Esquema: Dados: v água 1520m. Fórmulas: Pede-se: d. Resolução:

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Esquema: Dados: v água 1520m. Fórmulas: Pede-se: d. Resolução:"

Transcrição

1 Queda Livre e Movimeno Uniformemene Acelerado Sergio Scarano Jr 1906/013

2 Exercícios Proposo Um navio equipado com um sonar preende medir a profundidade de um oceano. Para isso, o sonar emiiu um Ulra-Som que foi reflecido no fundo do oceano e regressou ao navio 1, segundos após er sido emiido. Sabendo que a velocidade do som na água do mar é de 150 m/s, deermina a profundidade do oceano. S Esquema: Dados: v água 150m / s Fórmulas: v 1, s Pede-se: d? Resolução: S d d v 150 1, v d d d 91m Em 1, segundos o som propaga-se a uma disância de 184 meros. Mas nese inervalo de empo o som efeuou duas vezes o rajeo que corresponde à disância aé ao fundo do oceano, uma vez que o som proveniene do sonar desceu aé ao fundo do oceano e depois de ser refleido volou a subir aé ao barco. Solução: O oceano em uma profundidade de 91 meros. d d S

3 Ploando Grandezas Crescimeno Celular vs Tempo Relação gráfica enre grandezas diferenes, que ambem não é um mapa que relaciona posições num plano ou no espaço, mas informa sobre grandezas derivadas. C=13,1 1 m C=14,3 mm C=14,7 m D=4, m D=4,5 m D=4,7 m C=15,3 m D=4,8 m C=15,7 m D=5,0 m C=17,6 m D=5,6 m C=,9 C=6, m m D=7, m D=8,3 m Jason S Rawlings e al. (011) - European Molecular Biology Organizaion Journal - hp://

4 Ploando Grandezas Crescimeno Celular vs Tempo Relação gráfica enre grandezas diferenes, que ambem não é um mapa que relaciona posições num plano ou no espaço, mas informa sobre grandezas derivadas. C=13,1 1 m C=14,3 mm C=14,7 m D=4, m D=4,5 m D=4,7 m C=15,3 m D=4,8 m C=15,7 m D=5,0 m C=17,6 m D=5,6 m C=,9 C=6, m m D=7, m D=8,3 m Jason S Rawlings e al. (011) - European Molecular Biology Organizaion Journal - hp://

5 Usando a Calculadora para Fazer Esaísica Esse procedimeno é possível com calculadoras CASIO. CASIO

6 Ploando Grandezas Crescimeno Celular vs Tempo Relação gráfica enre grandezas diferenes, que ambem não é um mapa que relaciona posições num plano ou no espaço, mas informa sobre grandezas derivadas. C=13,1 1 m C=14,3 mm C=14,7 m D=4, m D=4,5 m D=4,7 m C=15,3 m D=4,8 m C=15,7 m D=5,0 m C=17,6 m D=5,6 m C=,9 C=6, m m D=7, m D=8,3 m Jason S Rawlings e al. (011) - European Molecular Biology Organizaion Journal - hp://

7 Os Planos Inclinados e a Queda dos Corpos Em seus esudos com planos inclinados, inclinados Galileu concluiu que a cada unidade de empo os corpos caiam em unidades de disâncias seguindo os números ímpares. Plano Inclinado para Experimenos de Galileu

8 Dos Planos Inclinados à Queda Livre Generalizando os resulados que obeve para diferenes inclinações de planos inclinados, Galileu noou que o deslocameno oal de queda de um corpo era proporcional ao quadrado do empo de queda. i S( i+1 )-S( i ) = S S( i )-S( 0 ) = S() 0 = 1 = 1 3 = = = S ( ) c

9 Velocidade Insanânea e Limie Qual é a velocidade de queda de um corpo num dado insane? v med 1 S ( ) c SS v lim h0 dss d + h c h c v h No limie em que h ende a zero: v ( ) c

10 Definição de Aceleração e Aceleração Insanânea Usando o mesmo racíocínio podemos medir a velocidade de quão rápido o corpo em queda fica mais rápido. v ( ) c +h a med 1 a c v h h a lim h00 dv d c a ( ) c a c

11 Definição de Aceleração da Gravidade e Equação dos Corpos em Queda - MUV Como essa aceleração não depende nem da massa nem do empo, damos onomedeg. a c g c Dessa forma podemos escrever: v( ) c v( ) g e: S( ) c 1 S( ) g

12 Definição de Aceleração da Gravidade e Equação dos Corpos em Queda - MUV Como essa aceleração não depende nem da massa nem do empo, damos onomedeg. Conradiz idéia da g c consane dependência com a massa e o empo Dessa forma podemos escrever para um corpo em queda livre: v( ) c v( ) g Conradiz idéia de que a velocidade é proporcional à disância e: S( ) c 1 S( ) g Nem odas as relações são lineares (não vale a regra de rês). Não poderia respeiar sequência dos números naurais (Da Vinci) apenas a sequência dos números ímpares.

13 Experimeno para Deerminar a Aceleração da Gravidade Podemos uilizar o sofware Tracker para medir o movimeno de um corpo Podemos uilizar o sofware Tracker para medir o movimeno de um corpo em queda livre (hp://

14 Usando a Calculadora para Fazer Esaísica Esse procedimeno é possível com calculadoras CASIO. CASIO

15 Escrevendo de Forma Genérica as Expressões do Movimeno Uniformemene Acelerado MUV Represenação da velocidade e da aceleração em ermos de derivadas: ds dv d ds d v( ) S ; a a d d d d d Equação de uma rea para velocidade proporcional ao empo: v( ) v 0 a e equação de uma parábola para o deslocameno proporcional ao quadrado do empo: 1 S( ) S 0 v 0 a

16 Relação Gráfica enre Movimeno Uniformemene Variado eaqueda Livre A queda livre é um caso paricular de movimeno uniformemene variado. Variável Dependene Variável Independene v ( ) a v y ( x ) m Coeficiene Angular x 0 n Coeficiene Linear Equações de Reas Para queda livre saindo do repouso: y y = m x + n m=g n =0 x Variável Dependene Variável Independene 1 S ( ) a v 0 S y( x) m x n x p Parâmeros m = ½ g 0 Equações de Parábolas Para queda livre saindo do repouso: y y =m x + n x + p n = v 0 = 0 p = S 0 = 0 m = ½ g x

17 Exemplo de Exercício com Composição de Movimeno Exemplo no Livro de Bonjorno & Clinon (1997):

18 Exemplo de Exercício com Composição de Movimeno Exemplo no Livro de Bonjorno & Clinon (1997):

Aula - 2 Movimento em uma dimensão

Aula - 2 Movimento em uma dimensão Aula - Moimeno em uma dimensão Física Geral I - F- 18 o semesre, 1 Ilusração dos Principia de Newon mosrando a ideia de inegral Moimeno 1-D Conceios: posição, moimeno, rajeória Velocidade média Velocidade

Leia mais

12 Integral Indefinida

12 Integral Indefinida Inegral Indefinida Em muios problemas, a derivada de uma função é conhecida e o objeivo é enconrar a própria função. Por eemplo, se a aa de crescimeno de uma deerminada população é conhecida, pode-se desejar

Leia mais

Física. MU e MUV 1 ACESSO VESTIBULAR. Lista de Física Prof. Alexsandro

Física. MU e MUV 1 ACESSO VESTIBULAR. Lista de Física Prof. Alexsandro Física Lisa de Física Prof. Alexsandro MU e MU 1 - (UnB DF) Qual é o empo gaso para que um merô de 2m a uma velocidade de 18km/h aravesse um únel de 1m? Dê sua resposa em segundos. 2 - (UERJ) Um rem é

Leia mais

Escola Secundária Dom Manuel Martins

Escola Secundária Dom Manuel Martins Escola Secundária Dom Manuel Marins Seúbal Prof. Carlos Cunha 1ª Ficha de Avaliação FÍSICO QUÍMICA A ANO LECTIVO 2006 / 2007 ANO II N. º NOME: TURMA: C CLASSIFICAÇÃO Grisson e a sua equipa são chamados

Leia mais

CAPÍTULO 9. y(t). y Medidor. Figura 9.1: Controlador Analógico

CAPÍTULO 9. y(t). y Medidor. Figura 9.1: Controlador Analógico 146 CAPÍULO 9 Inrodução ao Conrole Discreo 9.1 Inrodução Os sisemas de conrole esudados aé ese pono envolvem conroladores analógicos, que produzem sinais de conrole conínuos no empo a parir de sinais da

Leia mais

Equações Diferenciais Ordinárias Lineares

Equações Diferenciais Ordinárias Lineares Equações Diferenciais Ordinárias Lineares 67 Noções gerais Equações diferenciais são equações que envolvem uma função incógnia e suas derivadas, além de variáveis independenes Aravés de equações diferenciais

Leia mais

Física. Física Módulo 1

Física. Física Módulo 1 Física Módulo 1 Nesa aula... Movimeno em uma dimensão Aceleração e ouras coisinhas O cálculo de x() a parir de v() v( ) = dx( ) d e x( ) x v( ) d = A velocidade é obida derivando-se a posição em relação

Leia mais

Função definida por várias sentenças

Função definida por várias sentenças Ese caderno didáico em por objeivo o esudo de função definida por várias senenças. Nese maerial você erá disponível: Uma siuação que descreve várias senenças maemáicas que compõem a função. Diversas aividades

Leia mais

Figura 1 Carga de um circuito RC série

Figura 1 Carga de um circuito RC série ASSOIAÇÃO EDUAIONAL DOM BOSO FAULDADE DE ENGENHAIA DE ESENDE ENGENHAIA ELÉTIA ELETÔNIA Disciplina: Laboraório de ircuios Eléricos orrene onínua 1. Objeivo Sempre que um capacior é carregado ou descarregado

Leia mais

Mecânica dos Fluidos. Aula 8 Introdução a Cinemática dos Fluidos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos. Aula 8 Introdução a Cinemática dos Fluidos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues Aula 8 Inrodução a Cinemáica dos Fluidos Tópicos Abordados Nesa Aula Cinemáica dos Fluidos. Definição de Vazão Volumérica. Vazão em Massa e Vazão em Peso. Definição A cinemáica dos fluidos é a ramificação

Leia mais

Adaptado de O Prisma e o Pêndulo as dez mais belas experiências científicas, p. 52, Crease, R. (2006)

Adaptado de O Prisma e o Pêndulo as dez mais belas experiências científicas, p. 52, Crease, R. (2006) PROVA MODELO GRUPO I Arisóeles inha examinado corpos em moimeno e inha concluído, pelo modo como os corpos caem denro de água, que a elocidade de um corpo em queda é uniforme, proporcional ao seu peso,

Leia mais

Módulo 07 Capítulo 06 - Viscosímetro de Cannon-Fensk

Módulo 07 Capítulo 06 - Viscosímetro de Cannon-Fensk Módulo 07 Capíulo 06 - Viscosímero de Cannon-Fensk Inrodução: o mundo cienífico, medições são necessárias, o que sempre é difícil, impreciso, principalmene quando esa é muio grande ou muio pequena. Exemplos;

Leia mais

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL Movimeno unidimensional 5 MOVIMENTO UNIDIMENSIONAL. Inrodução Denre os vários movimenos que iremos esudar, o movimeno unidimensional é o mais simples, já que odas as grandezas veoriais que descrevem o

Leia mais

F-128 Física Geral I. Aula exploratória-02 UNICAMP IFGW

F-128 Física Geral I. Aula exploratória-02 UNICAMP IFGW F-8 Física Geral I Aula eploraória- UNICAMP IFGW username@ifi.unicamp.br Velocidades média e insanânea Velocidade média enre e + Δ - - m Δ Δ ** Se Δ > m > (moimeno à direia, ou no senido de crescimeno

Leia mais

Resumo. Sistemas e Sinais Definição de Sinais e de Sistemas (1) Definição de Funções. Nesta Aula

Resumo. Sistemas e Sinais Definição de Sinais e de Sistemas (1) Definição de Funções. Nesta Aula Resumo Sisemas e Sinais Definição de Sinais e de Sisemas () lco@is.ul.p Insiuo Superior Técnico Definição de funções. Composição. Definição declaraiva e imperaiva. Definição de sinais. Energia e poência

Leia mais

Escola E.B. 2,3 / S do Pinheiro

Escola E.B. 2,3 / S do Pinheiro Escola E.B. 2,3 / S do Pinheiro Ciências Físico Químicas 9º ano Movimenos e Forças 1.º Período 1.º Unidade 2010 / 2011 Massa, Força Gravíica e Força de Ario 1 - A bordo de um vaivém espacial, segue um

Leia mais

Equações Simultâneas. Aula 16. Gujarati, 2011 Capítulos 18 a 20 Wooldridge, 2011 Capítulo 16

Equações Simultâneas. Aula 16. Gujarati, 2011 Capítulos 18 a 20 Wooldridge, 2011 Capítulo 16 Equações Simulâneas Aula 16 Gujarai, 011 Capíulos 18 a 0 Wooldridge, 011 Capíulo 16 Inrodução Durane boa pare do desenvolvimeno dos coneúdos desa disciplina, nós nos preocupamos apenas com modelos de regressão

Leia mais

É a parte da mecânica que descreve os movimentos, sem se preocupar com suas causas.

É a parte da mecânica que descreve os movimentos, sem se preocupar com suas causas. 1 INTRODUÇÃO E CONCEITOS INICIAIS 1.1 Mecânca É a pare da Físca que esuda os movmenos dos corpos. 1. -Cnemáca É a pare da mecânca que descreve os movmenos, sem se preocupar com suas causas. 1.3 - Pono

Leia mais

Um estudo de Cinemática

Um estudo de Cinemática Um esudo de Cinemáica Meu objeivo é expor uma ciência muio nova que raa de um ema muio anigo. Talvez nada na naureza seja mais anigo que o movimeno... Galileu Galilei 1. Inrodução Nese exo focaremos nossa

Leia mais

Cinemática Vetorial Movimento Retilíneo. Movimento. Mecânica : relaciona força, matéria e movimento

Cinemática Vetorial Movimento Retilíneo. Movimento. Mecânica : relaciona força, matéria e movimento Fisica I - IO Cinemáica Veorial Moimeno Reilíneo Prof. Crisiano Olieira Ed. Basilio Jafe sala crislpo@if.usp.br Moimeno Mecânica : relaciona força, maéria e moimeno Cinemáica : Pare da mecânica que descree

Leia mais

2 Conceitos de transmissão de dados

2 Conceitos de transmissão de dados 2 Conceios de ransmissão de dados 2 Conceios de ransmissão de dados 1/23 2.2.1 Fones de aenuação e disorção de sinal 2.2.1 Fones de aenuação e disorção do sinal (coninuação) 2/23 Imperfeições do canal

Leia mais

CAPITULO 01 DEFINIÇÕES E PARÂMETROS DE CIRCUITOS. Prof. SILVIO LOBO RODRIGUES

CAPITULO 01 DEFINIÇÕES E PARÂMETROS DE CIRCUITOS. Prof. SILVIO LOBO RODRIGUES CAPITULO 1 DEFINIÇÕES E PARÂMETROS DE CIRCUITOS Prof. SILVIO LOBO RODRIGUES 1.1 INTRODUÇÃO PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA FENG Desinase o primeiro capíulo

Leia mais

Instituto de Tecnologia de Massachusetts Departamento de Engenharia Elétrica e Ciência da Computação. Tarefa 5 Introdução aos Modelos Ocultos Markov

Instituto de Tecnologia de Massachusetts Departamento de Engenharia Elétrica e Ciência da Computação. Tarefa 5 Introdução aos Modelos Ocultos Markov Insiuo de Tecnologia de Massachuses Deparameno de Engenharia Elérica e Ciência da Compuação 6.345 Reconhecimeno Auomáico da Voz Primavera, 23 Publicado: 7/3/3 Devolução: 9/3/3 Tarefa 5 Inrodução aos Modelos

Leia mais

Experiências para o Ensino de Queda Livre

Experiências para o Ensino de Queda Livre Universidade Esadual de Campinas Insiuo de Física Gleb Waagin Relaório Final da disciplina F 69A - Tópicos de Ensino de Física I Campinas, de juno de 7. Experiências para o Ensino de Queda Livre Aluno:

Leia mais

Física Fascículo 01 Eliana S. de Souza Braga

Física Fascículo 01 Eliana S. de Souza Braga Física Fascículo 01 Eliana S. de Souza raga Índice Cinemáica...1 Exercícios... Gabario...6 Cinemáica (Não se esqueça de adoar uma origem dos espaços, uma origem dos empos e orienar a rajeória) M.R.U. =

Leia mais

APÊNDICES APÊNDICE A - TEXTO DE INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS LINEARES DE 1ª E 2ª ORDEM COM O SOFTWARE MAPLE

APÊNDICES APÊNDICE A - TEXTO DE INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS LINEARES DE 1ª E 2ª ORDEM COM O SOFTWARE MAPLE 170 APÊNDICES APÊNDICE A - TEXTO DE INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS LINEARES DE 1ª E ª ORDEM COM O SOFTWARE MAPLE PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS PUC MINAS MESTRADO PROFISSIONAL

Leia mais

FÍSICA - 1 o ANO MÓDULO 17 LANÇAMENTO VERTICAL E QUEDA LIVRE

FÍSICA - 1 o ANO MÓDULO 17 LANÇAMENTO VERTICAL E QUEDA LIVRE FÍSICA - 1 o ANO MÓDULO 17 LANÇAMENTO VERTICAL E QUEDA LIVRE Como pode cair no enem? celeração de 5 g (ou 50 m/s²), ocorrendo o enrijecimento dos músculos devido a força que o sangue exerce na volta

Leia mais

Seção 5: Equações Lineares de 1 a Ordem

Seção 5: Equações Lineares de 1 a Ordem Seção 5: Equações Lineares de 1 a Ordem Definição. Uma EDO de 1 a ordem é dia linear se for da forma y + fx y = gx. 1 A EDO linear de 1 a ordem é uma equação do 1 o grau em y e em y. Qualquer dependência

Leia mais

Faculdade de Engenharia São Paulo FESP Física Básica 1 (BF1) - Professores: João Arruda e Henriette Righi

Faculdade de Engenharia São Paulo FESP Física Básica 1 (BF1) - Professores: João Arruda e Henriette Righi Faculdade de Engenharia São Paulo FESP Física Básica 1 (BF1) - Professores: João Arruda e Henriee Righi LISTA DE EXERCÍCIOS # 1 Aenção: Aualize seu adobe, ou subsiua os quadrados por negaivo!!! 1) Deermine

Leia mais

ENGENHARIA ECONÔMICA AVANÇADA

ENGENHARIA ECONÔMICA AVANÇADA ENGENHARIA ECONÔMICA AVANÇADA TÓPICOS AVANÇADOS MATERIAL DE APOIO ÁLVARO GEHLEN DE LEÃO gehleao@pucrs.br 55 5 Avaliação Econômica de Projeos de Invesimeno Nas próximas seções serão apresenados os principais

Leia mais

INTERATIVIDADE FINAL CONTEÚDO E HABILIDADES DINÂMICA LOCAL INTERATIVA FÍSICA AULA. Aula 6.1 Conteúdo: Lançamento Vertical.

INTERATIVIDADE FINAL CONTEÚDO E HABILIDADES DINÂMICA LOCAL INTERATIVA FÍSICA AULA. Aula 6.1 Conteúdo: Lançamento Vertical. Aula 6.1 Conteúdo: Lançamento Vertical. Habilidades: Compreender os conceitos físicos que se relacionam ao movimento dos corpos. Saber calcular as grandezas físicas relacionados com o lançamento vertical.

Leia mais

MÉTODO MARSHALL. Os corpos de prova deverão ter a seguinte composição em peso:

MÉTODO MARSHALL. Os corpos de prova deverão ter a seguinte composição em peso: TEXTO COMPLEMENTAR MÉTODO MARSHALL ROTINA DE EXECUÇÃO (PROCEDIMENTOS) Suponhamos que se deseje dosar um concreo asfálico com os seguines maeriais: 1. Pedra 2. Areia 3. Cimeno Porland 4. CAP 85 100 amos

Leia mais

Curso de Engenharia Civil. Física Geral e Experimental I Movimento Prof.a: Msd. Érica Muniz 1 Período

Curso de Engenharia Civil. Física Geral e Experimental I Movimento Prof.a: Msd. Érica Muniz 1 Período Curso de Engenharia Civil Física Geral e Experimental I Movimento Prof.a: Msd. Érica Muniz 1 Período Posição e Coordenada de Referência Posição é o lugar no espaço onde se situa o corpo. Imagine três pontos

Leia mais

Física 2 aula 11 COMENTÁRIOS ATIVIDADES PARA SALA CINEMÁTICA IV. 4. (0,2s) movimento progressivo: 1. Como x 1

Física 2 aula 11 COMENTÁRIOS ATIVIDADES PARA SALA CINEMÁTICA IV. 4. (0,2s) movimento progressivo: 1. Como x 1 Física aula CIEMÁTICA IV 4. (,s) movimeno progressivo: COMETÁRIOS ATIVIDADES PARA SALA. Como x x é a diferença enre as posições dos auomóveis A e A em-se: o insane, os auomóveis A e A esão na mesma posição.

Leia mais

= + 3. h t t. h t t. h t t. h t t MATEMÁTICA

= + 3. h t t. h t t. h t t. h t t MATEMÁTICA MAEMÁICA 01 Um ourives possui uma esfera de ouro maciça que vai ser fundida para ser dividida em 8 (oio) esferas menores e de igual amanho. Seu objeivo é acondicionar cada esfera obida em uma caixa cúbica.

Leia mais

Escola de Pós-Graduação em Economia da Fundação Getulio Vargas (EPGE/FGV) Macroeconomia I / 2016. Professor: Rubens Penha Cysne

Escola de Pós-Graduação em Economia da Fundação Getulio Vargas (EPGE/FGV) Macroeconomia I / 2016. Professor: Rubens Penha Cysne Escola de Pós-Graduação em Economia da Fundação Geulio Vargas (EPGE/FGV) Macroeconomia I / 2016 Professor: Rubens Penha Cysne Lisa de Exercícios 4 - Gerações Superposas Obs: Na ausência de de nição de

Leia mais

Mecânica de Sistemas de Partículas Prof. Lúcio Fassarella * 2013 *

Mecânica de Sistemas de Partículas Prof. Lúcio Fassarella * 2013 * Mecânica e Sisemas e Parículas Prof. Lúcio Fassarella * 2013 * 1. A velociae e escape e um planea ou esrela é e nia como seno a menor velociae requeria na superfície o objeo para que uma parícula escape

Leia mais

Condensadores e Bobinas

Condensadores e Bobinas ondensadores e Bobinas Arnaldo Baisa TE_4 Dielécrico é não conduor Placas ou armaduras conduoras ondensadores TE_4 R Área A Analogia Hidráulica V S + - Elecrão Elecrões que se repelem d Bomba Hidráulica

Leia mais

Aula 1. Atividades. Para as questões dessa aula, podem ser úteis as seguintes relações:

Aula 1. Atividades. Para as questões dessa aula, podem ser úteis as seguintes relações: Aula 1 Para as quesões dessa aula, podem ser úeis as seguines relações: 1. E c = P = d = m. v E m V E P = m. g. h cos = sen = g = Aividades Z = V caeo adjacene hipoenusa caeo oposo hipoenusa caeo oposo

Leia mais

Análise de Circuitos Dinâmicos no Domínio do Tempo

Análise de Circuitos Dinâmicos no Domínio do Tempo Teoria dos ircuios e Fundamenos de Elecrónica Análise de ircuios Dinâmicos no Domínio do Tempo Teresa Mendes de Almeida TeresaMAlmeida@is.ul.p DEE Área ienífica de Elecrónica T.M.Almeida IST-DEE- AElecrónica

Leia mais

Capítulo 3 Derivada. 3.1 Reta Tangente e Taxa de Variação

Capítulo 3 Derivada. 3.1 Reta Tangente e Taxa de Variação Inrodução ao Cálculo Capíulo Derivada.1 Rea Tangene e Taxa de Variação Exemplo nr. 1 - Uma parícula caminha sobre uma rajeória qualquer obedecendo à função horária: s() 5 + (s em meros, em segundos) a)

Leia mais

Campo magnético variável

Campo magnético variável Campo magnéico variável Já vimos que a passagem de uma correne elécrica cria um campo magnéico em orno de um conduor aravés do qual a correne flui. Esa descobera de Orsed levou os cienisas a desejaram

Leia mais

2. DÍODOS DE JUNÇÃO. Dispositivo de dois terminais, passivo e não-linear

2. DÍODOS DE JUNÇÃO. Dispositivo de dois terminais, passivo e não-linear 2. ÍOOS E JUNÇÃO Fernando Gonçalves nsiuo Superior Técnico Teoria dos Circuios e Fundamenos de Elecrónica - 2004/2005 íodo de Junção isposiivo de dois erminais, passivo e não-linear Foografia ânodo Símbolo

Leia mais

CAPÍTULO III TORÇÃO PROBLEMAS ESTATICAMENTE INDETERMINADOS TORÇÃO - PEÇAS DE SEÇÃO VAZADA DE PAREDES FINAS

CAPÍTULO III TORÇÃO PROBLEMAS ESTATICAMENTE INDETERMINADOS TORÇÃO - PEÇAS DE SEÇÃO VAZADA DE PAREDES FINAS APÍTULO III TORÇÃO PROBLEMAS ESTATIAMENTE INDETERMINADOS TORÇÃO - PEÇAS DE SEÇÃO VAZADA DE PAREDES FINAS A- TORÇÃO PROBLEMAS ESTATIAMENTE INDETERMINADOS Vimos aé aqui que para calcularmos as ensões em

Leia mais

APLICAÇÃO DE MODELAGEM NO CRESCIMENTO POPULACIONAL BRASILEIRO

APLICAÇÃO DE MODELAGEM NO CRESCIMENTO POPULACIONAL BRASILEIRO ALICAÇÃO DE MODELAGEM NO CRESCIMENTO OULACIONAL BRASILEIRO Adriano Luís Simonao (Faculdades Inegradas FAFIBE) Kenia Crisina Gallo (G- Faculdade de Ciências e Tecnologia de Birigüi/S) Resumo: Ese rabalho

Leia mais

QUESTÃO 01 Considere os conjuntos A = {x R / 0 x 3} e B = {y Z / 1 y 1}. A representação gráfica do produto cartesiano A B corresponde a:

QUESTÃO 01 Considere os conjuntos A = {x R / 0 x 3} e B = {y Z / 1 y 1}. A representação gráfica do produto cartesiano A B corresponde a: PROVA DE MATEMÁTICA - TURMA DO o ANO DO ENINO MÉDIO COLÉGIO ANCHIETA-A - JUlHO DE. ELAORAÇÃO: PROFEORE ADRIANO CARIÉ E WALTER PORTO. PROFEORA MARIA ANTÔNIA C. GOUVEIA QUETÃO Considere os conjunos A { R

Leia mais

Modelo ARX para Previsão do Consumo de Energia Elétrica: Aplicação para o Caso Residencial no Brasil

Modelo ARX para Previsão do Consumo de Energia Elétrica: Aplicação para o Caso Residencial no Brasil Modelo ARX para Previsão do Consumo de Energia Elérica: Aplicação para o Caso Residencial no Brasil Resumo Ese rabalho propõe a aplicação do modelo ARX para projear o consumo residencial de energia elérica

Leia mais

Estando o capacitor inicialmente descarregado, o gráfico que representa a corrente i no circuito após o fechamento da chave S é:

Estando o capacitor inicialmente descarregado, o gráfico que representa a corrente i no circuito após o fechamento da chave S é: PROCESSO SELETIVO 27 2 O DIA GABARITO 1 13 FÍSICA QUESTÕES DE 31 A 45 31. Considere o circuio mosrado na figura abaixo: S V R C Esando o capacior inicialmene descarregado, o gráfico que represena a correne

Leia mais

Exemplos de aplicação das leis de Newton e Conservação do Momento Linear

Exemplos de aplicação das leis de Newton e Conservação do Momento Linear Exemplos de aplicação das leis de Newton e Conservação do Momento Linear Cálculo de resultante I Considere um corpo sobre o qual atual três forças distintas. Calcule a força resultante. F 1 = 10 N 30 F

Leia mais

ANÁLISE DE ESTRUTURAS VIA ANSYS

ANÁLISE DE ESTRUTURAS VIA ANSYS 2 ANÁLISE DE ESTRUTURAS VIA ANSYS A Análise de esruuras provavelmene é a aplicação mais comum do méodo dos elemenos finios. O ermo esruura não só diz respeio as esruuras de engenharia civil como pones

Leia mais

OBJETIVOS. Ao final desse grupo de slides os alunos deverão ser capazes de: Explicar a diferença entre regressão espúria e cointegração.

OBJETIVOS. Ao final desse grupo de slides os alunos deverão ser capazes de: Explicar a diferença entre regressão espúria e cointegração. Ao final desse grupo de slides os alunos deverão ser capazes de: OBJETIVOS Explicar a diferença enre regressão espúria e coinegração. Jusificar, por meio de ese de hipóeses, se um conjuno de séries emporais

Leia mais

Física e Química A. Teste Intermédio de Física e Química A. Teste Intermédio. Versão 1. Duração do Teste: 90 minutos 26.05.2009

Física e Química A. Teste Intermédio de Física e Química A. Teste Intermédio. Versão 1. Duração do Teste: 90 minutos 26.05.2009 Tese Inermédio de Física e Química A Tese Inermédio Física e Química A Versão Duração do Tese: 90 minuos 26.05.2009.º ou 2.º Anos de Escolaridade Decreo-Lei n.º 74/2004, de 26 de Março Na folha de resposas,

Leia mais

Vestibular1 A melhor ajuda ao vestibulando na Internet Acesse Agora! www.vestibular1.com.br. Cinemática escalar

Vestibular1 A melhor ajuda ao vestibulando na Internet Acesse Agora! www.vestibular1.com.br. Cinemática escalar Cinemática escalar A cinemática escalar considera apenas o aspecto escalar das grandezas físicas envolvidas. Ex. A grandeza física velocidade não pode ser definida apenas por seu valor numérico e por sua

Leia mais

Unidade III: Movimento Uniformemente Variado (M.U.V.)

Unidade III: Movimento Uniformemente Variado (M.U.V.) Colégio Santa Catarina Unidade III: Movimento Uniformemente Variado (M.U.V.) 17 Unidade III: Movimento Uniformemente Variado (M.U.V.) 3.1- Aceleração Escalar (a): Em movimentos nos quais as velocidades

Leia mais

Como podemos prever a evolução do preço das acções cotadas na bolsa?

Como podemos prever a evolução do preço das acções cotadas na bolsa? Como podemos prever a evolução do preço das acções coadas na bolsa? Cláudia Nunes Philippar cnunes@mah.is.ul.p Início da Hisória The Royal Swedish Academy of Sciences has decided o award he Bank of Sweden

Leia mais

Capítulo 5: Introdução às Séries Temporais e aos Modelos ARIMA

Capítulo 5: Introdução às Séries Temporais e aos Modelos ARIMA 0 Capíulo 5: Inrodução às Séries emporais e aos odelos ARIA Nese capíulo faremos uma inrodução às séries emporais. O nosso objeivo aqui é puramene operacional e esaremos mais preocupados com as definições

Leia mais

F-128 Física Geral I. Aula exploratória-07 UNICAMP IFGW F128 2o Semestre de 2012

F-128 Física Geral I. Aula exploratória-07 UNICAMP IFGW F128 2o Semestre de 2012 F-18 Física Geral I Aula eploraória-07 UNICAMP IFGW username@ii.unicamp.br F18 o Semesre de 01 1 Energia Energia é um conceio que ai além da mecânica de Newon e permanece úil ambém na mecânica quânica,

Leia mais

Universidade Federal de Lavras

Universidade Federal de Lavras Universidade Federal de Lavras Deparameno de Ciências Exaas Prof. Daniel Furado Ferreira 8 a Lisa de Exercícios Disribuição de Amosragem 1) O empo de vida de uma lâmpada possui disribuição normal com média

Leia mais

Física B Extensivo V. 5

Física B Extensivo V. 5 Gabario Eensivo V 5 Resolva Aula 8 Aula 9 80) E 80) A 90) f = 50 MHz = 50 0 6 Hz v = 3 0 8 m/s v = f = v f = 3 0 8 50 0 = 6 m 90) B y = 0,5 cos [ (4 0)] y = 0,5 cos y = A cos A = 0,5 m 6 = 4 s = 0,5 s

Leia mais

Os conceitos mais básicos dessa matéria são: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo.

Os conceitos mais básicos dessa matéria são: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo. Os conceitos mais básicos dessa matéria são: Cinemática Básica: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo. Velocidade: Consiste na taxa de variação dessa distância

Leia mais

R A B VETORES. Módulo. Valor numérico + unidade de medida. Intensidade

R A B VETORES. Módulo. Valor numérico + unidade de medida. Intensidade ETORES 1- DEFINIÇÃO: Ene maemáico usado para caracerizar uma grandeza eorial. paralelogramo. O eor resulane é raçado a parir das origens aé a inersecção das linhas auxiliares. - TIPOS DE GRANDEZAS.1- GRANDEZA

Leia mais

P2 - PROVA DE QUÍMICA GERAL - 07/05/05

P2 - PROVA DE QUÍMICA GERAL - 07/05/05 P - PROVA DE QUÍMICA GERAL - 07/05/05 Nome: Nº de Marícula: Gabario Turma: Assinaura: Quesão Valor Grau Revisão a,0 a,0 3 a,0 4 a,0 5 a,0 Toal 0,0 Consanes: R 8,34 J mol - K - R 0,08 am L mol - K - am

Leia mais

a) O tempo total que o paraquedista permaneceu no ar, desde o salto até atingir o solo.

a) O tempo total que o paraquedista permaneceu no ar, desde o salto até atingir o solo. (MECÂNICA, ÓPTICA, ONDULATÓRIA E MECÂNICA DOS FLUIDOS) 01) Um paraquedista salta de um avião e cai livremente por uma distância vertical de 80 m, antes de abrir o paraquedas. Quando este se abre, ele passa

Leia mais

Lista 1 Cinemática em 1D, 2D e 3D

Lista 1 Cinemática em 1D, 2D e 3D UNIVERSIDADE ESTADUAL DO SUDOESTE DA BAHIA DEPARTAMENTO DE ESTUDOS BÁSICOS E INSTRUMENTAIS CAMPUS DE ITAPETINGA PROFESSOR: ROBERTO CLAUDINO FERREIRA DISCIPLINA: FÍSICA I Aluno (a): Data: / / NOTA: Lista

Leia mais

N(0) número de núcleos da espécie inicial no instante t=0. N(t) número de núcleos da espécie inicial no instante t. λ constante de decaimento

N(0) número de núcleos da espécie inicial no instante t=0. N(t) número de núcleos da espécie inicial no instante t. λ constante de decaimento 07-0-00 Lei do Decaimeno Radioacivo probabilidade de ransformação elemenar durane d d número médio de ransformações (dum elemeno) ocorridas em d N = Nd número médio de ocorrências na amosra com N elemenos

Leia mais

Cinemática Unidimensional

Cinemática Unidimensional Cinemática Unidimensional 1 INTRODUÇÃO Na Cinemática Unidimensional vamos estudar o movimento de corpos e partículas, analisando termos como deslocamento, velocidade, aceleração e tempo.os assuntos que

Leia mais

METODOLOGIA PROJEÇÃO DE DEMANDA POR TRANSPORTE AÉREO NO BRASIL

METODOLOGIA PROJEÇÃO DE DEMANDA POR TRANSPORTE AÉREO NO BRASIL METODOLOGIA PROJEÇÃO DE DEMANDA POR TRANSPORTE AÉREO NO BRASIL 1. Inrodução O presene documeno visa apresenar dealhes da meodologia uilizada nos desenvolvimenos de previsão de demanda aeroporuária no Brasil

Leia mais

exercício e o preço do ativo são iguais, é dito que a opção está no dinheiro (at-themoney).

exercício e o preço do ativo são iguais, é dito que a opção está no dinheiro (at-themoney). 4. Mercado de Opções O mercado de opções é um mercado no qual o iular (comprador) de uma opção em o direio de exercer a mesma, mas não a obrigação, mediane o pagameno de um prêmio ao lançador da opção

Leia mais

Análise Dimensional Notas de Aula

Análise Dimensional Notas de Aula Primeira Edição Análise Dimensional Notas de Aula Prof. Ubirajara Neves Fórmulas dimensionais 1 As fórmulas dimensionais são formas usadas para expressar as diferentes grandezas físicas em função das grandezas

Leia mais

Escola Secundária de Oliveira do Bairro. Ano Lectivo 2010/2011 QUEDA LIVRE FÍSICO-QUÍMICA. Mariana Figueiredo 11ºB nº17

Escola Secundária de Oliveira do Bairro. Ano Lectivo 2010/2011 QUEDA LIVRE FÍSICO-QUÍMICA. Mariana Figueiredo 11ºB nº17 Ano Lectivo 2010/2011 FÍSICO-QUÍMICA QUEDA LIVRE Mariana Figueiredo 11ºB nº17 QUESTÕES PRÉ-LABORATORIAIS Escola Secundária de Oliveira do Bairro 1- a) Na queda, o movimento é uniformemente acelerado porque

Leia mais

Palavras-chave: Análise de Séries Temporais; HIV; AIDS; HUJBB.

Palavras-chave: Análise de Séries Temporais; HIV; AIDS; HUJBB. Análise de Séries Temporais de Pacienes com HIV/AIDS Inernados no Hospial Universiário João de Barros Barreo (HUJBB), da Região Meropoliana de Belém, Esado do Pará Gilzibene Marques da Silva ¹ Adrilayne

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tarefa de revisão nº 17 1. Uma empresa lançou um produo no mercado. Esudos efecuados permiiram concluir que a evolução do preço se aproxima do seguine modelo maemáico: 7 se 0 1 p() =, p em euros e em anos.

Leia mais

Equações Diferenciais

Equações Diferenciais Equações Diferenciais EQUAÇÕES DIFERENCIAS Em qualquer processo natural, as variáveis envolvidas e suas taxas de variação estão interligadas com uma ou outras por meio de princípios básicos científicos

Leia mais

Medição de Potência. Jorge Guilherme 2008 #20 2 R. Elementos reactivos ou armazenadores de energia Elementos resistivos ou dissipadores de energia

Medição de Potência. Jorge Guilherme 2008 #20 2 R. Elementos reactivos ou armazenadores de energia Elementos resistivos ou dissipadores de energia Elecrónica de nsrumenação edição de oência Jorge Guilherme 008 #0 oência em.. U ce., ce. Elecrónica de nsrumenação U. [] oência em.a. p( u(. i( [] oência insanânea Num circuio resisivo puro i( u( / u (

Leia mais

Recuperação. - Mecânica: ramo da Física que estuda os movimentos;

Recuperação. - Mecânica: ramo da Física que estuda os movimentos; Recuperação Capítulo 01 Movimento e repouso - Mecânica: ramo da Física que estuda os movimentos; - Um corpo está em movimento quando sua posição, em relação a um referencial escolhido, se altera com o

Leia mais

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara Insiuo de Física USP Física V - Aula 6 Professora: Mazé Bechara Aula 6 Bases da Mecânica quânica e equações de Schroedinger. Aplicação e inerpreações. 1. Ouros posulados da inerpreação de Max-Born para

Leia mais

dr = ( t ) k. Portanto,

dr = ( t ) k. Portanto, Aplicações das Equações Diferenciais de ordem (Evaporação de uma goa) Suponha que uma goa de chuva esférica evapore numa aa proporcional à sua área de superfície Se o raio original era de mm e depois de

Leia mais

Mecânica dos Fluidos. Unidade 1- Propriedades Básicas dos Fluidos

Mecânica dos Fluidos. Unidade 1- Propriedades Básicas dos Fluidos Mecânica dos Fluidos Unidade 1- Propriedades Básicas dos Fluidos Quais as diferenças fundamentais entre fluido e sólido? Fluido é mole e deformável Sólido é duro e muito Sólido é duro e muito pouco deformável

Leia mais

Bacharelado Engenharia Civil

Bacharelado Engenharia Civil Bacharelado Engenharia Civil Disciplina: Física Geral e Experimental I Força e Movimento- Leis de Newton Prof.a: Msd. Érica Muniz Forças são as causas das modificações no movimento. Seu conhecimento permite

Leia mais

Lista de Exercício 3 MUV

Lista de Exercício 3 MUV Nome: Curso: Disciplina: FÍSICA I / MECÂNICA CLÁSSICA Lista de Exercício 3 MUV 1) Um móvel, cujo espaço inicial é S0 8m, se desloca a favor da trajetória, em movimento acelerado, com velocidade inicial

Leia mais

Prof. Rogério Porto. Assunto: Cinemática em uma Dimensão III

Prof. Rogério Porto. Assunto: Cinemática em uma Dimensão III Questões COVEST Física Mecânica Prof. Rogério Porto Assunto: Cinemática em uma Dimensão III 1. Um atleta salta por cima do obstáculo na figura e seu centro de gravidade atinge a altura de 2,2 m. Atrás

Leia mais

Introdução às Medidas em Física

Introdução às Medidas em Física Inrodução às Medidas em Física 43152 Elisabeh Maeus Yoshimura emaeus@if.usp.br Bloco F Conjuno Alessandro Vola sl 18 agradecimenos a Nemiala Added por vários slides Conceios Básicos Lei Zero da Termodinâmica

Leia mais

Olimpíada Brasileira de Física 2001 2ª Fase

Olimpíada Brasileira de Física 2001 2ª Fase Olimpíada Brasileira de Física 2001 2ª Fase Gabarito dos Exames para o 1º e 2º Anos 1ª QUESTÃO Movimento Retilíneo Uniforme Em um MRU a posição s(t) do móvel é dada por s(t) = s 0 + vt, onde s 0 é a posição

Leia mais

ENG04030 - ANÁLISE DE CIRCUITOS I ENG04030

ENG04030 - ANÁLISE DE CIRCUITOS I ENG04030 EG04030 AÁISE DE IRUITOS I Aulas 9 ircuios e ª orem: análise no omínio o empo aracerísicas e capaciores e inuores; energia armazenaa nos componenes; associação e capaciores/inuores Sérgio Haffner ircuios

Leia mais

Universidade Federal do Rio de Janeiro

Universidade Federal do Rio de Janeiro Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL42 Coneúdo 8 - Inrodução aos Circuios Lineares e Invarianes...1 8.1 - Algumas definições e propriedades gerais...1 8.2 - Relação enre exciação

Leia mais

Professora Bruna. Caderno 13 Aula 28. Quem atinge o solo primeiro? Página 291

Professora Bruna. Caderno 13 Aula 28. Quem atinge o solo primeiro? Página 291 Caderno 13 Aula 28 Quem atinge o solo primeiro? Página 291 Quem atinge o solo primeiro? Vimos na aula anterior, que o tempo de queda para um corpo lançado horizontalmente não depende da sua velocidade

Leia mais

Lista de Exercícios 1

Lista de Exercícios 1 Universidade Federal de Ouro Preo Deparameno de Maemáica MTM14 - CÁLCULO DIFERENCIAL E INTEGRAL III Anônio Silva, Edney Oliveira, Marcos Marcial, Wenderson Ferreira Lisa de Exercícios 1 1 Para cada um

Leia mais

Valor do Trabalho Realizado 16.

Valor do Trabalho Realizado 16. Anonio Vicorino Avila Anonio Edésio Jungles Planejameno e Conrole de Obras 16.2 Definições. 16.1 Objeivo. Valor do Trabalho Realizado 16. Parindo do conceio de Curva S, foi desenvolvida pelo Deparameno

Leia mais

Unidade Didática Movimento Física 9 ano

Unidade Didática Movimento Física 9 ano Unidade Didática Movimento Física 9 ano Duração: 3 aulas de 50 minutos. Objetivos: Após o término dessas aulas, os alunos devem ser capazes de: Ao final desta aula o aluno deve ser capaz de: Reconhecer

Leia mais

O objectivo deste estudo é a obtenção de estimativas para o número de nados vivos (de cada um dos sexos) ocorrido por mês em Portugal.

O objectivo deste estudo é a obtenção de estimativas para o número de nados vivos (de cada um dos sexos) ocorrido por mês em Portugal. REVISTA DE ESTATÍSTICA 8ª PAGINA NADOS VIVOS: ANÁLISE E ESTIMAÇÃO LIVE BIRTHS: ANALYSIS AND ESTIMATION Auora: Teresa Bago d Uva -Gabinee de Esudos e Conjunura do Insiuo Nacional de Esaísica Resumo: O objecivo

Leia mais

Laboratório de Física Básica 2

Laboratório de Física Básica 2 Objetivo Geral: Determinar a aceleração da gravidade local a partir de medidas de periodo de oscilação de um pêndulo simples. Objetivos específicos: Teoria 1. Obter experimentalmente a equação geral para

Leia mais

MOVIMENTOS VERTICAIS NO VÁCUO

MOVIMENTOS VERTICAIS NO VÁCUO MOVIMENTOS VERTICAIS NO VÁCUO MOVIMENTOS VERTICAIS NO VÁCUO 4.1 - INTRODUÇÃO Desde a antigüidade o estudo dos movimentos verticais era de grande importância para alguns cientistas conceituados, este era

Leia mais

IDENTIFICAÇÃO DE SISTEMAS VIA FUNÇÕES ORTOGONAIS: MODELOS DE SEGUNDA ORDEM VERSUS REALIZAÇÃO NO ESPAÇO DE ESTADOS

IDENTIFICAÇÃO DE SISTEMAS VIA FUNÇÕES ORTOGONAIS: MODELOS DE SEGUNDA ORDEM VERSUS REALIZAÇÃO NO ESPAÇO DE ESTADOS 6º PSMEC Universidade Federal de Uberlândia Faculdade de Engenharia Mecânica IDENIFICAÇÃ DE SISEMAS VIA FUNÇÕES RGNAIS: MDES DE SEGUNDA RDEM VERSUS REAIZAÇÃ N ESPAÇ DE ESADS Clayon Rodrigo Marqui clayon_rm@dem.feis.unesp.br

Leia mais

Dados do Plano. Resultado da Avaliação Atuarial. Data da Avaliação: 31/12/2010

Dados do Plano. Resultado da Avaliação Atuarial. Data da Avaliação: 31/12/2010 AVALIAÇÃO ATUARIAL Daa da Avaliação: 3/2/200 Dados do Plano Nome do Plano: CEEEPREV CNPB: 20.020.04-56 Parocinadoras: Companhia Esadual de Geração e Transmissão de Energia Elérica CEEE-GT Companhia Esadual

Leia mais

FÍSICA - 1 o ANO MÓDULO 15 GRÁFICOS DA CINEMÁTICA

FÍSICA - 1 o ANO MÓDULO 15 GRÁFICOS DA CINEMÁTICA FÍSICA - 1 o ANO MÓDULO 15 GRÁFICOS DA CINEMÁTICA S S S S S S v v S v v S Área S v v v v v v S(m) 2-1 (s) Se a < S Se a > S S S 1 2 3 a a a v v Área v v S S(m) 16 15 1 (s) Como pode cair no enem? (ENEM)

Leia mais

EXPERIÊNCIA 7 CONSTANTE DE TEMPO EM CIRCUITOS RC

EXPERIÊNCIA 7 CONSTANTE DE TEMPO EM CIRCUITOS RC EXPERIÊNIA 7 ONSTANTE DE TEMPO EM IRUITOS R I - OBJETIVO: Medida da consane de empo em um circuio capaciivo. Medida da resisência inerna de um volímero e da capaciância de um circuio aravés da consane

Leia mais

Aula 3 CONSTRUÇÃO DE GRÁFICOS EM PAPEL DILOG. Menilton Menezes. META Expandir o estudo da utilização de gráficos em escala logarítmica.

Aula 3 CONSTRUÇÃO DE GRÁFICOS EM PAPEL DILOG. Menilton Menezes. META Expandir o estudo da utilização de gráficos em escala logarítmica. Aula 3 CONSTRUÇÃO DE GRÁFICOS EM PAPEL DILOG META Expandir o estudo da utilização de gráficos em escala logarítmica. OBJETIVOS Ao final desta aula, o aluno deverá: Construir gráficos em escala di-logarítmica.

Leia mais

CINÉTICA RADIOATIVA. Introdução. Tempo de meia-vida (t 1/2 ou P) Atividade Radioativa

CINÉTICA RADIOATIVA. Introdução. Tempo de meia-vida (t 1/2 ou P) Atividade Radioativa CIÉTIC RDIOTIV Inrodução Ese arigo em como objeivo analisar a velocidade dos diferenes processos radioaivos, no que chamamos de cinéica radioaiva. ão deixe de anes esudar o arigo anerior sobre radioaividade

Leia mais

Exercícios: Lançamento Vertical e Queda Livre

Exercícios: Lançamento Vertical e Queda Livre Exercícios: Lançamento Vertical e Queda Livre Cursinho da ETEC Prof. Fernando Buglia 1. (Unifesp) Em uma manhã de calmaria, um Veículo Lançador de Satélite (VLS) é lançado verticalmente do solo e, após

Leia mais

Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia

Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Oscilações 1. Movimento Oscilatório. Cinemática do Movimento Harmônico Simples (MHS) 3. MHS e Movimento

Leia mais