ESTRUTURA ELÉTRICA DE UMA TEMPESTADE SOBRE A CIDADE DE SÃO PAULO
|
|
- Octavio da Rocha Brás
- 2 Há anos
- Visualizações:
Transcrição
1 ESTRUTURA ELÉTRICA DE UMA TEMPESTADE SOBRE A CIDADE DE SÃO PAULO Moacr Lacerda, 1,2, Robson Jaques 2, Carlos Augusto Morales Rodrguez 4,, Evandro Momaz Anselmo 4, Clóvs Lasta Frtzen 1, Julo Cesar Paro 3, Wdne Alves Fernandes 3,2, Walder Moresch Das 1 Unversdade Federal de Mato Grosso do Sul (UFMS): 1. CCET/DFI/LCA; 2. CCET/DHT; 3. CPAN/DEX Unversdade de São Paulo (USP): 4. DCA/IAG. ABSTRACT: Ths study presents prelmnary results of a methodology developed to compute the thunderstorm charges centers. In order to perform ths calculaton the Coulomb s law s employed n conjuncton wth Feld Mll and weather radar measurements. The example presented n our analyss was obtaned durng the Aprl 23 rd of 2010, when a cold front produced algned thunderstorms near the cty of São Paulo. After runnng the algorthm 100,000 tmes wth some spatal constrans the followng results have been found: a) the actvty of formaton and annhlaton of electrc charges wthn clouds s one mechansm that can be well descrbed by the use of Coulomb's law from Feld Mll measurements; b) the observed measurements suggest a possble exstence of a more complex dynamc structure for the charge dstrbuton wthn the cloud; c) the ntra-cloud dscharges can be a mechansm that actng n shorter dstances, along the alttudes at whch the centers of electrc charges are created, can reverse the polarty of the regons. 1. INTRODUÇÃO As meddas de campo elétrco no solo são utlzadas em sstemas de proteção até a análse da estrutura elétrca das tempestades (Jacobson e Krder, 1976; Koshak e Krder, 1989; Lvngston e Krder, 1978, Murphy et. al., 1996). Por exemplo, Jacobson e Krder (1976) conseguram dscrmnar um rao completo a partr de uma rede de 25 Feld Mll (FM), com uma faxa de ±15 kv e resolução temporal de 0,1 segundo. Como resultado, eles dentfcaram que os centros de carga estavam localzados entre 6 e 9,5 km a partr da aplcação da Le de Coulomb para solução do problema nverso. Além dsso constataram que uma grande quantdade de descargas para o solo apresentaram varações pequenas ou mesmo polardade reversa, sugerndo a exstênca de um centro postvo de 0.5 a 4 C em alttudes entre 1 e 3 km. MacGorman e Rust (1998), após uma revsão sobre trabalho até a decada de 90 concluram que uma rede de FM possblta a determnação dos centro de cargas das tempestades com uma relatva acuráca. Baseado neste conceto, esse trabalho vsa calcular os centros de cargas a partr de meddas de FM na cdade de São Paulo, e assm testa a vabldade destas técncas. A segur são apresentados maores detalhes sobre a nstrumentação e tecnca empregada para estmar os centros de cargas das tempestades. 2. INSTRUMENTOS E MODELAGEM Este estudo conta com a utlzação de dos FM desenvolvdos pela UFMS com resolução temporal de 1 segundo e nstalados na Unversdade de São Paulo e Estação Meteorológca do IAG/USP. Adconalmente a estas meddas, dados do radar meteorológco de São Roque durante o da 23 de Abrl de 2010 foram empregados a fm de restrngr as regões dos centros de cargas, além dos dados de descargas atmosfércas da STARNET. Um resumo destas observações é apresentada nos dos panes da Fgura 1 e Fgura 2. Observa-se (Fg. 1b) que os raos nuvem-solo estavam localzados fora da regão de cobertura dos FM, enquanto que a
2 varação do campo elétrco (Fg. 2) mostrava uma varação caracterstca da ocorrênca de raos ntra-nuvens e centro de cargas próxmo do sensor. (a) (b) Fgura 1. MAXCAPPI do radar meteorológco de São Roque (a) com a ndcação das descargas atmosfércas e posção dos Feld Mll (trângulos amarelos) (b). Fgura 2. Varação temporal do campo elétrco observado pelos FM nstalados na USP e EM entre o período das 18:55:11 e 19:31:32 GMT. Para calcular a localzação e a magntude dos centros de carga, utlzam-se normalmente Ns sensores que medem o campo elétrco smultaneamente, sendo possível aplcar a Le de Coulomb (eq. (1)) para cada sensor obtendo assm a localzação do centro de cargas bem como a polardade e magntude da carga resultante.
3 Em Nq = 1 Q ( x x ) Ux+ ( y y ) Uy+ ( z z ) / 2 [( x x ) + ( y y ) + ( z z ) ] j + = 1 4πε Uz Etb. Uz eq. (1) Ux onde, x,y e z são as coordenadas da -ésma carga, (, U y, U z ) são os vetores untáros, enquanto que (x,y,z) representam as coordenadas do ponto onde está sendo feta a medda, Εmj, que é a medda do campo elétrco no j-ésmo sensor (j = 1,2,...,Ns). Nq é o número total de cargas e suas magens, sendo E tb a medda do campo elétrco em tempo bom, enquanto que o campo elétrco produzdo pela nuvem, E n, esta descrta entre os colchetes na eq. (1). Stolzenburg e Marshall (1994) e Jacobson e Krder (1976) desprezaram Etb e agruparam as varáves de forma a calcular o campo elétrco em função da dstânca horzontal e altura do centro de cargas e assm obtendo varações das meddas do campo elétrco. Em j, o que corresponde a varação das cargas Q z anquladas. Nesse trabalho, calculamos o campo elétrco no solo produzdo por centros de carga alnhados em z, de manera que, obtendo-se as coordenadas x e y da regão onde possvelmente estão localzados os centros, restaram apenas os valores de z e Q. Portanto, uma tempestade com estrutura dpolar requer o uso quatro meddas de campo elétrco (ou seja, quatro Feld Mll). No ntuto de contornar alguns problemas típcos do problema nverso, um método alternatvo de natureza estocástca para resolver a equação (1) está em desenvolvmento. Por outro lado, as soluções da equação (1) são obtdas pela escolha aleatóra das varáves dentro de um ntervalo, baseado nas análses dos campo de chuva do radar, ( x= x o e y=y o - smetra radal - e 2 km < z < 10 km). Já a carga total Q varava de -20 Q 35 C. Fnalmente, o algortmo buscava soluções cuja soma total dos erros absolutos para cada Feld Mll, (ErrFMj j=1,2) fosse pequeno e nferor a 0.2. As equações 2 e 3 apresentam a defnção do erro que o algortmo tenta mnmzar. ErrFMj = [( Emj - Ecj )/ Emj =1,2 (2) ε = [( EmFM1 - EcFM1 )/ EmFM1 + EmFM2 - EcFM2 / EmFM2 )] (3) Essa estratéga prelmnar, transformou o problema nverso de resolver a equação (1) num problema dreto, resolvdo n vezes (n ), por escolhas aleatóras. Em termos computaconas, esse número de smulações sgnfcou um esforço de cerca de 1 hora, utlzando um computador com dos processadores e técncas de otmzação de aplcação do algortmo matemátco. Como o problema tem quatro graus de lberdade e dspomos apenas de dos FM esse método servu para determnar com mas precsão as regões de solução. Mesmo em redes com 25 FM o aumento do número do grau de lberdade do problema mplca em perda de precsão em função do número de meddas possíves de utlzação, e em alguns casos o crtéro de escolha da solução não é atngdo (Jacobson e Krder, 1976). 3. RESULTADOS E DISCUSSÕES Com o objetvo de elmnar ncógntas, utlzou-se as regões com precptação ntensa nos campos de precptação, ou seja, 50 e 60 dbz. Dessa manera, determna-se possíves valores para as coordenadas x e y
4 do centro de cargas detectado (smetra radal). Outra observação é que o regstro de descargas para o da escolhdo, mostra que não houve raos nuvem-solo na regão próxma do centro atvo escolhdo para análse, sso ndca que as varações de campo elétrco foram devdas a atvdade de descargas ntra nuvem (Fgura 2). Os resultados para 3 mnutos de dados correspondentes aos horáros 19:14 a 19:16 GMT, relatvos ao campo de precptação do radar estão mostrados na Fgura 3. O algortmo fo rodado vezes e as soluções foram obtdas ponto a ponto, sem consderar o campo de tempo bom. Incalmente foram buscadas as soluções em que ε 0.2. As soluções obtdas com essa precsão fcaram restrtas aos ntervalos entre 11 e 15 s (ntervalo 1), 85 a 102 s (ntervalo 2) e 135 a 170 s (ntervalo 3). Os demas trechos tveram soluções com dferentes graus de precsão (até 0.64), fcando a maora delas com ε I1 I2 I3 Fgura 3. Campo elétrco observado em 3 mnutos. Curvas 1 e 2 representam Feld Mll 1 e 2, X 10. Curvas 3 e 4 representam as Cargas X 50, segundo a regão defnda pelas curvas 6 e 4 respectvamente. Curvas 5 e 6 são as alttudes relatvas às cargas representadas pelas curvas 4 e 3, chamadas de alttude 1, A1 e alttude 2, A2, respectvamente. Entre 11 e 15s (ntervalo 1),I1, 85 a 102 s (ntervalo 2), I2, e 135 a 170 s, (ntervalo 3), I3, obtvemos solução com ε 0.2). Analsando os trechos em que ε 0.2, na Fgura 3, no ntervalo I1, observa-se que a solução encontrada, sgnfca um centro de carga negatvo de magntude crescente de aproxmadamente -10 a -20 C, com as regões onde foram encontradas varando em dreções dferentes, ou seja, as alttudes das regões varam defasadamente de 7 a 9 (regão postva)e de 3 a 5 km (regão negatva). O valor da carga postva e da carga negatva aumentam em módulo. No ntervalo I2 da fgura 3, as regões se movmentam pratcamente em fase. Entretanto a regão onde exste ncalmente carga negatva se transforma em postva e vce versa. No ntervalo I3, as varações começam fora de fase, depos entram em fase e em seguda fcam fora de fase. Nesse ntervalo, I3, A alttude A1 fca postva e a alttude A2 fca negatva, ndcando uma nversão na posção do centro postvo com o negatvo (ver legenda da fgura 3). Se as soluções encontradas forem confrmadas por uma rede maor de FM, consderando as dstâncas entre as alttudes, não é razoável supor que as cargas estejam se movendo entre as alttudes A1 e A2, e sm que mecansmos de formação/anqulação de cargas estejam agndo separadamente nessas regões. Consderandose a convenção adotada por Jacobson e Krder (1976), nvertendo os exos postvo e negatvo para as alttudes, os dados das fgura 3 são equvalentes aos daqueles autores. Entretanto, esses autores afrmam em seu trabalho que o Campo elétrco regstrado no solo, depos da ocorrênca de um rao nuvem solo, responda em algumas dezenas de segundos e que esse fato está correlaconado com a atvdade convectva da nuvem
5 (Jacobson e Krder, 1976). Fnalmente os valores encontrados para a magntude das cargas, aplcando a metodologa utlzada nessa análse préva não satsfazem a conservação de carga dentro da nuvem. 4. CONCLUSÃO Nesse trabalho apresentamos resultados prelmnares da análse de FM para montoramento de descargas atmosferas sobre a cdade de São Paulo, sendo que podemos destarcar as seguntes conclusões: a) a atvdade de formação e anqulação de cargas das nuvens é um mecansmo que pode ser bem descrto pela aplcação da Le de Coulomb a partr das observações de FM; b) Os dados regstrados apontam para a possível adoção de uma estrutura dnâmca mas complexa para as dstrbuções de carga dentro da nuvem; c) as descargas ntra nuvem podem ser esse mecansmo, agndo em dstâncas bem menores dentro das alttudes A1 e A2, nvertendo as polardades das regões. 5. REFERÊNCIAS BIBLIOGRÁFICAS JACOBSON, E. A., KRIDER, E. P., Electrostatc Feld Changes Produced by Florda Lghtnng, Journal of Geophyscs Research, p. 103, jan KOSHAK, W. J., KRIDER, E. P., Analyss Of Lghtnng Feld Changes Durng Actve Florda Thunderstorms, Journal of Geophyscal Research,V. 94, N. D1, p.p , Jan, 1989 LIVINGSTON, M. J., KRIDER, E. P., Electrc Felds Produced by Florda Thunderstorms, Journal of Geophyscal Research, Vol 83, n. C1, jan MACGORMAN, D. R.; RUST, W. D. The electrcal nature of storms. Oxford, Oxford Unversty, p. MURPHY, J. M., KRIDER, E. P. MAYER, E., Lghtnng charge analyses n small Convecton and Precptaton Eletrfcaton (CaPE) experment storms, Journal of Geophyscal Research, vol 101, n. d23 p.p , dec STOLZENBURG, M., MARSHALL, T. C., Testng models of thunderstorm charge dstrbutons wth Coulomb, s law, Journal of Geophyscal Research,V. 99, N. D12, p.p , Dec, AGRADECIMENTOS: Os autores gostaram de agradecer ao CNPq pelo Projeto Unversal número: /2007-7, responsável pelo desenvolvmento deste trabalho.
NOTA II TABELAS E GRÁFICOS
Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.
Regressão e Correlação Linear
Probabldade e Estatístca I Antono Roque Aula 5 Regressão e Correlação Lnear Até o momento, vmos técncas estatístcas em que se estuda uma varável de cada vez, estabelecendo-se sua dstrbução de freqüêncas,
Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire. Integrais Múltiplas
Unversdade Salvador UNIFACS Cursos de Engenhara Cálculo IV Profa: Ilka ebouças Frere Integras Múltplas Texto 3: A Integral Dupla em Coordenadas Polares Coordenadas Polares Introduzremos agora um novo sstema
TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma.
UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA AV. FERNANDO FERRARI, 514 - GOIABEIRAS 29075-910 VITÓRIA - ES PROF. ANDERSON COSER GAUDIO FONE: 4009.7820 FAX: 4009.2823
Estimativa da fração da vegetação a partir de dados AVHRR/NOAA
Estmatva da fração da vegetação a partr de dados AVHRR/NOAA Fabane Regna Cunha Dantas 1, Céla Campos Braga, Soetâna Santos de Olvera 1, Tacana Lma Araújo 1 1 Doutoranda em Meteorologa pela Unversdade Federal
Variabilidade Espacial do Teor de Água de um Argissolo sob Plantio Convencional de Feijão Irrigado
Varabldade Espacal do Teor de Água de um Argssolo sob Planto Convenconal de Fejão Irrgado Elder Sânzo Aguar Cerquera 1 Nerlson Terra Santos 2 Cásso Pnho dos Res 3 1 Introdução O uso da água na rrgação
Professor Mauricio Lutz CORRELAÇÃO
Professor Maurco Lutz 1 CORRELAÇÃO Em mutas stuações, torna-se nteressante e útl estabelecer uma relação entre duas ou mas varáves. A matemátca estabelece város tpos de relações entre varáves, por eemplo,
1 a Lei de Kirchhoff ou Lei dos Nós: Num nó, a soma das intensidades de correntes que chegam é igual à soma das intensidades de correntes que saem.
Les de Krchhoff Até aqu você aprendeu técncas para resolver crcutos não muto complexos. Bascamente todos os métodos foram baseados na 1 a Le de Ohm. Agora você va aprender as Les de Krchhoff. As Les de
Introdução e Organização de Dados Estatísticos
II INTRODUÇÃO E ORGANIZAÇÃO DE DADOS ESTATÍSTICOS 2.1 Defnção de Estatístca Uma coleção de métodos para planejar expermentos, obter dados e organzá-los, resum-los, analsá-los, nterpretá-los e deles extrar
Exercícios de Física. Prof. Panosso. Fontes de campo magnético
1) A fgura mostra um prego de ferro envolto por um fo fno de cobre esmaltado, enrolado mutas vezes ao seu redor. O conjunto pode ser consderado um eletroímã quando as extremdades do fo são conectadas aos
CONGRESSO DE INICIAÇÃO CIENTÍFICA E PÓS-GRADUAÇÃO - I CICPG SUL BRASIL Florianópolis 2010
Floranópols 200 ANÁLISE COMPARATIVA DA INFLUÊNCIA DA NEBULOSIDADE E UMIDADE RELATIVA SOBRE A IRRADIAÇÃO SOLAR EM SUPERFÍCIE Eduardo Wede Luz * ; Nelson Jorge Schuch ; Fernando Ramos Martns 2 ; Marco Cecon
Hoje não tem vitamina, o liquidificador quebrou!
A U A UL LA Hoje não tem vtamna, o lqudfcador quebrou! Essa fo a notíca dramátca dada por Crstana no café da manhã, lgeramente amenzada pela promessa de uma breve solução. - Seu pa dsse que arruma à note!
Consideraremos agora, uma de cada vez, as equivalentes angulares das grandezas de posição, deslocamento, velocidade e aceleração.
CAPÍTULO 5 77 5.1 Introdução A cnemátca dos corpos rígdos trata dos movmentos de translação e rotação. No movmento de translação pura todas as partes de um corpo sofrem o mesmo deslocamento lnear. Por
CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnilesteMG
1 CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnlesteMG Dscplna: Introdução à Intelgênca Artfcal Professor: Luz Carlos Fgueredo GUIA DE LABORATÓRIO LF. 01 Assunto: Lógca Fuzzy Objetvo: Apresentar o
Estimativa dos fluxos turbulentos de calor sensível, calor latente e CO 2, sobre cana-de-açúcar, pelo método do coespectro.
Estmatva dos fluxos turbulentos de calor sensível, calor latente e CO 2, sobre cana-de-açúcar, pelo método do coespectro. O. L. L. Moraes 1, H. R. da Rocha 2, M. A. Faus da Slva Das 2, O Cabral 3 1 Departamento
Influência dos Procedimentos de Ensaios e Tratamento de Dados em Análise Probabilística de Estrutura de Contenção
Influênca dos Procedmentos de Ensaos e Tratamento de Dados em Análse Probablístca de Estrutura de Contenção Mara Fatma Mranda UENF, Campos dos Goytacazes, RJ, Brasl. Paulo César de Almeda Maa UENF, Campos
3ª AULA: ESTATÍSTICA DESCRITIVA Medidas Numéricas
PROGRAMA DE PÓS-GRADUAÇÃO EM EGEHARIA DE TRASPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMETO DE EGEHARIA CIVIL ECV DISCIPLIA: TGT41006 FUDAMETOS DE ESTATÍSTICA 3ª AULA: ESTATÍSTICA DESCRITIVA Meddas umércas
Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma
Capítulo 8 Dferencação Numérca Quase todos os métodos numércos utlzados atualmente para obtenção de soluções de equações erencas ordnáras e parcas utlzam algum tpo de aproxmação para as dervadas contínuas
ESPELHOS E LENTES ESPELHOS PLANOS
ESPELHOS E LENTES 1 Embora para os povos prmtvos os espelhos tvessem propredades mágcas, orgem de lendas e crendces que estão presentes até hoje, para a físca são apenas superfíces poldas que produzem
CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF)
PMR 40 - Mecânca Computaconal CAPÍTULO VI Introdução ao Método de Elementos Fntos (MEF). Formulação Teórca - MEF em uma dmensão Consderemos a equação abao que representa a dstrbução de temperatura na barra
Experiência V (aulas 08 e 09) Curvas características
Experênca (aulas 08 e 09) Curvas característcas 1. Objetvos 2. Introdução 3. Procedmento expermental 4. Análse de dados 5. Referêncas 1. Objetvos Como no expermento anteror, remos estudar a adequação de
Controle de qualidade de produto cartográfico aplicado a imagem de alta resolução
Controle de qualdade de produto cartográfco aplcado a magem de alta resolução Nathála de Alcântara Rodrgues Alves¹ Mara Emanuella Frmno Barbosa¹ Sydney de Olvera Das¹ ¹ Insttuto Federal de Educação Cênca
Despacho Econômico de. Sistemas Termoelétricos e. Hidrotérmicos
Despacho Econômco de Sstemas Termoelétrcos e Hdrotérmcos Apresentação Introdução Despacho econômco de sstemas termoelétrcos Despacho econômco de sstemas hdrotérmcos Despacho do sstema braslero Conclusões
2 Máquinas de Vetor Suporte 2.1. Introdução
Máqunas de Vetor Suporte.. Introdução Os fundamentos das Máqunas de Vetor Suporte (SVM) foram desenvolvdos por Vapnk e colaboradores [], [3], [4]. A formulação por ele apresentada se basea no prncípo de
Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00)
Bussab&Morettn Estatístca Básca Capítulo 4 Problema. (b) Grau de Instrução Procedênca º grau º grau Superor Total Interor 3 (,83) 7 (,94) (,) (,33) Captal 4 (,) (,39) (,) (,3) Outra (,39) (,7) (,) 3 (,3)
2. MATERIAIS E MÉTODOS
AVALIAÇÃO DE DESEMPENHO DOS MODELOS DO IPCC-AR4 NO NORDESTE SETENTRIONAL DO BRASIL QUANTO À VARIABILIDADE PLURIANUAL DA PRECIPITAÇÃO NO SÉCULO XX RESUMO--- Os modelos globas do Intergovernmental Panel
Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA
Análse de Regressão Profa Alcone Mranda dos Santos Departamento de Saúde Públca UFMA Introdução Uma das preocupações estatístcas ao analsar dados, é a de crar modelos que explctem estruturas do fenômeno
PROVA DE MATEMÁTICA DO VESTIBULAR 2013 DA UNICAMP-FASE 1. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA
PROVA DE MATEMÁTICA DO VESTIBULAR 03 DA UNICAMP-FASE. PROFA. MARIA ANTÔNIA C. GOUVEIA QUESTÃO 37 A fgura abaxo exbe, em porcentagem, a prevsão da oferta de energa no Brasl em 030, segundo o Plano Naconal
5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado)
5 Aplcação Neste capítulo será apresentada a parte empírca do estudo no qual serão avalados os prncpas regressores, um Modelo de Índce de Dfusão com o resultado dos melhores regressores (aqu chamado de
Aula 7: Circuitos. Curso de Física Geral III F-328 1º semestre, 2014
Aula 7: Crcutos Curso de Físca Geral III F-38 º semestre, 04 Ponto essencal Para resolver um crcuto de corrente contínua, é precso entender se as cargas estão ganhando ou perdendo energa potencal elétrca
Introdução à Análise de Dados nas medidas de grandezas físicas
Introdução à Análse de Dados nas meddas de grandezas físcas www.chem.wts.ac.za/chem0/ http://uregna.ca/~peresnep/ www.ph.ed.ac.uk/~td/p3lab/analss/ otas baseadas nos apontamentos Análse de Dados do Prof.
ANALISADOR DE EVENTOS EM TEMPO QUASE-REAL
XX SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA Versão 1.0 GPC.01 22 a 25 Novembro de 2009 Recfe - PE GRUPO -V GRUPO DE ESTUDO DE PROTEÇÃO, MEDIÇÃO, CONTROLE E AUTOMAÇÃO EM SISTEMAS
CORRELAÇÃO E REGRESSÃO
CORRELAÇÃO E REGRESSÃO Constata-se, freqüentemente, a estênca de uma relação entre duas (ou mas) varáves. Se tal relação é de natureza quanttatva, a correlação é o nstrumento adequado para descobrr e medr
Covariância e Correlação Linear
TLF 00/ Cap. X Covarânca e correlação lnear Capítulo X Covarânca e Correlação Lnear 0.. Valor médo da grandeza (,) 0 0.. Covarânca na propagação de erros 03 0.3. Coecente de correlação lnear 05 Departamento
Cálculo do Conceito ENADE
Insttuto aconal de Estudos e Pesqusas Educaconas Aníso Texera IEP Mnstéro da Educação ME álculo do onceto EADE Para descrever o cálculo do onceto Enade, prmeramente é mportante defnr a undade de observação
POLARIMETRIA ÓPTICA E MODELAGEM DE POLARES OBSERVADAS NO OPD/LNA NO PERÍODO DE 2010-2012
5 POLARIMETRIA ÓPTICA E MODELAGEM DE POLARES OBSERVADAS NO OPD/LNA NO PERÍODO DE 00-0 OPTICAL POLARIMETRY AND MODELING OF POLARS OBSERVED IN OPD/LNA IN THE PERIOD 00-0 Karleyne M. G. Slva Cláuda V. Rodrgues
7.4 Precificação dos Serviços de Transmissão em Ambiente Desregulamentado
64 Capítulo 7: Introdução ao Estudo de Mercados de Energa Elétrca 7.4 Precfcação dos Servços de Transmssão em Ambente Desregulamentado A re-estruturação da ndústra de energa elétrca que ocorreu nos últmos
Uso dos gráficos de controle da regressão no processo de poluição em uma interseção sinalizada
XXIII Encontro Nac. de Eng. de Produção - Ouro Preto, MG, Brasl, 1 a 4 de out de 003 Uso dos gráfcos de controle da regressão no processo de polução em uma nterseção snalzada Luz Delca Castllo Vllalobos
Software para Furação e Rebitagem de Fuselagem de Aeronaves
Anas do 14 O Encontro de Incação Centífca e Pós-Graduação do ITA XIV ENCITA / 2008 Insttuto Tecnológco de Aeronáutca São José dos Campos SP Brasl Outubro 20 a 23 2008. Software para Furação e Rebtagem
* Economista do Instituto Federal do Sertão Pernambucano na Pró-Reitoria de Desenvolvimento Institucional PRODI.
O desempenho setoral dos muncípos que compõem o Sertão Pernambucano: uma análse regonal sob a ótca energétca. Carlos Fabano da Slva * Introdução Entre a publcação de Methods of Regonal Analyss de Walter
(note que não precisa de resolver a equação do movimento para responder a esta questão).
Mestrado Integrado em Engenhara Aeroespacal Mecânca e Ondas 1º Ano -º Semestre 1º Teste 31/03/014 18:00h Duração do teste: 1:30h Lea o enuncado com atenção. Justfque todas as respostas. Identfque e numere
Apostila de Estatística Curso de Matemática. Volume II 2008. Probabilidades, Distribuição Binomial, Distribuição Normal. Prof. Dr. Celso Eduardo Tuna
Apostla de Estatístca Curso de Matemátca Volume II 008 Probabldades, Dstrbução Bnomal, Dstrbução Normal. Prof. Dr. Celso Eduardo Tuna 1 Capítulo 8 - Probabldade 8.1 Conceto Intutvamente pode-se defnr probabldade
Motores síncronos. São motores com velocidade de rotação fixa velocidade de sincronismo.
Motores síncronos Prncípo de funconamento ão motores com velocdade de rotação fxa velocdade de sncronsmo. O seu prncípo de funconamento está esquematzado na fgura 1.1 um motor com 2 pólos. Uma corrente
PREVISÃO DE PARTIDAS DE FUTEBOL USANDO MODELOS DINÂMICOS
PREVISÃO DE PRTIDS DE FUTEBOL USNDO MODELOS DINÂMICOS Oswaldo Gomes de Souza Junor Insttuto de Matemátca Unversdade Federal do Ro de Janero junor@dme.ufrj.br Dan Gamerman Insttuto de Matemátca Unversdade
LQA - LEFQ - EQ -Química Analítica Complemantos Teóricos 04-05
LQA - LEFQ - EQ -Químca Analítca Complemantos Teórcos 04-05 CONCEITO DE ERRO ALGARISMOS SIGNIFICATIVOS Embora uma análse detalhada do erro em Químca Analítca esteja fora do âmbto desta cadera, sendo abordada
2 ANÁLISE ESPACIAL DE EVENTOS
ANÁLISE ESPACIAL DE EVENTOS Glberto Câmara Marla Sá Carvalho.1 INTRODUÇÃO Neste capítulo serão estudados os fenômenos expressos através de ocorrêncas dentfcadas como pontos localzados no espaço, denomnados
1. CORRELAÇÃO E REGRESSÃO LINEAR
1 CORRELAÇÃO E REGREÃO LINEAR Quando deseja-se estudar se exste relação entre duas varáves quanttatvas, pode-se utlzar a ferramenta estatístca da Correlação Lnear mples de Pearson Quando essa correlação
Expressão da Incerteza de Medição para a Grandeza Energia Elétrica
1 a 5 de Agosto de 006 Belo Horzonte - MG Expressão da ncerteza de Medção para a Grandeza Energa Elétrca Eng. Carlos Alberto Montero Letão CEMG Dstrbução S.A caletao@cemg.com.br Eng. Sérgo Antôno dos Santos
1 Princípios da entropia e da energia
1 Prncípos da entropa e da energa Das dscussões anterores vmos como o conceto de entropa fo dervado do conceto de temperatura. E esta últma uma conseqüênca da le zero da termodnâmca. Dentro da nossa descrção
7. Resolução Numérica de Equações Diferenciais Ordinárias
7. Resolução Numérca de Equações Dferencas Ordnáras Fenômenos físcos em dversas áreas, tas como: mecânca dos fludos, fluo de calor, vbrações, crcutos elétrcos, reações químcas, dentre váras outras, podem
Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência.
MODELO DE REGRESSÃO DE COX Os modelos de regressão paramétrcos vstos anterormente exgem que se suponha uma dstrbução estatístca para o tempo de sobrevvênca. Contudo esta suposção, caso não sea adequada,
Avaliação da Tendência de Precipitação Pluviométrica Anual no Estado de Sergipe. Evaluation of the Annual Rainfall Trend in the State of Sergipe
Avalação da Tendênca de Precptação Pluvométrca Anual no Estado de Sergpe Dandara de Olvera Félx, Inaá Francsco de Sousa 2, Pablo Jónata Santana da Slva Nascmento, Davd Noguera dos Santos 3 Graduandos em
Sistemas de Filas: Aula 5. Amedeo R. Odoni 22 de outubro de 2001
Sstemas de Flas: Aula 5 Amedeo R. Odon 22 de outubro de 2001 Teste 1: 29 de outubro Com consulta, 85 mnutos (níco 10:30) Tópcos abordados: capítulo 4, tens 4.1 a 4.7; tem 4.9 (uma olhada rápda no tem 4.9.4)
Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação
Mnstéro da Educação Insttuto Naconal de Estudos e Pesqusas Educaconas Aníso Texera Cálculo do Conceto Prelmnar de Cursos de Graduação Nota Técnca Nesta nota técnca são descrtos os procedmentos utlzados
Curvas Horizontais e Verticais
Insttução: Faculdade de Tecnologa e Cêncas Professor: Dego Queroz de Sousa Dscplna: Topografa Curvas Horzontas e ertcas 1. Introdução Exstem dversas ocasões na engenhara em que os projetos são desenvolvs
PROBLEMAS SOBRE PONTOS Davi Máximo (UFC) e Samuel Feitosa (UFC)
PROBLEMS SOBRE PONTOS Dav Máxmo (UFC) e Samuel Fetosa (UFC) Nível vançado Dstrbur pontos num plano ou num espaço é uma tarefa que pode ser realzada de forma muto arbtrára Por sso, problemas sobre pontos
Estatística II Antonio Roque Aula 18. Regressão Linear
Estatístca II Antono Roque Aula 18 Regressão Lnear Quando se consderam duas varáves aleatóras ao mesmo tempo, X e Y, as técncas estatístcas aplcadas são as de regressão e correlação. As duas técncas estão
Sistemas Robóticos. Sumário. Introdução. Introdução. Navegação. Introdução Onde estou? Para onde vou? Como vou lá chegar?
Sumáro Sstemas Robótcos Navegação Introdução Onde estou? Para onde vou? Como vou lá chegar? Carlos Carreto Curso de Engenhara Informátca Ano lectvo 2003/2004 Escola Superor de Tecnologa e Gestão da Guarda
UNIVERSIDADE PRESBITERIANA MACKENZIE CCSA - Centro de Ciências Sociais e Aplicadas Curso de Economia
CCSA - Centro de Cêncas Socas e Aplcadas Curso de Economa ECONOMIA REGIONAL E URBANA Prof. ladmr Fernandes Macel LISTA DE ESTUDO. Explque a lógca da teora da base econômca. A déa que sustenta a teora da
Eletricidade 3. Campo Elétrico 8. Energia Potencial Elétrica 10. Elementos de Um Circuito Elétrico 15. Elementos de Um Circuito Elétrico 20
1 3º Undade Capítulo XI Eletrcdade 3 Capítulo XII Campo Elétrco 8 Capítulo XIII Energa Potencal Elétrca 10 Capítulo XIV Elementos de Um Crcuto Elétrco 15 Capítulo XV Elementos de Um Crcuto Elétrco 20 Questões
Polos Olímpicos de Treinamento. Aula 10. Curso de Teoria dos Números - Nível 2. Divisores. Prof. Samuel Feitosa
Polos Olímpcos de Trenamento Curso de Teora dos Números - Nível 2 Prof. Samuel Fetosa Aula 10 Dvsores Suponha que n = p α 1 2...pα é a fatoração em prmos do ntero n. Todos os dvsores de n são da forma
Física. Setor B. Índice-controle de Estudo. Prof.: Aula 23 (pág. 86) AD TM TC. Aula 24 (pág. 87) AD TM TC. Aula 25 (pág.
Físca Setor Prof.: Índce-controle de studo ula 23 (pág. 86) D TM TC ula 24 (pág. 87) D TM TC ula 25 (pág. 88) D TM TC ula 26 (pág. 89) D TM TC ula 27 (pág. 91) D TM TC ula 28 (pág. 91) D TM TC evsanglo
MAPEAMENTO DA VARIABILIDADE ESPACIAL
IT 90 Prncípos em Agrcultura de Precsão IT Departamento de Engenhara ÁREA DE MECANIZAÇÃO AGRÍCOLA MAPEAMENTO DA VARIABILIDADE ESPACIAL Carlos Alberto Alves Varella Para o mapeamento da varabldade espacal
Eletromagnetismo Aplicado
letromagnetsmo Aplcado Undade 5 Propagação de Ondas letromagnétcas em Meos Ilmtados e Polaração Prof. Marcos V. T. Heckler Propagação de Ondas letromagnétcas e Polaração 1 Conteúdo Defnções e parâmetros
CALIBRAÇÃO DE UM MULTI-FILTER ROTATING SHADOWBAND RADIOMETER A PARTIR DA TÉCNICA LANGLEY PLOT E DO MÉTODO GERAL
CALBRAÇÃO DE UM MULT-FLTER ROTATNG SHADOWBAND RADOMETER A PARTR DA TÉCNCA LANGLEY PLOT E DO MÉTODO GERAL Nlton E. do Rosáro 1*, Márca A. Yamasoe 1, André C. Sayão 1, Rcardo A. Squera 1, Paulo Artaxo 2
O migrante de retorno na Região Norte do Brasil: Uma aplicação de Regressão Logística Multinomial
O mgrante de retorno na Regão Norte do Brasl: Uma aplcação de Regressão Logístca Multnomal 1. Introdução Olavo da Gama Santos 1 Marnalva Cardoso Macel 2 Obede Rodrgues Cardoso 3 Por mgrante de retorno,
UTILIZAÇÃO DO MÉTODO DE TAGUCHI NA REDUÇÃO DOS CUSTOS DE PROJETOS. Uma equação simplificada para se determinar o lucro de uma empresa é:
UTILIZAÇÃO DO MÉTODO DE TAGUCHI A REDUÇÃO DOS CUSTOS DE PROJETOS Ademr José Petenate Departamento de Estatístca - Mestrado em Qualdade Unversdade Estadual de Campnas Brasl 1. Introdução Qualdade é hoje
Elaboração: Novembro/2005
Elaboração: Novembro/2005 Últma atualzação: 18/07/2011 Apresentação E ste Caderno de Fórmulas tem por objetvo nformar aos usuáros a metodologa e os crtéros de precsão dos cálculos referentes às Cédulas
Escola Secundária Dr. Ângelo Augusto da Silva Matemática 12.º ano Números Complexos - Exercícios saídos em (Exames Nacionais 2000)
Internet: http://rolvera.pt.to ou http://sm.page.vu Escola Secundára Dr. Ângelo Augusto da Slva Matemátca.º ano Números Complexos - Exercícos saídos em (Exames Naconas 000). Seja C o conjunto dos números
Análise Econômica da Aplicação de Motores de Alto Rendimento
Análse Econômca da Aplcação de Motores de Alto Rendmento 1. Introdução Nesta apostla são abordados os prncpas aspectos relaconados com a análse econômca da aplcação de motores de alto rendmento. Incalmente
Texto 03: Campos Escalares e Vetoriais. Gradiente. Rotacional. Divergência. Campos Conservativos.
1 Unversdade Salvador UNIFACS Crsos de Engenhara Cálclo IV Profa: Ila Reboças Frere Cálclo Vetoral Teto 03: Campos Escalares e Vetoras. Gradente. Rotaconal. Dvergênca. Campos Conservatvos. Campos Escalares
DISTRIBUIÇÃO DA AÇÃO DO VENTO NOS ELEMENTOS DE CONTRAVENTAMENTO CONSIDERANDO O PAVIMENTO COMO DIAFRAGMA RÍGIDO: ANÁLISE SIMPLIFICADA E MATRICIAL
DISTRIBUIÇÃO DA AÇÃO DO VENTO NOS ELEMENTOS DE CONTRAVENTAMENTO CONSIDERANDO O PAVIMENTO COMO DIAFRAGMA RÍGIDO: ANÁLISE SIMPLIFICADA E MATRICIAL Dstrbuton of the wnd acton n the bracng elements consderng
Eletricidade 3 Questões do ENEM. 8. Campo Elétrico 11 Questões do ENEM 13. Energia Potencial Elétrica 15 Questões do ENEM 20
1 4º Undade Capítulo XIII Eletrcdade 3 Questões do ENEM. 8 Capítulo XIV Campo Elétrco 11 Questões do ENEM 13 Capítulo XV Energa Potencal Elétrca 15 Questões do ENEM 20 Capítulo XVI Elementos de Um Crcuto
FERRAMENTA DE AUXÍLIO AO DIAGNÓSTICO MÉDICO DURANTE A GRAVIDEZ
FERRAMENTA DE AUXÍLIO AO DIAGNÓSTICO MÉDICO DURANTE A GRAVIDEZ M. G. F. Costa, C. F. F. Costa Flho, M. C. Das, A. C. S.Fretas. Unversdade do Amazonas Laboratóro de Processamento Dgtal de Imagens Av. Gal.
IX CONGRESSO BRASILEIRO DE ENGENHARIA E CIÊNCIAS TÉRMICAS. 9th BRAZILIAN CONGRESS OF THERMAL ENGINEERING AND SCIENCES
IX CONGRESSO BRASILEIRO DE ENGENHARIA E CIÊNCIAS TÉRMICAS 9th BRAZILIAN CONGRESS OF THERMAL ENGINEERING AND SCIENCES Paper CIT02-0026 METODOLOGIA PARA CORRELAÇÃO DE DADOS CINÉTICOS ENTRE AS TÉCNICAS DE
Um protótipo de mercado de ações usando Algoritmos Genéticos
> REVISA DE INELIGÊNCIA COMPUACIONAL APLICADA (ISSN: XXXXXXX), Vol. X, No. Y, pp. 1-10 1 Um protótpo de mercado de ações usando Algortmos Genétcos W. Fretas Departamento de Físca, PUC-Ro Resumo O modelo
Goal Programming como Ferramenta de Gestão
Resumo Goal Programmng como Ferramenta de Gestão Dmtr Pnhero SANTANNA Fláva Zóbol DALMÁCIO Lucene Laurett RANGEL Valcemro NOSSA O objetvo deste artgo é demonstrar como o gestor pode aplcar a técnca do
2 - Análise de circuitos em corrente contínua
- Análse de crcutos em corrente contínua.-corrente eléctrca.-le de Ohm.3-Sentdos da corrente: real e convenconal.4-fontes ndependentes e fontes dependentes.5-assocação de resstêncas; Dvsores de tensão;
S.A. 1. 2002; TIPLER, P. A.; MOSCA, G.
Rotação Nota Alguns sldes, fguras e exercícos pertencem às seguntes referêncas: HALLIDAY, D., RESNICK, R., WALKER, J. Fundamentos da Físca. V 1. 4a.Edção. Ed. Lvro Técnco Centífco S.A. 00; TIPLER, P. A.;
O USO DA INTEGRAL DEFINIDA NO CÁLCULO DA ÁREA ALAGADA DA BARRAGEM DO RIO BONITO
O USO DA INTEGRAL DEFINIDA NO CÁLCULO DA ÁREA ALAGADA DA BARRAGEM DO RIO BONITO Crstna Martns Paraol crstna@hotmal.com Insttuto Federal Catarnense Rua Prefeto Francsco Lummertz Júnor, 88 88960000 Sombro
METODOLOGIA PARA O CÁLCULO DE VAZÃO DE UMA SEÇÃO TRANSVERSAL A UM CANAL FLUVIAL. Iran Carlos Stalliviere Corrêa RESUMO
Semnáro Anual de Pesqusas Geodéscas na UFRGS, 2. 2007. UFRGS METODOLOGIA PARA O CÁLCULO DE VAZÃO DE UMA SEÇÃO TRANSVERSAL A UM CANAL FLUVIAL Iran Carlos Stallvere Corrêa Insttuto de Geocêncas UFRGS Departamento
MÉTODO DE RESSECÇÃO APLICADO NA DETERMINAÇÃO DE COORDENADAS NO MONITORAMENTO DE PONTOS
III Smóso raslero de êncas Geodéscas e Tecnologas da Geonformação Recfe - E, 7-30 de Julho de 010. 001-005 MÉTODO DE RESSEÇÃO LIDO N DETERMINÇÃO DE OORDENDS NO MONITORMENTO DE ONTOS FINI D.. MIRND LUÍS.
Sinais Luminosos 2- CONCEITOS BÁSICOS PARA DIMENSIONAMENTO DE SINAIS LUMINOSOS.
Snas Lumnosos 1-Os prmeros snas lumnosos Os snas lumnosos em cruzamentos surgem pela prmera vez em Londres (Westmnster), no ano de 1868, com um comando manual e com os semáforos a funconarem a gás. Só
RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16%
Análse de Rsco 1 RISCO Rsco possbldade de perda. Quanto maor a possbldade, maor o rsco. Exemplo: Empresa X va receber $ 1.000 de uros em 30 das com títulos do governo. A empresa Y pode receber entre $
ELETRICIDADE E MAGNETISMO
PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA Professor: Renato Mederos ELETRICIDADE E MAGNETISMO NOTA DE AULA III Goâna - 2014 CORRENTE ELÉTRICA Estudamos anterormente
Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para
Objetvos da aula Essa aula objetva fornecer algumas ferramentas descrtvas útes para escolha de uma forma funconal adequada. Por exemplo, qual sera a forma funconal adequada para estudar a relação entre
Teoria da Regressão Espacial Aplicada a. Sérgio Alberto Pires da Silva
Teora da Regressão Espacal Aplcada a Modelos Genércos Sérgo Alberto Pres da Slva ITENS DE RELACIONAMENTOS Tópcos Báscos da Regressão Espacal; Banco de Dados Geo-Referencados; Modelos Genércos Robustos;
PROPOSIÇÃO, VALIDAÇÃO E ANÁLISE DOS MODELOS QUE CORRELACIONAM ESTRUTURA QUÍMICA E ATIVIDADE BIOLÓGICA
658 Gaudo & Zandonade Qum. Nova Qum. Nova, Vol. 4, No. 5, 658-671, 001. Dvulgação PROPOSIÇÃO, VALIDAÇÃO E ANÁLISE DOS MODELOS QUE CORRELACIONAM ESTRUTURA QUÍMICA E ATIVIDADE BIOLÓGICA Anderson Coser Gaudo
Universidade Federal do Rio de Janeiro. Escola Politécnica. Departamento de Eletrônica e de Computação
Unversdade Federal do Ro de Janero Escola oltécnca Departamento de Eletrônca e de Computação CALIBRAÇÃO E RELANEJMENTO DE TAREFAS ARA UM ROBÔ INDUSTRIAL EM AMBIENTES HOSTIS Autor: Orentador: Coorentador:
Estimativa da Incerteza de Medição da Viscosidade Cinemática pelo Método Manual em Biodiesel
Estmatva da Incerteza de Medção da Vscosdade Cnemátca pelo Método Manual em Bodesel Roberta Quntno Frnhan Chmn 1, Gesamanda Pedrn Brandão 2, Eustáquo Vncus Rbero de Castro 3 1 LabPetro-DQUI-UFES, Vtóra-ES,
Avaliação do tamanho da amostra de segmentos regulares para estimar a área plantada com café na região sul de Minas Gerais
Avalação do tamanho da amostra de segmentos regulares para estmar a área plantada com café na regão sul de Mnas Geras Marcos Adam Maurco Alves Morera Bernardo Fredrch Theodor Rudorff Insttuto Naconal de
PLANILHAS EXCEL/VBA PARA PROBLEMAS ENVOLVENDO EQUILÍBRIO LÍQUIDO-VAPOR EM SISTEMAS BINÁRIOS
PLANILHAS EXCEL/VBA PARA PROBLEMAS ENVOLVENDO EQUILÍBRIO LÍQUIDO-VAPOR EM SISTEMAS BINÁRIOS L. G. Olvera, J. K. S. Negreros, S. P. Nascmento, J. A. Cavalcante, N. A. Costa Unversdade Federal da Paraíba,
2. BACIA HIDROGRÁFICA
. BACIA HIDROGRÁFICA.1. GENERALIDADES Embora a quantdade de água exstente no planeta seja constante e o cclo em nível global possa ser consderado fechado, os balanços hídrcos quase sempre se aplcam a undades
AVALIAÇÃO NA PRECISÃO DE RECEPTORES GPS PARA O POSICIONAMENTO ABSOLUTO RESUMO ABSTRACT
AVALIAÇÃO NA PRECISÃO DE RECEPTORES GPS PARA O POSICIONAMENTO ABSOLUTO Rodrgo Mkosz Gonçalves John Alejandro Ferro Sanhueza Elmo Leonardo Xaver Tanajura Dulana Leandro Unversdade Federal do Paraná - UFPR
CORRELAÇÃO DO EQUILÍBRIO DE FASES DO SISTEMA MULTICOMPONENTE ÉSTERES ETÍLICOS DO ÓLEO DE MURUMURU/DIÓXIDO DE CARBONO COM A EQUAÇÃO SRK
CORRELAÇÃO DO EQUILÍBRIO DE FASES DO SISTEMA MULTICOMPONENTE ÉSTERES ETÍLICOS DO ÓLEO DE MURUMURU/DIÓXIDO DE CARBONO COM A EQUAÇÃO SRK Welsson de Araújo SILVA PRODERNA/ITEC/UFPA waslva89@hotmal.com Fernando
LOCALIZAÇÃO ESPACIAL DA MÃO DO USUÁRIO UTILIZANDO WII REMOTE. Ricardo Silva Tavares 1 ; Roberto Scalco 2
LOCALIZAÇÃO ESPACIAL DA MÃO DO USUÁRIO UTILIZANDO WII REMOTE Rcardo Slva Tavares 1 ; Roberto Scalco 1 Aluno de Incação Centífca da Escola de Engenhara Mauá (EEM/CEUN-IMT); Professor da Escola de Engenhara
X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)
Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado
Escolha do Consumidor sob condições de Risco e de Incerteza
9/04/06 Escolha do Consumdor sob condções de Rsco e de Incerteza (Capítulo 7 Snyder/Ncholson e Capítulo Varan) Turma do Prof. Déco Kadota Dstnção entre Rsco e Incerteza Na lteratura econômca, a prmera
Metodologia para Eficientizar as Auditorias de SST em serviços contratados Estudo de caso em uma empresa do setor elétrico.
Metodologa para Efcentzar as Audtoras de SST em servços contratados Estudo de caso em uma empresa do setor elétrco. Autores MARIA CLAUDIA SOUSA DA COSTA METHODIO VAREJÃO DE GODOY CHESF COMPANHIA HIDRO
XX SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA NOVO MODELO PARA O CÁLCULO DE CARREGAMENTO DINÂMICO DE TRANSFORMADORES
XX SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA Versão 1.0 22 a 25 Novembro de 2009 Recfe - PE GRUPO XIII GRUPO DE ESTUDO DE TRANSFORMADORES, REATORES, MATERIAIS E TECNOLOGIAS