CURSO TÉCNICO DE ELETRÔNICA ELETRÔNICA IV 1 MÓDULO

Tamanho: px
Começar a partir da página:

Download "CURSO TÉCNICO DE ELETRÔNICA ELETRÔNICA IV 1 MÓDULO"

Transcrição

1 CURSO TÉCNICO DE ELETRÔNICA ELETRÔNICA IV 1 MÓDULO 2010

2 Sumário 1 Breve Histórico O que existe dentro de seu PC (Personal Computer) Hardware Software Processador Histórico Intel Introdução aos processadores Entendendo o Processador Barramentos Clock interno e clock externo Bits dos processadores Fabricação Silício Processadores com dois ou mais núcleos Memórias Memória ROM Memória RAM Memória Flash Memória Cachê MEMÓRIA SECUNDÁRIA Encapsulamentos Módulos de memória Principal DIMM (Double In Line Memory Module) A memória DDR e DDR DDR Dispositivos de Entrada e saída Periféricos Placa mãe Slots Microprocessador CHIPSET Referências Figure 1: Barramentos Figure 2:Encapsulamento DIP - Imagem por Wikipedia Figure 3:Encapsulamento SOJ. Imagem por INFO WESTER Figure 4:Encapsulamento TSOP Imagem por INFO WESTER Figure 5:Encapsulamento CSP Imagem por INFO WESTER Figure 6:Memória DIMM Figure 7: Memória DDR Figure 8:Diferenças entre DDR e DDR Figure 10:Memória DDR

3 3 Figure 11: Placa Mãe Asus A8NE com painel traseiro Figure 13:Socket A8N-E Figure 14: Socket A7N8X-X Figure 15: Disposição do Dissipador e Cooler ao processador Figure 16: CHIPSET Table 1: Padrões de memórias Table 2:Vantagnes e Desvantagens Estática Dinâmica Table 3:Memórias velocidades Table 4:DDR3, taxa de transferência Table 5:Dispositivos de entrada e saída... 42

4 4 1 Breve Histórico Um dos primeiro computadores eletrônico a realizar uma quantidade 5mil operações por segundo e programável, foi o ENIAC em 1946, pesando 30 toneladas, com 18 mil válvulas e consumia 150KW/h. Em meados dos anos 70, não existiam microcomputadores, o que existam eram computadores de grande porte, os chamados mainframes, e um público ansioso pela informática. No entanto diversos aficionados da eletrônica começaram a desenvolver protótipos de circuitos que poderiam ser microcomputadores, algo que não existia na época. A intenção era criar um computador de uso doméstico. Dentre os idealizadores deste projeto destacam-se Steve Wozniak e Steve Jobs, que desenvolveram em 1976 um protótipo que recebeu o nome de Apple I, pouco antes em 1975, o pessoal do MITS (Micro Instrumentation Telemetry Systems) criou o Altair O Apple I fez tanto sucesso que os dois decidiram montar uma empresa, surgindo assim a Apple Computer, em 1977, com o modelo Apple II. A Apple Computer fez tanto sucesso que fechou a década como uma das maiores e mais prósperas empresas norte-americana, despertando o interesse das grandes empresas, que até o momento só se preocupavam em desenvolver os mainframes. Em 1980, a IBM decide também entrar nesse mercado promissor. A IBM criou todo o hardware do microcomputador, porém a necessidade de um sistema operacional para o seu hardware e programas, para que o mesmo funcionasse. Havia então duas possibilidades para a IBM: utilizar o sistema operacional CP/M (Control Program for Microcomputers) que existia na época, ou criar o seu próprio sistema operacional. Como o CP/M não funcionava com a

5 arquitetura IBM, optou-se então pro contratar uma empresa para desenvolver este software a Microsoft. Como o não havia tempo para se perder desenvolvendo um novo sistema operacional pois quanto mais a IBM demorasse para lançar o seu microcomputador, mais o Apple II ganhava mercado Bill Gates comprou os direitos autorais de um sistema operacional desenvolvido por universitários e o lançou com o nome de MSDOS. Com isso em 1981 foi lançado o microcomputador da IBM: o IBM PC (Personal Computer). Este modelo era muito mais poderoso que o Apple II, o que a IBM considerava ser o concorrente do PC, mas a Apple Computer não estava mais desenvolvendo o Apple II, estava em um projeto muito mais avançado. Em 1979 (dois anos antes do lançamento do PC da IBM), o pessoal da Apple foi até o PARC (Palo Alto Reserch Center), um centro de pesquisas da Xerox. Neste centro, a Xerox estava criando computadores que fossem fáceis de usar. Na tela havia desenhos que representavam tarefas: ícones. Assim bastava você arrastar uma caneta especial para um desenho de uma caneta, e o processador de texto era acionado. Se todos os computadores fossem tão fáceis de serem utilizados, como estes da Xérox, mais pessoas teriam computadores em suas casas. Com essa mentalidade o pessoal da Apple começou a desenvolver dois projetos um era o LISA, um microcomputador mais poderoso destinado ao ambiente profissional e corporativo, e o Macintosh, menos poderoso do que o LISA, para uso caseiro. A grande diferença da abordagem do projeto foi o fator diferencial entre os computadores da Apple e da IBM. Enquanto a IBM desenvolvia o microcomputador e depois o sistema operacional, a 5

6 Apple fazia exatamente o contrário. O LISA foi lançado em 1983 e o Macintosh em O primeiro não obteve muito sucesso, principalmente pelo seu preço. No entanto o Macintosh foi um estouro, devido a sua interface gráfica bastante amigável, qualquer um poderia manipular um Macintosh corretamente. Quanto a IBM, estava muito atrás da Apple. Em 1983 lançou uma revisão de seu modelo IBM PC, batizado como IBM PC XT (extended Tecnology) e, em 1984 um novo microcomputador, o IBM PC AT (Advanced Tecnology), que utilizava um microprocessador mais poderoso (o mais conhecido como 286 ). Apesar dos seus computadores serem piores que um Macintosh, a IBM tinha uma grande vantagem no mercado, sua arquitetura era aberta, com isso qualquer fabricante poderia criar interfaces, dispositivos e até mesmo computadores similares, o que não acontecia com o Macintosh, pois a sua arquitetura é fechada. Esta diferença definiu o mercado atual. Quando a IBM decidiu fabricar PC s com arquitetura fechada (PS/2 em 1987), outros fabricantes continuaram a construir computadores com arquitetura aberta. Dessa forma os computadores que eram lançados, começaram a ser nomeados pelos processadores que estes micros possuíam, por exemplo, um microcomputador com o processador 80386, passou a ser conhecido como AT Arquitetura aberta: Isso significa que qualquer fabricante pode desenvolver micros e periféricos desse padrão. Arquitetura fechada: Isso significa que há exclusividade de tecnologia, ou seja não era qualquer fabricante que poderia fabricar componentes e ou periféricos para o padrão daquela tecnologia. Era algo que, por exemplo, somente a Apple tinha acesso. Essa arquitetura 6

7 fechada só foi quebrada pela própria apple em meados da década de 1990, na tentativa de recuperar mercado para Microsoft. 2 O que existe dentro de seu PC (Personal Computer) Devemos ter em mente que um computador, ou microcomputador, ou Pc, não consiste simplesmente em um conjunto de componentes eletrônicos, ou seja, o Hardware precisa do Software e vice versa. Veremos a seguir o significado de Software e Hardware, palavras que vão estar presentes durante todo o curso. Nem sempre uma expansão de hardware consiste em encaixar uma placa em um slot livre e instalar um driver. Poderá ser preciso retirar algumas placas, desfazer algumas conexões, fazer a instalação e colocar tudo novamente no lugar. Para fazer as expansões com segurança, é altamente recomendável que o usuário entenda a anatomia de um PC. Este é o objetivo. 2.1 Hardware 7 É toda parte física do computador, ou seja tudo que se possa tocar, que seja palpável. Exemplo, processadores, placa mãe, mouse, DVD-ROM, disquete, teclado e etc. Levando na brincadeira, é tudo que a gente chuta. 2.2 Software É a parte não física do computador, ou seja tudo aquilo que não podemos tocar, mas podemos xingar, são os programas. Exemplo, sistema operacional, o pacote Office com o Word, Excel, os jogos, tocadores de musica, virus e etc.

8 3 Processador Histórico Intel 4004 Em Novembro de 1971, uma companhia chamada Intel, publicou a introdução para o mundo do primeiro processador do mundo, o Intel 4004 (Patente Americana #3,821,715), inventado pelos engenheiros da Intel Frederico Faggin, Ted Hoff e Stan Mazor. Após a invenção do circuito integrado que revolucionou o mundo dos computadores, a única coisa a fazer era diminuir no quesito tamanho. O chip Intel 4004 tinha tudo que um computador precisava para pensar em um pequeno chip. Programar uma inteligência artificial em objetos inanimados se tornou possível depois do lançamento desse revolucionário chip. ANO Intel Clock Transistores Khz Mhz Mhz Mhz DX 16 Mhz SL 20 MKhz SX 16 Mhz DX2 50 Mhz Pentium 60 MKhz Pentium MKhz Pentium /100 MKhz Pentium MMX 200 Mhz Pentium II 233 Mhz Pentium II Xeon 450 Mhz Pentium III 550 Mhz Pentium GHz 151 Milhões 2007 Intel Core Duo 1.8 a 3,3GHz 291 Milhões 2008 Intel Core i a 2.93 GHz 781 Milhões

9 3.2 Introdução aos processadores 9 Os processadores (ou CPUs, de Central Processing Unit) são chips responsáveis pela execução de cálculos, decisões lógicas e instruções que resultam em todas as tarefas que um computador pode fazer e, por esse motivo, são também referenciados como "cérebros" dessas máquinas. Embora haja poucos fabricantes (essencialmente, Intel, AMD e VIA), o mercado conta com uma grande variedade de processadores. Apesar disso e das diferenças existentes entre cada modelo, todos compartilham de alguns conceitos e características. Com base nisso, veremos sua função e o significado de clock, bits internos, memória cache e chips com dois ou mais núcleos. 3.3 Entendendo o Processador O processador é um chip de silício responsável pela execução das tarefas cabíveis a um computador. Para entender como um processador trabalha, é conveniente dividirmos um computador em três partes: processador, memória e um conjunto de dispositivos de entrada e saída (ou I/O, de Input/Output). Neste último, encontra-se qualquer item responsável pela entrada ou saída de dados no computador, como monitores de vídeo, teclados, mouses, impressoras, scanners, etc. Nesse esquema, obviamente, o processador exerce a função principal, já que a ele cabe o acesso e a utilização da memória e dos dispositivos de entrada e saída para a execução de suas atividades. Para entender melhor, suponha que você queira que o seu computador execute um programa qualquer. Um programa consiste em uma série de instruções que o processador deverá executar para que a tarefa solicitada seja realizada. Para isso, o processador transfere todos os dados necessários à execução, de um dispositivo de

10 entrada - como teclado mouse - para a memória. A partir daí, todo o trabalho é realizado e o que vai ser feito do resultado depende do programa. O processador pode ser orientado a enviar as informações processadas para o HD novamente ou para uma impressora, por exemplo, tudo depende das instruções com as quais lidar. Estas instruições utilizam os barramentos (vias de comunicação de dados) para essa finalidade, conforme veremos no próximo item Barramentos A Figura a seguir ilustra a comunicação entre o processador, a memória e o conjunto de dispositivos de entrada e saída. Note que a conexão entre esses itens é indicada por setas. Isso é feito para que você possa entender a função dos barramentos. De maneira geral, estes são os responsáveis pela interligação e comunicação dos dispositivos em um computador. Note que, para o processador se comunicar com a memória e com o conjunto de dispositivos de entrada e saída, há 3 setas, isto é, barramentos: um se chama barramento de endereços (address bus); outro barramento de dados (data bus); o terceiro barramento de controle (control bus). 10

11 11 Figure 1: : Barramentos O barramento de endereços, basicamente, indica de onde os dados a serem processados devem ser retirados ou para onde devem ser enviados. A comunicação por esse barramento é unidirecional, razão pela qual só há seta em uma das extremidades da linha no gráfico que representa a sua comunicação. Como o nome deixa claro, é pelo barramento de dados que os dados transitam. Por sua vez, o barramento de controle faz a sincronização das referidas atividades, habilitando ou desabilitando o fluxo de dados, por exemplo, funcionando como um guarda de trânsito. Para você compreender melhor, imagine que o processador necessita de um dado presente na memória. Pelo barramento de endereços, ele obtém a localização desse dado dentro da memória. Como precisa apenas acessar o dado, o processador indica pelo barramento de controle que esta é uma operação de leitura na memória. O dado é então localizado e inserido no barramento de dados, por onde o processador, finalmente, o lê.

12 3.3.2 Clock interno e clock externo Em um computador, todas as atividades necessitam de sincronização. O clock serve justamente para isso, ou seja, basicamente, atua como de sinal de sincronização. Quando os dispositivos do computador recebem o sinal de executar suas atividades, dá-se a esse acontecimento o nome de "pulso de clock". Em cada pulso, os dispositivos executam suas tarefas, param e vão para o próximo ciclo de clock. A medição do clock é feita em hertz (Hz), a unidade padrão de medidas de freqüência, que indica o número de oscilações ou ciclos que ocorre dentro de uma determinada medida de tempo, no caso, segundos. Assim, se um processador trabalha a 800 Hz, por exemplo, significa que é capaz de lidar com 800 operações de ciclos de clock por segundo. Repare que, para fins práticos, a palavra kilohertz (KHz) é utilizada para indicar 1000 Hz, assim como o termo megahertz (MHz) é usado para indicar 1000 KHz (ou 1 milhão de hertz). De igual forma, gigahertz (GHz) é a denominação usada quando se tem 1000 MHz, e assim por diante. Com isso, se um processador tem, por exemplo, uma freqüência de 800 MHz, significa que pode trabalhar com 800 milhões de ciclos por segundo. As freqüências com as quais os processadores trabalham são chamadas também de clock interno. Neste ponto, você certamente já deve ter entendido que é daí que vem expressões como Pentium 4 de 3,2 GHz, por exemplo. Mas, os processadores também contam com o que chamamos de clock externo ou Front Side Bus (FSB) ou, ainda, barramento frontal. O FSB existe porque, devido a limitações físicas, os processadores não podem se comunicar com a memória (mais precisamente, como a ponte norte - ou northbridge - do chipset, que contém o controlador da memória) usando a mesma velocidade do 12

13 clock interno. Assim, quando essa comunicação é feita, o clock externo, de freqüência mais baixa, é que é usado. Note que, para obter o clock interno, o processador usa uma multiplicação do clock externo. Para entender melhor, suponha que um determinado processador tenha clock externo de 100 MHz. Como o seu fabricante indica que esse chip trabalha à 1,6 GHz (ou seja, tem clock interno de 1,6 GHz), seu clock externo é multiplicado por 16: 100 x 16 = 1600 MHz ou 1,6 GHz. É importante deixar claro, no entanto, que se dois processadores diferentes - um da Intel e outro da AMD, por exemplo - tiverem clock interno de mesmo valor - 2,8 GHz, para exemplificar -, não significa que ambos trabalham à mesma velocidade. Cada processador tem um projeto distinto e conta com características que determinam o quão rápido é. Assim, um determinado processador pode levar, por exemplo, 2 ciclos de clock para executar uma instrução. Em outro processador, essa mesma instrução pode requerer 3 ciclos. Além disso, muitos processadores - especialmente os mais recentes - transferem 2 ou mais dados por ciclo de clock, dando a entender que um processador que faz, por exemplo, transferência de 2 dados por ciclo e que trabalha com clock externo de 133 MHz, o faz à 266 MHz. Por esses e outros motivos, é um erro considerar apenas o clock interno como parâmetro de comparação entre processadores diferentes Bits dos processadores O número de bits é outra importante característica dos processadores e, naturalmente, tem grande influência no desempenho desse dispositivo. Processadores mais antigos, como o 286, trabalhavam com 16 bits. Durante muito, no entanto, processadores que trabalham com 32 bits foram muitos comuns, como as linhas Pentium, Pentium II, Pentium III e Pentium 4 da Intel, ou Athlon XP e 13

14 Duron da AMD. Alguns modelos de 32 bits ainda são encontrados no mercado, todavia, o padrão atual são os processadores de 64 bits, como os da linha Core 2 Duo, da Intel, ou Athlon 64, da AMD. Em resumo, quanto mais bits internos o processador trabalhar, maior será o desempenho e ele poderá fazer mais cálculos e processar dados em geral, dependendo da execução a ser feita. Isso acontece porque os bits dos processadores representam a quantidade de dados que os circuitos desses dispositivos conseguem trabalhar por vez. Para exemplificar melhor este ponto faremos uma comparação com o exemplo a seguir. Um caminhão que consegue transportar 16 toneladas a 20km/h, outro 32 toneladas a 20km/h e outro 64 toneladas a também 20km/h. Pergunto, qual dos caminhões é mais rápido? A resposta correta é a seguinte, na realidade todos possuem a mesma velocidade (clock), só que o caminhão que consegue transportar 64 toneladas vai ter um despenho melhor, pois conseguirá entregar maior quantidade em uma única viagem. Portanto um processador com 16 bits, por exemplo, pode manipular um número de valor até Se esse processador tiver que realizar uma operação com um número de , terá que fazer a operação em duas partes. No entanto, se um chip trabalha a 32 bits, ele pode manipular números de valor até em uma única operação. Como esse valor é superior a , a operação será possível em uma única vez bits X 32bits 14 Tanto a Intel como a AMD já colocaram no mercado processadores que trabalham a 64 bits. Em poucos anos, esse tipo de chip será o padrão. Muita gente sabe que os modelos de 64 bits são melhor que os de 32 bits e vamos mostrar exatamente como e onde ocorre essas melhorias.

15 Se você vai a uma loja de informática para comprar um computador, o vendedor pode lhe oferecer dois tipos: um com um processador de 64 bits e outro com um processador de 32 bits. "O de 64 bits é mais caro, porém possue melhor desempenho", lhe diz o vendedor. Isso significa que seus jogos rodarão mais rápidos, assim como programas pesados, como AutoCad, Premiere, entre outros, não? Talvez. Vejamos o porquê. Quando nos referimos a processadores de 16 bits, 32 bits ou 64 bits estamos falando dos bits internos do chip - em poucas palavras, isso representa a quantidade de dados e instruções que o processador consegue trabalhar por vez, certo, como já vimos no parágrafo anterior. Para calcular esse limite, basta fazer 2 elevado à quantidade de bits internos do processador. Então, qual o limite de um processador de 64 bits? Vamos à conta: 15 2^64 = ^19 Um valor extremamente alto! Correto! É isso mesmo. Agora, suponha que você esteja utilizando um editor de textos. É improvável que esse programa chegue a utilizar valores grandes em suas operações. Neste caso, qual a diferença entre utilizar um processador de 32 bits ou 64 bits, sendo que o primeiro será suficiente? Como o editor utiliza valores suportáveis tanto pelos chips de 32 bits quanto pelos de 64 bits, as instruções relacionadas serão processadas ao mesmo tempo (considerando que ambos os chips tenham o mesmo clock). Por outro lado, aplicações em 3D ou programas como AutoCad requerem boa capacidade para cálculo e aí um processador de 64 bits pode fazer diferença. No entanto, há outros fatores a serem considerados. Um deles é o sistema operacional (SO). O funcionamento do computador está diretamente ligado à relação entre o sistema operacional e o hardware

16 como um todo. O SO é desenvolvido de forma a aproveitar o máximo de recursos da plataforma para o qual é destinado. Assim, o Windows XP ou uma distribuição Linux com um kernel desenvolvido antes do surgimento de processadores de 64 bits são preparados para trabalhar a 32 bits, mas não a 64 bits. Ao se colocar um sistema operacional de 32 bits para rodar em um computador com processador de 64 bits, o primeiro não se adaptará automaticamente e continuará mantendo sua forma de trabalho. Com isso, é necessário o desenvolvimento de sistemas operacionais capazes de rodar a 64 bits. O Desenvolvimento ou a adaptação de um sistema operacional para trabalhar a 64 bits não é tão trivial assim. Na verdade, é necessário que o SO seja compatível com um processador ou com uma linha de processadores, já que pode haver diferenças entre os tipos existentes. Em outras palavras, o sistema operacional precisa ser compatível com chips da AMD ou com chips da Intel. Se possível, com os dois. No caso do Windows XP, a Microsoft disponibilizou a versão "Professional x64", compatível com os processadores AMD Athlon 64, AMD Opteron, Intel Xeon (com instruções EM64T) e Intel Pentium 4 (com instruções EM64T). De acordo com a Microsoft, a principal diferença entre essa e as versões de 32 bits (além da compatibilidade com instruções de 64 bits) é o suporte de até 128 GB de memória RAM e 16 TB de memória virtual. Nada mais natural se a aplicação para o qual o computador é utilizado manipula grande quantidade de dados e valores, de nada adianta ter processamento de 64 bits, mas pouca memória, já que, grossamente falando, os dados teriam que "formar fila" para serem inseridos na memória, comprometendo o desempenho. O mesmo ocorre com o Linux. Se você visitar o site de alguma distribuição para baixar uma versão do sistema operacional, muito 16

17 provavelmente encontrará links que apontam para diversas versões. O site do Ubuntu Linux, por exemplo, oferece links para processadores x86 (32 bits), Mac (chips PowerPC) e 64-bit (processadores AMD64 ou EM64T). 17 Você pode ter se perguntado se é possível utilizar um sistema operacional de 32 bits com um processador de 64 bits e migrar o primeiro para uma versão adequada futuramente. Depende. O processador Intel Itanium é apelidado por alguns de "puro sangue", já que só executa aplicações de 64 bits. Assim, uma versão de 32 bits de um sistema operacional não roda nele. Por outro lado, processadores Athlon 64 são capazes de trabalhar tanto com aplicações de 32 bits quanto de 64 bits, o que o torna interessante para quem pretende usar um SO de 32 bits inicialmente e uma versão de 64 bits no futuro.

18 Fabricação Silício O primeiro passo na fabricação de processadores consiste, obviamente, na obtenção de matéria-prima. Geralmente, os chips são formados por silício, e com os processadores não é diferente. O silício é um elemento químico extremamente abundante, tanto que é considerado o segundo mais comum na Terra. É possível extrai-lo de areia, granito, argila, entre outros. Esse elemento químico é utilizado para a constituição de vários materiais resistentes, como vidro e cerâmica. No entanto, é também semicondutor, isto é, tem a capacidade de conduzir eletricidade. Essa característica somada à sua existência em abundância faz com que o silício seja um elemento extremamente utilizado pela indústria eletrônica. Para você ter uma idéia da importância desse material, a concentração de empresas que utilizam silício em seus produtos eletrônicos em várias cidades da Califórnia, nos EUA, fez com que a região recebesse o nome de Vale do Silício (Silicon Valley). É lá que estão localizadas, por exemplo, as sedes da AMD e da Intel, as maiores fabricantes de microprocessadores do mundo.

19 A fabricação dos processadores se inicia em modernos centros tecnológicos especializados. Esses locais são tão sofisticados e de valor tão elevado, que existem poucos no mundo. Nos laboratórios desses centros, uma determinada quantidade de cristal de silício é colocada em uma espécie de haste e, posteriormente, inserida em silício fundido submetido a uma pressão e a uma temperatura extremamente alta - em torno dos 300º. A haste é então retirada e girada ao mesmo tempo. Esse processo (chamado de técnica Czochralski) faz com que o material que se juntou à haste forme uma espécie de cilindro (também conhecido como "ingot"). Seu diâmetro varia de acordo com o avanço da tecnologia, mas em geral possui entre 200 e 300 milímetros. O mesmo vale para o seu comprimento de 1 a 2 metros. É importante frisar que esses cilindros precisam ser formados de silício puro. O processo de purificação desse material é 19 complexo, o que encarece ainda mais a fabricação. Cilindro formado por silício (ingot). Imagem por Wikipedia Uma vez concluída essa etapa, o cilindro é "fatiado", isto é, cortado em várias partes. Cada uma dessas divisões recebe o nome de wafer. Cada "fatia" é polida até ficar perfeita, sem variações, manchas, diferenças de brilho ou qualquer irregularidade em sua composição.

20 Sua espessura, geralmente é menor que 1 milímetro. Em uma etapa mais adiante, cada wafer será dividido em vários "quadradinhos" (ou "pastilhas"), que posteriormente serão separados e formarão os processadores em si. No passo seguinte, a superfície do wafer passa por um processo de oxidação, onde a aplicação de gases - especialmente oxigênio - e temperatura elevada forma uma camada de dióxido de silício. Essa camada servirá de base para a construção de milhares e milhares de transistores, em poucas palavras, minúsculos componentes capazes de "amplificar" ou "chavear" sinais elétricos, além de outras funções relacionadas. Na próxima etapa, os wafers passam por um processo onde recebem uma camada de material fotossensível, isto é, que reage à luz. Nessa etapa, cada um dos blocos que se transformará em processador recebe luz ultravioleta em certos pontos e em determinadas intensidades. Os pontos da camada fotossensível que reagem à luz ultravioleta se tornam mais "gelatinosos" e são posteriormente removidos, deixando expostos os respectivos pontos da camada de dióxido de silício. Com isso, tem-se pontos cobertos com camada fotossensível e pontos cobertos com dióxido de silício. Obviamente, a camada fotossensível restante tem dióxido de silício por baixo. As partes deste último que não estiverem protegidas pela camada fotossensível são então removidas através de outro procedimento. No próximo passo, a camada fotossensível é removida. O que sobra então é utilizado como estrutura para a montagem dos transistores, procedimento esse que continua sendo feito a partir de aplicação de mais materiais e exposição à luz ultravioleta. 20

21 21 Engenheiro segurando um wafer - Imagem por Intel Quem tem alguma experiência com fotos baseadas em filmes, provavelmente perceberá que as etapas descritas acima lembram bastante os procedimentos de revelação de fotografias. De fato, os princípios são essencialmente os mesmos. É importante frisar que um único processador pode conter milhões de transistores. Só como exemplo, os primeiros processadores da linha Intel Core 2 Duo possuem cerca de 291 milhões de transistores em um único chip. Assim como acontece com qualquer processador, esses transistores são divididos e organizados em agrupamentos, onde cada grupo é responsável por uma função.

22 Uma vez terminada a montagem dos transistores, os wafers são "recortados" em um formato que lembra pequenos quadrados ou pastilhas. Cada unidade se transformará em um processador. Como os wafers são redondos, o que sobra da borda, obviamente, não pode virar um processador, então esse material é descartado, assim como qualquer unidade que apresentar defeito ou anormalidade. Você pode ter se perguntado se não seria ideal fabricar wafers quadrados ou retangulares para evitar desperdício na borda. Teoricamente, seria, mas os wafers são formados por cilindros devido à técnica de fabricação explicada no início deste tópico, onde uma haste é inserida em silício e, em seguida, retirada e girada. Esse procedimento faz com que um cilindro seja constituído naturalmente. 22

23 Processadores com dois ou mais núcleos Há tempos que é possível encontrar no mercado placas-mãe que contam com dois ou mais slots para processadores. A maioria esmagadora dessas placas são usadas em computadores especiais, como servidores e workstations, que são utilizados em aplicações que exigem grandes recursos de processamento. Para aplicações

24 domésticas e de escritório, no entanto, computadores com dois ou mais processadores são inviáveis devido aos elevados custos que esses equipamentos representam; razão pela qual é conveniente a esses nichos de mercado contar com processadores cada vez mais rápidos. Até um passado não muito distante, o usuário tinha noção do quão rápido eram os processadores de acordo com a taxa de seu clock interno. O problema é que, quando um determinado valor de clock é alcançado, torna-se mais difícil desenvolver outro chip com clock maior. Limitações físicas e tecnológicas são os motivos para isso. Uma delas é a questão da temperatura: quanto mais megahertz um processador tiver, mais calor ele gerará. Uma das formas encontradas pelos fabricantes para lidar com essa limitação é fabricar e disponibilizar processadores com dois núcleos (dual-core) ou mais (multi-core). Mas, o que isso significa? Processadores desse tipo contam com dois ou mais núcleos distintos no mesmo circuito integrado, como se houvesse dois processadores dentro de um. Dessa forma, o processador pode lidar com dois processos por vez, um para cada núcleo, melhorando o desempenho do computador como um todo. Note que, em um chip de único núcleo, o usuário pode ter a impressão de que vários processos são executados simultaneamente, já que a máquina está quase sempre executando mais de uma aplicação ao mesmo tempo. Na verdade, o que acontece é que o processador dedica determinados intervalos de tempo a cada processo e isso ocorre de maneira tão rápida, que se tem a impressão de processamento simultâneo. Pelo menos teoricamente, é possível fabricar processadores com dezenas de núcleos. Hoje em dia é possível encontrar processadores com 2, 3 e 4 núcleos (dual-core, triple-clore e quadcore, respectivamente). É importante ressaltar que ter processadores 24

25 com dois ou mais núcleos não implica, necessariamente, em computadores que são proporcionalmente mais rápidos. Uma série de fatores influenciam nessa questão, como as velocidades limitadas das memórias e dos dispositivos de entrada e saída, e as formas como os programas são desenvolvidos. Na imagem abaixo, uma montagem que ilustra o interior de um processador Intel Core 2 Extreme Quad-Core (com 4 núcleos): 25

26 4 Memórias 26 As memórias são as responsáveis pelo armazenamento de dados e instruções em forma de sinais digitais em computadores. Para que o processador possa executar suas tarefas, ele busca na memória todas as informações necessárias ao processamento. Existem 2 tipos de memória, ROM e RAM, cujas características serão mostradas a seguir. 4.1 Memória ROM Acrônimo para Read-Only Memory (ou memória de leitura apenas), trata-se de uma memória na qual o dado foi pré-gravado. Uma vez que o dado foi escrito em um chip ROM, ele não pode mais ser removido, apenas lido. A exemplo da memória flash, a ROM também não é volátil. A maioria dos PCs possuem uma parcela de memória ROM, utilizada para armazenar programas críticos para o funcionamento da máquina, como a chamada BIOS (Basic Input/Output System). Esse tipo de memória também é amplamente adotado em calculadoras e impressoras a laser, que precisam ter suas fontes armazenadas. Table 1: : Padrões de memórias Sigla Nome Tecnologia ROM Read Only Memory (memória somente de leitura) Gravada na fábrica uma única vez PROM Programable Read Only Gravada pelo usuário Memory (memória única vez uma

27 27 EPROM EEPROM programável somente de leitura) Eraseble Programable Read Only Memory (memória programável e apagável somente de leitura) Electrically Eraseble Programable Read Only Memory (memória programável e apagável eletronicamente somente de leitura) Pode ser gravada ou regravada por meio de um equipamento que fornece as voltagens adequadas em cada pino. Para apagar os dados nela contidos, basta iluminar o chip com raios ultravioleta. Isto pode ser feito através de uma pequena janela de cristal presente no circuito integrado. Pode ser gravada, apagada ou regravada utilizando um equipamento que fornece as voltagens adequadas em cada pino. 4.2 Memória RAM É um tipo de memória essencial para o computador, sendo usada para guardar dados e instruções de um programa. Tem como características fundamentais, a volatilidade, ou seja, o seu conteúdo é perdido quando o computador é desligado; o acesso aleatório aos dados e o suporte à leitura e gravação de dados, sendo o processo de gravação um processo destrutivo e a leitura um processo não destrutivo. Existem dois tipos básicos de memória RAM, RAM Dinâmica e RAM Estática.

28 Dinâmica (DRAM)- Esta é uma memória baseada na tecnologia de capacitores e requer a atualização periódica do conteúdo de cada célula do chip consumindo assim pequenas quantidades de energia, no entanto possui um acesso lento aos dados. Uma importante vantagem é a grande capacidade de armazenamento oferecida por este tipo de tecnologia. Estática (SRAM)(cachê)- É uma memória baseada na tecnologia de portas lógicas e circuitos digitais como flip-flops, não requer atualização dos dados. Consome mais energia (o que gera mais calor) comparando-se com a memória dinâmica sendo significativamente mais rápida. É frequentemente usada em computadores rápidos. Possui uma capacidade de armazenamento bem menor que a memória dinâmica. Ambas são voláteis. Ou seja, elas perdem seus conteúdos sempre que a energia é cortada. Exatamente por isso, a memória RAM é normalmente aquela utilizada para armazenar informações temporárias. Diferentemente da ROM, que armazena programas de inicialização de um sistema de hardware. 28 Table 2:Vantagnes e Desvantagens ens Estática Dinâmica Vantagens Desvantagens RAM Dinâmica RAM Estática Barata baixo consumo alta densidade Rápida. Não necessita de atualização Necessita de atualização lenta Mais cara. Consome mais energia baixa densidade

29 4.3 Memória Flash 29 O tipo de memória conhecido como FLASH é o tipo mais moderno dentre os apresentados aqui, mas é uma variação do tipo EEPROM. Também conhecida como Flash ROM, esse tipo de memória é considerado não-volátil, o que significa que ela é mantida mesmo quando a energia elétrica é interrompida. No caso dos handhelds, por exemplo, se a bateria do equipamento acaba o usuário não perde todas as suas informações. A memória flash também é muitas vezes utilizada para armazenar códigos como a BIOS em um PC. Diferentemente da ROM, quando a flash precisa ser alterada, ela pode ser feita em blocos, facilitando o processo. Por outro lado a memória flash não pode ser utilizada como RAM, exatamente porque esta precisa ser escrita em bytes. O nome desta memória se deu porque o micro chip é organizado de forma que uma seção de células de memória é apagada em um "flash". Esta memória é utilizada em telefones celulares digitais, câmeras digitais, cartões de acesso para computadores, entre outros. 4.4 Memória Cachê Nos micros atuais a memória cache possui uma importância fundamental, armazenando os dados mais requisitados pelo processador, e evitando na grande maioria das vezes que seja necessário buscar ou escrever dados diretamente na lenta memória Ram. Apesar de todos os processadores apartir do 486 possuírem uma pequena quantidade de cache incorporado ao próprio núcleo do

30 processador, chamado de cache primário ou L1, ele é muito pequeno (justamente pelas memórias usadas no cache L1 serem extremamente caras), e por isso, usamos também uma quantidade um pouco mais generosa de tipos um pouco mais baratos de memória cache na placa mãe. Este cache é chamado de cache secundário, ou L2. O circuitos que controlam o cache primário, são incorporados ao próprio núcleo do processador, enquanto os circuitos que controlam o funcionamento do cache L2 são localizados no chipset, que por sua vez fica localizado na placa mãe. Os processadores Pentium II, Celeron e Xeon são a exceção a esta regra, pois neles o cache L2 e seus circuitos controladores fazem parte do próprio cartucho do processador. O cache L1 e o cacha L2 trabalham conjuntamente, formando uma espécie de escada de três degraus para os dados. Inicialmente, o programa é carregado na memória RAM (principal dinâmica ). Conforme o processador for requisitando dados referentes ao programa aberto, estes dados vão sendo armazenados no cache L2, sendo os dados mais requisitados armazenados no cache L MEMÓRIA SECUNDÁRIA 30 A memória principal (RAM) não é o único meio de armazenamento existente. Devido a algumas características que são peculiares a este tipo de memória - por exemplo: volatilidade e alto custo -, surgiu a necessidade de implementação de outro tipo de memória, chamado memória secundária. Este tipo de memória, não volátil, tem maior capacidade de armazenamento e é mais barata. Estas memórias podem ser removíveis ou não. Neste contexto, "removíveis" significa que ela pode ser retirada do computador e transportada facilmente para outro. O winchester ou disco rígido, por

31 exemplo, não é removível. Já os demais podem ser chamados de removíveis. Estes são os tipos de memória secundária disponíveis hoje: Fitas Magnéticas (streamer e dat) Discos rígidos e flexíveis Cd-rom (compact disk read only memory) e Cd-rw (write once read many) DVD (Digital Versatile Disc) Zip disks, etc. 4.6 Encapsulamentos 31 O encapsulamento correspondente ao artefato que dá forma física aos chips de memória. Eis uma breve descrição dos tipos de encapsulamento mais utilizados pela indústria: DIP (Dual In-line Package): um dos primeiros tipos de encapsulamento usados em memórias, sendo especialmente popular nas épocas dos computadores XT e 286. Como possui terminais de contato - "perninhas" - de grande espessura, seu encaixe ou mesmo sua colagem através de solda em placas pode ser feita facilmente de forma manual; Figure 2:Encapsulamento DIP - Imagem por Wikipedia

32 32 SOJ (Small Outline J-Lead): esse encapsulamento recebe este nome porque seus terminais de contato lembram a letra 'J'. Foi bastante utilizado em módulos SIMM (vistos mais à frente) e sua forma de fixação em placas é feita através de solda, não requerendo furos na superfície do dispositivo; Figure 3:Encapsulamento SOJ. Imagem por INFO WESTER. TSOP (Thin Small Outline Package): tipo de encapsulamento cuja espessura é bastante reduzida em relação aos padrões citados anteriormente (cerca de 1/3 menor que o SOJ). Por conta disso, seus terminais de contato são menores, além de mais finos, diminuindo a incidência de interferência na comunicação. É um tipo aplicado em módulos de memória SDRAM e DDR (que serão abordados adiante). Há uma variação desse encapsulamento chamado STSOP (Shrink Thin Small Outline Package) que é ainda mais fino;

33 33 Figure 4:Encapsulamento TSOP Imagem por INFO WESTER. CSP (Chip Scale Package): mais recente, o encapsulamento CSP se destaca por ser "fino" e por não utilizar pinos de contato que lembram as tradicionais "perninhas". Ao invés disso, utiliza um tipo de encaixe chamado BGA (Ball Grid Array). Esse tipo é utilizado em módulos como DDR2 e DDR3 (que serão vistos à frente).

34 34 Figure 5:Encapsulamento CSP Imagem por INFO WESTER. 4.7 Módulos de memória Principal DIMM (Double In Line Memory Module) Esse é o padrão de encapsulamento que surgiu após o tipo SIMM. Muito utilizado em placas-mãe de processadores Pentium II, Pentium III e em alguns modelos de Pentium 4 (e processadores equivalentes de empresas concorrentes), o padrão DIMM é composto por módulos de 168 pinos. Os pentes de memória DIMM empregam um recurso chamado ECC (Error Checking and Correction - detecção e correção de erros) e tem capacidades mais altas que o padrão anterior: de 16 a 512 MB. As memórias do tipo SDRAM utilizam o encapsulamento DIMM.

35 35 Figure 6:Memória DIMM A memória DDR e DDR2 DDR é a sigla para Double Data Rate criada para substituir as memória DIMM. Para começar, o tipo DDR tem 184 terminais e o DDR2 conta com 240 terminais. Além disso, aquela pequena abertura que há entre os terminais está posicionada em um local diferente nos pentes de memória DDR2, como mostra a imagem a seguir. Figure 7: : Memória DDR

36 36 Figure 8:Diferenças entre DDR e DDR2 A DDR2 trata-se de uma espécie de "substituto natural" das memórias DDR, uma vez que, em comparação com esta última, a tecnologia DDR2 traz diversas melhorias. Seu desenvolvimento foi feito pela JEDEC, um grupo criado por fabricantes para definir padrões de produtos da indústria de semi-condutores. Ao contrário do que alguns pensam, a memória DDR2 não é compatível com placas-mãe que trabalham com memória DDR. Embora os pentes de memória de ambos os tipos pareçam iguais numa primeira olhada (pois possuem o mesmo tamanho), na verdade, não são. Uma outra diferença visível nos módulos de memória DDR2 é o tipo de encapsulamento usado: o FBGA (Fine pitch Ball Grid Array). Esse tipo é derivado do padrão BGA e sua principal característica é que os terminais do chip são pequenas soldas. A vantagem disso é que o sinal elétrico flui mais facilmente e há menos chances de danos físicos. A memória DDR usa um encapsulamento conhecido como TSOP (Thin Small Outline Package).

37 37 Figure 9:Memória DDR2 A memória DDR2 também merece destaque pelo seu menor consumo de energia elétrica. Enquanto o tipo DDR trabalha à 2,5 V, a tecnologia DDR2 requer 1,8 V. Por causa disso, a memória DDR2 acaba tendo melhor desempenho no controle da temperatura. As memórias DDR são comumente encontradas nas freqüências de 266 MHz, 333 MHz e 400 MHz. Por sua vez, o padrão DDR2 trabalha com as freqüências de 400 MHz, 533 MHz, 667 MHz e 800 (memória disponíveis no mercado até a elaboração deste material). Na verdade, tanto no caso da memória DDR quanto no caso da memória DDR2, esses valores correspondem à metade. A explicação para isso é que ambos os tipos podem realizar duas operações por ciclo de clock. Grossamente falando, é como se a velocidade dobrasse. Em relação à velocidade como um todo, é necessário também considerar o "CAS Latency" (latência do CAS - Column Address Strobe). Em poucas palavras, trata-se do tempo que a memória leva para fornecer um dado solicitado. Assim, quanto menor o valor da latência, mais rápida é a "entrega".

38 Nas memórias DDR, a latência pode ser de 2, 2,5 e 3 ciclos por clock. Nas memórias DDR2, a latência vai de 3 a 5 ciclos de clock. Isso significa que, nesse aspecto, a memória DDR2 é mais lenta que a DDR? Na prática não, pois as demais características do padrão DDR2, especialmente seus valores de freqüência, compensam essa desvantagem. Há ainda um recurso nas memórias DDR2 que deve ser citado: o Additional Latency (AL) ou "latência adicional". Esta é usada para permitir que os procedimentos ligados às operações de leitura e escrita sejam feitos até "expirar" o tempo da latência do CAS mais a latência adicional. É como se houvesse um aumento do prazo para tais operações. Assim, a medição da latência deve considerar a soma desses dois parâmetros para se obter um total. 38

39 Table 3:Memórias velocidades On-Die Termination (ODT) A memória DDR2 conta com um recurso conhecido como On- Die Termination (ODT). Trata-se de uma tecnologia que praticamente evita erros de transmissão de sinal. Para compreender a utilidade disso é necessário conhecer a chamada "terminação resistiva". Os sinais elétricos sofrem um efeito de retorno quando chegam ao final de um caminho de transmissão. Grossamente falando, é como se a energia batesse numa parede no final de seu caminho e voltasse, como se fosse uma bola. Esse efeito também pode ocorrer no "meio do caminho", por motivos diversos, como trechos com impedância diferente. No caso das memórias, esse problema, conhecido como

40 "sinal de reflexão", pode significar perda de desempenho e necessidade de retransmissão de dados. Nas memórias DDR esse problema foi tratado através de um método que reduz o sinal de reflexão por meio de resistores que são adicionados à placa-mãe. É desse dispositivo que vem o nome "terminação resistiva". No padrão DDR2, a terminação resistiva na placa-mãe não se mostrou eficiente, pelas características físicas desse tipo de memória. Diante desse problema, foi necessário estudar alternativas e então surgiu o ODT. Nessa tecnologia, a terminação resistiva fica dentro do próprio chip de memória. Com isso, o caminho percorrido pelo sinal é menor e há menos ruídos, isto é, menos perda de dados. Até a placamãe acaba se beneficiando dessa tecnologia, já que um componente deixa de ser adicionado, reduzindo custos de desenvolvimento. Esse é mais um motivo pelo qual a memória DDR2 não é compatível com o padrão DDR. Em relação à nomenclatura, as memórias DDR2 seguem praticamente o mesmo padrão das memórias DDR, como mostra a tabela a seguir: Você pode ter se perguntado o porquê da denominação "PC2-3200" em relação à memória de 400 MHz (e assim se segue com os outros tipos). O número 3200 indica a quantidade de MB por segundo que a memória é capaz de trabalhar. Isso quer dizer que, no caso da memória de 400 MHz, sua velocidade é de MB ou 3.2 GB por segundo DDR 3 A tensão da DDR3 SDRAM foi reduzido de 1.8V para 1.5V. Isto reduz consumo de energia e calor, bem como permitir mais densa 40

41 memória configurações para maiores capacidades. Ela aparece com a promessa de reduzir em 40% o consumo de energia comparadas aos módulos de memórias DDR2 comercializadas atualmente, devido à sua tecnologia de fabricação de 90 nanômetros (90nm), permite baixas taxas de consumo e baixas voltagens (1.5 Volt, comparado com as DDR2 que consomem 1.8V até 2.1V, ou as DDR s comuns de 2.5V). Transístores "dual-gate" ou "portão duplo" serão usados para reduzir as taxas de consumo actuais. As DDR3 apresentam um buffer de 8 bits, onde as DDR2 usam 4 bits, e as DDR 2 bits. 41 Figure 10:Memória DDR3 Table 4:DDR3, taxa de transferência

42 42 Para as memórias os recursos ODT e AL são considerados por muitos os principais destaques da memória DDR2. No entanto, concluímos que o menor consumo de energia também é um fator altamente relevante, pois essa característica, se somada aos aspectos de velocidade da DDR2, DDR3 permite alta performance com menos custo, ou seja, faz-se mais com menos. Esse menor consumo é especialmente interessante a computadores móveis (notebooks), uma vez que economiza-se a energia da bateria e há menos riscos de problemas ligados à temperatura. 5 Dispositivos de Entrada e saída Dispositivos de Entrada e saída representam toda forma de entrada e saída de dados. Com certeza são hardware que possui a função de entrada de dados, saída ou ambas. Com exemplos temos: Table 5:Dispositivos de entrada e saída ENTRADA SAÍDA AMBOS Teclado Impressora Monitor touchscreen Mouse Monitor comum Multifuncional Scaner Áudio Web-cam 5.1 Periféricos Além do já mostrado em dispositivos de Entrada e saída, Periféricos são aparelhos ou placas que enviam ou recebem informações do computador. Em informática, o termo "periférico" aplica-se a qualquer equipamento acessório que seja ligado à CPU (unidade central de processamento), ou num sentido mais amplo, o computador. São exemplos de periféricos: impressoras, digitalizador, leitores e ou gravadores de CDs e DVDs, leitores de cartões e disquetes, mouse, teclado, câmera de vídeo, entre outros.

43 Cada periférico tem a sua função definida e executa ao enviar tarefas ao computador, de acordo com essa função. Existem vários tipos de periféricos: 43 De entrada: basicamente enviam informação para o computador (teclado, mouse, joystick, digitalizador); De saída: transmitem informação do computador para o utilizador (monitor, impressora, caixa de som); De entrada e saida: enviam/recebem informação para o computador (monitor touchscreen, drive de DVD, modem). Muitos destes periféricos dependem de uma placa específica: no caso das caixas de som, a placa de som. De armazenamento: armazenam informações do computador e para o mesmo (pen drive, disco rígido, cartão de memória, etc). Externos: Equipamentos que são adicionados a um computador, equipamentos a parte que enviam e/ou recebem dados, acessórios que se conectam ao computador, como leitor de digitais, retina e etc. E outros recursos que podem ser adicionados ao computador através de placas próprias: é o caso da Internet, com placa de rede ou modem; televisão, através de uma placa de captura de vídeo, etc.

44 6 Placa mãe 44 É a placa mais importante do computador, também chamada de Motherboard. Nela estão localizados o processador, memória, interfaces diversas (HD (hard disk ou disco rígido), drivers CD e DVD ROMS). Nessa placa há disponíveis também slots de expansão, que são conectores para o encaixe de placas periféricas (som, rede, fax modem), contendo funções especificas. Cada placa mãe é compatível com determinado processador. Por exemplo há no mercado alguns fabricantes de processadores, mas existe duas marcas mais comuns no mercado, como Intel ou AMD. Portanto a compatibilidade é com a marca e o modelo do processador. Como exemplo de arquitetura de placa mãe temos, primeiramente uma placa do fabricante ASUS modelo A8N-E e um modelo A7N8X-X. Como podemos observar nas figuras abaixo algumas pequenas diferenças entre esses dois modelos de um mesmo fabricante. Algumas delas podem ser citadas como as seguintes: Slot para conexão de placa de vídeo aceleradora; Conexões compatíveis com padrão SATA; Quantidade de slots de memória; Conexões USB (A8N-E suporta 10 USB; A7N8X-X suporta 4 USB); Quantidade de slots PCI;

45 45 Figure 11: : Placa Mãe Asus A8NE com painel traseiro

Sigla Nome Tecnologia. vez. Programable Read Only Memory (memória programável somente de leitura)

Sigla Nome Tecnologia. vez. Programable Read Only Memory (memória programável somente de leitura) 1. Introdução As memórias são as responsáveis pelo armazenamento de dados e instruções em forma de sinais digitais em computadores. Para que o processador possa executar suas tarefas, ele busca na memória

Leia mais

Curso de Instalação e Gestão de Redes Informáticas

Curso de Instalação e Gestão de Redes Informáticas ESCOLA PROFISSIONAL VASCONCELLOS LEBRE Curso de Instalação e Gestão de Redes Informáticas MEMÓRIA DDR2 José Vitor Nogueira Santos FT2-0749 Mealhada, 2009 Introdução Como o próprio nome indica, a memória

Leia mais

CENTRAL PRCESSING UNIT

CENTRAL PRCESSING UNIT Processador O processador, também chamado de CPU ( CENTRAL PRCESSING UNIT) é o componente de hardware responsável por processar dados e transformar em informação. Ele também transmite estas informações

Leia mais

Processadores clock, bits, memória cachê e múltiplos núcleos

Processadores clock, bits, memória cachê e múltiplos núcleos Processadores clock, bits, memória cachê e múltiplos núcleos Introdução Os processadores (ou CPUs, de Central Processing Unit) são chips responsáveis pela execução de cálculos, decisões lógicas e instruções

Leia mais

Memória ROM. Organização Funcional de um. Computador. ROM (Read-Only Memory) Memória Somente Leitura.

Memória ROM. Organização Funcional de um. Computador. ROM (Read-Only Memory) Memória Somente Leitura. Prof. Luiz Antonio do Nascimento Faculdade Nossa Cidade Organização Funcional de um Computador Unidade que realiza as operações lógicas e aritméticas Comanda as outras operações Sistema Central CPU ULA

Leia mais

Curso de Instalação e Gestão de Redes Informáticas

Curso de Instalação e Gestão de Redes Informáticas ESCOLA PROFISSIONAL VASCONCELLOS LEBRE Curso de Instalação e Gestão de Redes Informáticas PROCESSADORES DE 64 BITS X PROCESSADORES DE 32 BITS José Vitor Nogueira Santos FT2-0749 Mealhada, 2009 Introdução

Leia mais

Curso de Instalação e Gestão de Redes Informáticas

Curso de Instalação e Gestão de Redes Informáticas ESCOLA PROFISSIONAL VASCONCELLOS LEBRE Curso de Instalação e Gestão de Redes Informáticas MEMÓRIA DDR (DOUBLE DATA RATING) José Vitor Nogueira Santos FT2-0749 Mealhada, 2009 Introdução A memória DDR (Double

Leia mais

Técnico em Informática - Instalação e Manutenção de Computadores PROCESSADORES

Técnico em Informática - Instalação e Manutenção de Computadores PROCESSADORES Técnico em Informática - Instalação e Manutenção de Computadores PROCESSADORES Processador... 2 Clock... 5 Multiplicador de clock / FSB... 6 Memória Cache... 6 Processador O processador é o cérebro do

Leia mais

ETEC Prof. Massuyuki Kawano Centro Paula Souza Prof. Anderson Tukiyama Berengue Instalação e Manutenção de Computadores Módulo: I Tupã SP Encapsulamento das Memórias Encapsulamento é o nome que se dá ao

Leia mais

Memória RAM. A memória RAM evolui constantemente. Qual a diferença entre elas? No clock (velocidade de comunicação com o processador)

Memória RAM. A memória RAM evolui constantemente. Qual a diferença entre elas? No clock (velocidade de comunicação com o processador) Memória RAM Introdução As memórias são as responsáveis pelo armazenamento de dados e instruções em forma de sinais digitais em computadores. Para que o processador possa executar suas tarefas, ele busca

Leia mais

Montagem e Manutenção. Luís Guilherme A. Pontes

Montagem e Manutenção. Luís Guilherme A. Pontes Montagem e Manutenção Luís Guilherme A. Pontes Introdução Qual é a importância da Montagem e Manutenção de Computadores? Sistema Binário Sistema Binário Existem duas maneiras de se trabalhar e armazenar

Leia mais

Figura 1 - Memória 1. OBJETIVO. Conhecer os principais tipos de memórias entendendo suas funcionalidades e características.

Figura 1 - Memória 1. OBJETIVO. Conhecer os principais tipos de memórias entendendo suas funcionalidades e características. MEMÓRIA Memória Principal BIOS Cache BIOS ROOM Cache Externo HD DVD DRIVE DE DISQUETE DE 3 1/2 1/2 DISQUETE DE 3 DISQUETE DE 5 1/4 Figura 1 - Memória MP 1. OBJETIVO Conhecer os principais tipos de memórias

Leia mais

Memórias. Sumário. Introdução... 2. Formatos... 2 DDR... 5. Memórias DDR2... 8. Memórias DDR3... 12

Memórias. Sumário. Introdução... 2. Formatos... 2 DDR... 5. Memórias DDR2... 8. Memórias DDR3... 12 Memórias Sumário Introdução... 2 Formatos... 2 DDR... 5 Memórias DDR2... 8 Memórias DDR3... 12 Introdução A memória RAM é um componente essencial não apenas nos PCs, mas em qualquer tipo de computador.

Leia mais

Visão geral das placas-mãe

Visão geral das placas-mãe IDENTIFICAÇÃO DOS PRICIPAIS COMPONENTES DA PLACA-MÃE Professor Marlon Marcon Visão geral das placas-mãe Conhecida como: Motherboard Mainboard Responsável pela interconexão de todas as peças que formam

Leia mais

Técnicas de Manutenção de Computadores

Técnicas de Manutenção de Computadores Técnicas de Manutenção de Computadores Professor: Luiz Claudio Ferreira de Souza Processadores É indispensável em qualquer computador, tem a função de gerenciamento, controlando todas as informações de

Leia mais

Aula 06. Memórias RAM

Aula 06. Memórias RAM Aula 06 Memórias RAM Memória RAM As memórias RAM são responsáveis por armazenar as informações que estão em uso no computador, fazendo com que o acesso aos dados seja mais rápido. 17/01/2013 2 Encapsulamento

Leia mais

Prof. Esp. Lucas Cruz

Prof. Esp. Lucas Cruz Prof. Esp. Lucas Cruz O hardware é qualquer tipo de equipamento eletrônico utilizado para processar dados e informações e tem como função principal receber dados de entrada, processar dados de um usuário

Leia mais

CPU Fundamentos de Arquitetura de Computadores. Prof. Pedro Neto

CPU Fundamentos de Arquitetura de Computadores. Prof. Pedro Neto Fundamentos de Arquitetura de Computadores Prof. Pedro Neto Aracaju Sergipe - 2011 Conteúdo 4. i. Introdução ii. O Trabalho de um Processador iii. Barramentos iv. Clock Interno e Externo v. Bits do Processador

Leia mais

Anatomia de uma Placa Mãe

Anatomia de uma Placa Mãe Anatomia de uma Placa Mãe Autor: Rafael Afonso de Souza Anatomia de uma placa-mãe - Parte 1 É muito importante que saibamos identificar os componentes de uma placa-mãe. Na figura abaixo vamos destacar

Leia mais

Hardware. Prof. Luiz Carlos Branquinho Informática Básica Gestão Comercial

Hardware. Prof. Luiz Carlos Branquinho Informática Básica Gestão Comercial Hardware Prof. Luiz Carlos Branquinho Informática Básica Gestão Comercial Conteúdo Definição do hardware; Tipo e tamanho dos computadores; Família dos computadores; Elementos do hardware; Portas de comunicação.

Leia mais

ROM e RAM. Memórias 23/11/2015

ROM e RAM. Memórias 23/11/2015 ROM e RAM Memórias Prof. Fabrício Alessi Steinmacher. Para que o processador possa executar suas tarefas, ele busca na memória todas as informações necessárias ao processamento. Nos computadores as memórias

Leia mais

Introdução à estrutura e funcionamento de um Sistema Informático

Introdução à estrutura e funcionamento de um Sistema Informático Introdução à estrutura e funcionamento de um Sistema Informático Elementos que constituem o Computador O funcionamento do computador é possível devido aos vários elementos interligados que o constituem:

Leia mais

HIERARQUIA DE MEMÓRIAS

HIERARQUIA DE MEMÓRIAS MEMÓRIA SECUNDARIA HIERARQUIA DE MEMÓRIAS Memórias Memória Secundaria Memória Terciária Sigla NOME TECNOLOGIA ROM Read Only Memory (memória somente de leitura) Gravada na fábrica uma única vez PROM EPROM

Leia mais

Memórias. O que são Memórias de Semicondutores? São componentes capazes de armazenar informações Binárias (0s e 1s)

Memórias. O que são Memórias de Semicondutores? São componentes capazes de armazenar informações Binárias (0s e 1s) Memórias O que são Memórias de Semicondutores? São componentes capazes de armazenar informações Binárias (0s e 1s) Essas informações são guardadas eletricamente em células individuais. Chamamos cada elemento

Leia mais

Introdução a Organização de Computadores Aula 4

Introdução a Organização de Computadores Aula 4 1 Subsistemas de Memória 4.1 Introdução A memória é o componente de um sistema de computação cuja função é armazenar as informações que são (ou serão) manipuladas por esse sistema, para que as informações

Leia mais

O quê um Processador e qual a sua função?

O quê um Processador e qual a sua função? O quê um Processador e qual a sua função? O processador é um chip de silício responsável pela execução das tarefas atribuídas ao computador. Os processadores (ou CPUs, de Central Processing Unit) são responsáveis

Leia mais

Memória cache. Prof. Francisco Adelton

Memória cache. Prof. Francisco Adelton Memória cache Prof. Francisco Adelton Memória Cache Seu uso visa obter uma velocidade de acesso à memória próxima da velocidade das memórias mais rápidas e, ao mesmo tempo, disponibilizar no sistema uma

Leia mais

PROCESSADORES. Introdução 25/04/2012. Professor Marlon Marcon

PROCESSADORES. Introdução 25/04/2012. Professor Marlon Marcon PROCESSADORES Professor Marlon Marcon Introdução Também conhecido como microprocessador, CPU ou UCP, trabalha como o cérebro do computador Responsável por processar as informações utilizando outros componentes

Leia mais

Fundamentos de Hardware

Fundamentos de Hardware Fundamentos de Hardware Curso Técnico em Informática SUMÁRIO PROCESSADOR... 3 CLOCK... 4 PROCESSADORES COM 2 OU MAIS NÚCLEOS... 5 NÚCLEOS FÍSICOS E LÓGICOS... 6 PRINCIPAIS FABRICANTES E MODELOS... 6 PROCESSADORES

Leia mais

Aula 06. Discos e Drives

Aula 06. Discos e Drives Aula 06 Discos e Drives Disquetes São discos magnéticos usados para armazenar dados dos computadores. Podem armazenar textos, imagens, programas, etc. São vendidos normalmente em caixas com 10 unidades.

Leia mais

frozza@ifc-camboriu.edu.brcamboriu.edu.br

frozza@ifc-camboriu.edu.brcamboriu.edu.br Informática Básica Conceitos Prof. Angelo Augusto Frozza, M.Sc. frozza@ifc-camboriu.edu.brcamboriu.edu.br Conceitos INFOR MÁTICA Informática INFOR MAÇÃO AUTO MÁTICA Processo de tratamento da informação

Leia mais

Prof. Orlando Rocha. Qual o nosso contexto atual?

Prof. Orlando Rocha. Qual o nosso contexto atual? 1 Qual o nosso contexto atual? Atualmente, vivemos em uma sociedade que é movida pela moeda informação! No nosso dia-a-dia, somos bombardeados por inúmeras palavras que na maioria das vezes é do idioma

Leia mais

Sistemas Computacionais

Sistemas Computacionais 2 Introdução Barramentos são, basicamente, um conjunto de sinais digitais com os quais o processador comunica-se com o seu exterior, ou seja, com a memória, chips da placa-mãe, periféricos, etc. Há vários

Leia mais

SERVIÇO NACIONAL DE APRENDIZAGEM COMERCIAL

SERVIÇO NACIONAL DE APRENDIZAGEM COMERCIAL Entendendo o Computador Componentes do Computador COMPONENTES DO COMPUTADOR Tabela ASCII A sigla ASCII deriva de American Standard Code for Information Interchange, ou seja, Código no Padrão Americano

Leia mais

TECNOLOGIAS DA INFORMAÇÃO E COMUNICAÇÃO

TECNOLOGIAS DA INFORMAÇÃO E COMUNICAÇÃO TECNOLOGIAS DA INFORMAÇÃO E COMUNICAÇÃO O que é a Informática? A palavra Informática tem origem na junção das palavras: INFORMAÇÃO + AUTOMÁTICA = INFORMÁTICA...e significa, portanto, o tratamento da informação

Leia mais

INSTITUTO DE EMPREGO E FORMAÇÃO PROFISSIONAL, I.P.

INSTITUTO DE EMPREGO E FORMAÇÃO PROFISSIONAL, I.P. INSTITUTO DE EMPREGO E FORMAÇÃO PROFISSIONAL, I.P. Centro de Emprego e Formação Profissional da Guarda Curso: Técnico de Informática Sistemas (EFA-S4A)-NS Trabalho Realizado Por: Igor_Saraiva nº 7 Com

Leia mais

Sumário. Organização de Computadores Módulo 3. Primeira Geração Válvulas (1945 1955) Primeira Geração Válvulas (1945 1955)

Sumário. Organização de Computadores Módulo 3. Primeira Geração Válvulas (1945 1955) Primeira Geração Válvulas (1945 1955) Sumário M. Sc. Luiz Alberto lasf.bel@gmail.com www.professorluizalberto.com.br Organização de Computadores Módulo 3 1. História da Arquitetura de Computadores - Continuação 1.1. 1.2. Segunda Geração Transistores

Leia mais

Universidade Tuiuti do Paraná UTP Faculdade de Ciências Exatas - FACET

Universidade Tuiuti do Paraná UTP Faculdade de Ciências Exatas - FACET Universidade Tuiuti do Paraná UTP Faculdade de Ciências Exatas - FACET Hardware de Computadores Questionário II 1. A principal diferença entre dois processadores, um deles equipado com memória cache o

Leia mais

HD e Memória Virtual. Qual as vantagens e desvantagens da Memória Virtual?

HD e Memória Virtual. Qual as vantagens e desvantagens da Memória Virtual? Principais pontos Como funciona o HD O Hard Disk ou Disco Rígido e também conhecido com HD armazena os dados em discos magnéticos que mantêm a gravação por vários anos. Os discos giram a uma grande velocidade

Leia mais

Processadores. Guilherme Pontes

Processadores. Guilherme Pontes Processadores Guilherme Pontes Já sabemos o básico! Como já sabemos, o processador exerce uma das mais importantes funções do computador. Vamos agora nos aprofundar em especificações mais técnicas sobre

Leia mais

Sistemas Operacionais. Prof. André Y. Kusumoto andrekusumoto.unip@gmail.com

Sistemas Operacionais. Prof. André Y. Kusumoto andrekusumoto.unip@gmail.com Sistemas Operacionais Prof. André Y. Kusumoto andrekusumoto.unip@gmail.com Estruturas de Sistemas Operacionais Um sistema operacional fornece o ambiente no qual os programas são executados. Internamente,

Leia mais

Simulado Informática Concurso Correios - IDEAL INFO

Simulado Informática Concurso Correios - IDEAL INFO Simulado Informática Concurso Correios - IDEAL INFO Esta prova de informática é composta por 20 (vinte) questões de múltipla escolha seguindo o molde adotado pela UnB/CESPE. O tempo para a realização deste

Leia mais

Introdução. Em se tratando de computador, entendemos que memória são dispositivos que armazenam dados com os quais o processador trabalha.

Introdução. Em se tratando de computador, entendemos que memória são dispositivos que armazenam dados com os quais o processador trabalha. Memorias Introdução Em se tratando de computador, entendemos que memória são dispositivos que armazenam dados com os quais o processador trabalha. Necessariamente existe dois tipos de memórias: -Memória

Leia mais

1. CAPÍTULO COMPUTADORES

1. CAPÍTULO COMPUTADORES 1. CAPÍTULO COMPUTADORES 1.1. Computadores Denomina-se computador uma máquina capaz de executar variados tipos de tratamento automático de informações ou processamento de dados. Os primeiros eram capazes

Leia mais

BACHARELADO EM SISTEMAS DE INFORMAÇÃO EaD UAB/UFSCar Sistemas de Informação - prof. Dr. Hélio Crestana Guardia

BACHARELADO EM SISTEMAS DE INFORMAÇÃO EaD UAB/UFSCar Sistemas de Informação - prof. Dr. Hélio Crestana Guardia O Sistema Operacional que você usa é multitasking? Por multitasking, entende-se a capacidade do SO de ter mais de um processos em execução ao mesmo tempo. É claro que, num dado instante, o número de processos

Leia mais

Introdução/Histórico da Informática. O Computador

Introdução/Histórico da Informática. O Computador Universidade do Contestado Campus Concórdia Curso de Engenharia Civil Prof.: Maico Petry Introdução/Histórico da Informática O Computador DISCIPLINA: Informática Aplicada para Engenharia Idade da Pedra

Leia mais

DISPOSITIVOS DE BLOCO. Professor: João Paulo de Brito Gonçalves

DISPOSITIVOS DE BLOCO. Professor: João Paulo de Brito Gonçalves DISPOSITIVOS DE BLOCO Professor: João Paulo de Brito Gonçalves INTRODUÇÃO Periférico Dispositivo conectado a um computador de forma a possibilitar sua interação com o mundo externo. Conectados ao computador

Leia mais

Tecnologias de Construção de Memórias e Memórias RAM, entrelaçada e Virtual

Tecnologias de Construção de Memórias e Memórias RAM, entrelaçada e Virtual Tecnologias de Construção de Memórias e Memórias RAM, entrelaçada e Virtual Arquiteturas para Alto Desmpenho Prof. pauloac@ita.br Sala 110 Prédio da Computação www.comp.ita.br/~pauloac Tempos de Acesso

Leia mais

Conceitos e Evolução Capítulos 1 e 2

Conceitos e Evolução Capítulos 1 e 2 Aula 2 ARQUITETURA DE COMPUTADORES Conceitos e Evolução Capítulos 1 e 2 Prof. Osvaldo Mesquita E-mail: oswaldo.mesquita@gmail.com 1/48 CONTEÚDO DA AULA Conceitos Importantes O que é arquitetura de computadores?

Leia mais

AULA: Introdução à informática Computador Digital

AULA: Introdução à informática Computador Digital Campus Muriaé Professor: Luciano Gonçalves Moreira Disciplina: Informática Aplicada AULA: Introdução à informática Computador Digital Componentes de um computador digital : Hardware Refere-se às peças

Leia mais

ARQUITETURA DE COMPUTADORES - 1866

ARQUITETURA DE COMPUTADORES - 1866 6.7 Operações com as Memórias: Já sabemos, conforme anteriormente citado, que é possível realizar duas operações em uma memória: Escrita (write) armazenar informações na memória; Leitura (read) recuperar

Leia mais

Hardware Avançado. Laércio Vasconcelos Rio Branco, mar/2007 www.laercio.com.br

Hardware Avançado. Laércio Vasconcelos Rio Branco, mar/2007 www.laercio.com.br Hardware Avançado Laércio Vasconcelos Rio Branco, mar/2007 www.laercio.com.br Avanços recentes em Processadores Chipsets Memórias Discos rígidos Microeletrônica Um processador moderno é formado por mais

Leia mais

CAPÍTULO 4 Interface USB

CAPÍTULO 4 Interface USB Interfaces e Periféricos 29 CAPÍTULO 4 Interface USB Introdução Todo computador comprado atualmente possui uma ou mais portas (conectores) USB. Estas portas USB permitem que se conecte desde mouses até

Leia mais

Turno/Horário Noturno PROFESSOR : Salomão Dantas Soares AULA Apostila nº

Turno/Horário Noturno PROFESSOR : Salomão Dantas Soares AULA Apostila nº UNIDADE 1I: SISTEMA COMPITACIONAL Elementos hardware e periféricos Um sistema computacional consiste num conjunto de dispositivos eletrônicos (hardware) capazes de processar informações de acordo com um

Leia mais

Tecnologia PCI express. Introdução. Tecnologia PCI Express

Tecnologia PCI express. Introdução. Tecnologia PCI Express Tecnologia PCI express Introdução O desenvolvimento de computadores cada vez mais rápidos e eficientes é uma necessidade constante. No que se refere ao segmento de computadores pessoais, essa necessidade

Leia mais

Prof. Mizael Cortez everson.cortez@ifrn.edu.br. Dispositivos de processamento Armazenamento Outros componentes

Prof. Mizael Cortez everson.cortez@ifrn.edu.br. Dispositivos de processamento Armazenamento Outros componentes Prof. Mizael Cortez everson.cortez@ifrn.edu.br Dispositivos de processamento Armazenamento Outros componentes Dispositivos de processamento Os dispositivos de processamento são responsáveis por interpretar

Leia mais

Capítulo 2. AMD K6, K6-2, K6-III Super 7 Cyrix MII / 6x86 / 6x86MX Super 7 ou Socket 7 AMD K5, Pentium, Pentium MMX Socket 7

Capítulo 2. AMD K6, K6-2, K6-III Super 7 Cyrix MII / 6x86 / 6x86MX Super 7 ou Socket 7 AMD K5, Pentium, Pentium MMX Socket 7 Processadores Capítulo 2 O processador e o seu soquete Existem vários processadores para PCs. A maioria deles são produzidos pela Intel e AMD. É preciso levar em conta que cada processador exige um tipo

Leia mais

Arquitetura de processadores: RISC e CISC

Arquitetura de processadores: RISC e CISC Arquitetura de processadores: RISC e CISC A arquitetura de processador descreve o processador que foi usado em um computador. Grande parte dos computadores vêm com identificação e literatura descrevendo

Leia mais

R S Q 0 0 1 0 1 0 1 0 0 1 1 0 Tabela 17 - Tabela verdade NOR

R S Q 0 0 1 0 1 0 1 0 0 1 1 0 Tabela 17 - Tabela verdade NOR 19 Aula 4 Flip-Flop Flip-flops são circuitos que possuem a característica de manter os bits de saída independente de energia, podem ser considerados os princípios das memórias. Um dos circuitos sequenciais

Leia mais

Professor: Venicio Paulo Mourão Saldanha E-mail: veniciopaulo@gmail.com Site: www.veniciopaulo.com

Professor: Venicio Paulo Mourão Saldanha E-mail: veniciopaulo@gmail.com Site: www.veniciopaulo.com Professor: Venicio Paulo Mourão Saldanha E-mail: veniciopaulo@gmail.com Site: www.veniciopaulo.com Formação: Graduando em Analises e Desenvolvimento de Sistemas (8º Período) Pregoeiro / Bolsa de Valores

Leia mais

Computador E/S, Memória, Barramento do sistema e CPU Onde a CPU Registradores, ULA, Interconexão interna da CPU e Unidade de controle.

Computador E/S, Memória, Barramento do sistema e CPU Onde a CPU Registradores, ULA, Interconexão interna da CPU e Unidade de controle. Introdução Os principais elementos de um sistema de computação são a unidade central de processamento (central processing unit CPU), a memória principal, o subsistema de E/S (entrada e saída) e os mecanismos

Leia mais

Curso Técnico de Nível Médio

Curso Técnico de Nível Médio Curso Técnico de Nível Médio Disciplina: Informática Básica 2. Hardware: Componentes Básicos e Funcionamento Prof. Ronaldo Componentes de um Sistema de Computador HARDWARE: unidade

Leia mais

CONCEITOS BÁSICOS DE UM SISTEMA OPERATIVO

CONCEITOS BÁSICOS DE UM SISTEMA OPERATIVO 4 CONCEITOS BÁSICOS DE UM SISTEMA OPERATIVO CONCEITOS BÁSICOS MS-DOS MICROSOFT DISK OPERATION SYSTEM INSTALAÇÃO E CONFIGURAÇÃO DE UM SISTEMA OPERATIVO LIGAÇÕES À INTERNET O que é um sistema operativo?

Leia mais

ARQUITETURA DE COMPUTADORES

ARQUITETURA DE COMPUTADORES 1 ARQUITETURA DE COMPUTADORES U C P Prof. Leandro Coelho Plano de Aula 2 Aula Passada Definição Evolução dos Computadores Histórico Modelo de Von-Neumann Básico CPU Mémoria E/S Barramentos Plano de Aula

Leia mais

A história do Processadores O que é o processador Características dos Processadores Vários tipos de Processadores

A história do Processadores O que é o processador Características dos Processadores Vários tipos de Processadores A história do Processadores O que é o processador Características dos Processadores Vários tipos de Processadores As empresas mais antigas e ainda hoje no mercado que fabricam CPUs é a Intel, AMD e Cyrix.

Leia mais

PROCESSADOR. Montagem e Manutenção de Microcomputadores (MMM).

PROCESSADOR. Montagem e Manutenção de Microcomputadores (MMM). PROCESSADOR Montagem e Manutenção de Microcomputadores (MMM). INTRODUÇÃO O processador é o C.I. mais importante do computador. Ele é considerado o cérebro do computador, também conhecido como uma UCP -

Leia mais

Informática. Aulas: 01 e 02/12. Prof. Márcio Hollweg. www.conquistadeconcurso.com.br. Visite o Portal dos Concursos Públicos WWW.CURSOAPROVACAO.COM.

Informática. Aulas: 01 e 02/12. Prof. Márcio Hollweg. www.conquistadeconcurso.com.br. Visite o Portal dos Concursos Públicos WWW.CURSOAPROVACAO.COM. Informática Aulas: 01 e 02/12 Prof. Márcio Hollweg UMA PARCERIA Visite o Portal dos Concursos Públicos WWW.CURSOAPROVACAO.COM.BR Visite a loja virtual www.conquistadeconcurso.com.br MATERIAL DIDÁTICO EXCLUSIVO

Leia mais

Introdução à Engenharia de Computação

Introdução à Engenharia de Computação Introdução à Engenharia de Computação Tópico: Organização Básica de um Computador Digital Introdução à Engenharia de Computação 2 Componentes de um Computador Computador Eletrônico Digital É um sistema

Leia mais

Introdução. Hardware (Parte II) Universidade Federal de Campina Grande Departamento de Sistemas e Computação. joseana@computacao.ufcg.edu.

Introdução. Hardware (Parte II) Universidade Federal de Campina Grande Departamento de Sistemas e Computação. joseana@computacao.ufcg.edu. Universidade Federal de Campina Grande Departamento de Sistemas e Computação Introdução à Computação Hardware (Parte II) Prof. a Joseana Macêdo Fechine Régis de Araújo joseana@computacao.ufcg.edu.br Carga

Leia mais

INFORmação. O que é um Computador?

INFORmação. O que é um Computador? Professor: M. Sc. Luiz Alberto Filho Conceitos básicos Evolução histórica Hardware Sistemas de numeração Periféricos Software Unidades Básicas de Medidas 2 Facilidade de armazenamento e recuperação da

Leia mais

Processadores Tecnologia de Multiprocessamento VS + Núcleos. Claudio Damasceno prof.claudiodamasceno@hotmail.com

Processadores Tecnologia de Multiprocessamento VS + Núcleos. Claudio Damasceno prof.claudiodamasceno@hotmail.com Processadores Tecnologia de Multiprocessamento VS + Núcleos Claudio Damasceno prof.claudiodamasceno@hotmail.com Core Solo O Core Solo é a versão do Core Duo com apenas um núcleo de processamento. Ele mantém

Leia mais

Serial Paralela USB FireWire(IEEE1394)

Serial Paralela USB FireWire(IEEE1394) Serial Paralela USB FireWire(IEEE1394) histórico Tudo começou em 1980 quando a IBM estava desenvolvendo seu primeiro micro PC. Já haviam definido que o barramento ISA seria usado para permitir que o IBM

Leia mais

Introdução. à Informática. Wilson A. Cangussu Junior. Escola Técnica Centro Paula Souza Professor:

Introdução. à Informática. Wilson A. Cangussu Junior. Escola Técnica Centro Paula Souza Professor: Introdução à Informática Escola Técnica Centro Paula Souza Professor: Wilson A. Cangussu Junior Vantagens do computador Facilidade de armazenamento e recuperação da informação; Racionalização da rotina,

Leia mais

Hardware Montagem e Manutenção

Hardware Montagem e Manutenção Fone: (19) 3234-4864 E-mail: editora@komedi.com.br Site: www.komedi.com.br HMM4.0 Hardware Montagem e Manutenção K O M E D I Copyright by Editora Komedi, 2007 Dados para Catalogação Furgeri, Sérgio Hardware

Leia mais

Manutenção de Computadores Montagem de microcomputadores: Entendendo melhor os processadores. Professor: Francisco Ary

Manutenção de Computadores Montagem de microcomputadores: Entendendo melhor os processadores. Professor: Francisco Ary Manutenção de Computadores Montagem de microcomputadores: Entendendo melhor os processadores Professor: Francisco Ary Introdução O processador é um dos componentes mais importantes (e geralmente o mais

Leia mais

Soquetes para o processador

Soquetes para o processador Soquetes para o processador Nos primeiros equipamentos 286, os soquetes eram bem simples. Para a remoção do processador, era necessária a utilização de uma chave de fenda. Nos processadores 386DX, isso

Leia mais

UPGRADES. Uma das melhores características do PC é o facto de ser uma arquitectura aberta, que permite a substituição de componentes com facilidade.

UPGRADES. Uma das melhores características do PC é o facto de ser uma arquitectura aberta, que permite a substituição de componentes com facilidade. IMEI UPGRADES Prof. Luís Moreira UPGRADES Uma das melhores características do PC é o facto de ser uma arquitectura aberta, que permite a substituição de componentes com facilidade. Do velho se faz novo.

Leia mais

O processador é um dos elementos componentes do computador moderno, sendo responsável pelo gerenciamento de todo o computador.

O processador é um dos elementos componentes do computador moderno, sendo responsável pelo gerenciamento de todo o computador. Resumo 01 O que é um processador? O processador é um dos elementos componentes do computador moderno, sendo responsável pelo gerenciamento de todo o computador. Os processadores atualmente são encapsulados

Leia mais

1. Introdução - contextos de aplicações

1. Introdução - contextos de aplicações Universidade Federal de Pelotas Sumário da Aula Fundamentos de Informática Aula 1 Noções sobre Informática, Hardware, Software e Plataformas Prof. Carlos R. Medeiros gil.medeiros@ufpel.edu.br Material

Leia mais

Tipos e Formatos de módulos de memória

Tipos e Formatos de módulos de memória Tipos e Formatos de módulos de memória Embora seja brutalmente mais rápida que o HD e outros periféricos, a memória RAM continua sendo muito mais lenta que o processador. Para reduzir a diferença (ou pelo

Leia mais

Motherboard Significado

Motherboard Significado Motherboard Significado Motherboard, também m designada por mainboard ou Placa-mãe, é uma placa de circuito impresso, que serve como base para a instalação dos componentes do computador, tais como processador,

Leia mais

Introdução ao Processamento de Dados - IPD

Introdução ao Processamento de Dados - IPD Introdução ao Processamento de Dados - IPD Autor: Jose de Jesus Rodrigues Lira 1 INTRODUÇÃO AO PROCESSAMENTO DE DADOS IPD A Informática está no nosso dia a dia: No supermercado, no banco, no escritório,

Leia mais

Dispositivos de Armazenamento Magnéticos. Prof. Marciano dos Santos Dionizio

Dispositivos de Armazenamento Magnéticos. Prof. Marciano dos Santos Dionizio Dispositivos de Armazenamento Magnéticos Prof. Marciano dos Santos Dionizio Dispositivos de Armazenamento Magnéticos Dispositivo magnético ou na situação a ser estudada, dispositivo de armazenamento magnético,

Leia mais

FUNDAMENTOS DE HARDWARE COMO FUNCIONA UM PC? Professor Carlos Muniz

FUNDAMENTOS DE HARDWARE COMO FUNCIONA UM PC? Professor Carlos Muniz FUNDAMENTOS DE HARDWARE COMO FUNCIONA UM PC? A arquitetura básica de qualquer computador completo, seja um PC, um Machintosh ou um computador de grande porte, é formada por apenas 5 componentes básicos:

Leia mais

AJUDANDO-TE A CONHECER MELHORAR O BOM FUNCIONAMENTO DO TEU COMPUTADOR

AJUDANDO-TE A CONHECER MELHORAR O BOM FUNCIONAMENTO DO TEU COMPUTADOR AJUDANDO-TE A CONHECER MELHORAR O BOM FUNCIONAMENTO DO TEU COMPUTADOR Talegal Services +258 820271343 +258 848162924 +258 844459500 www.deogracio-e-raquinha.webnode.pt Aprenda a usar um pen drive como

Leia mais

Capacidade = 512 x 300 x 20000 x 2 x 5 = 30.720.000.000 30,72 GB

Capacidade = 512 x 300 x 20000 x 2 x 5 = 30.720.000.000 30,72 GB Calculando a capacidade de disco: Capacidade = (# bytes/setor) x (méd. # setores/trilha) x (# trilhas/superfície) x (# superfícies/prato) x (# pratos/disco) Exemplo 01: 512 bytes/setor 300 setores/trilha

Leia mais

HD, SSD ou disco híbrido, qual o melhor para sua empresa?

HD, SSD ou disco híbrido, qual o melhor para sua empresa? HD, SSD ou disco híbrido, qual o melhor para sua empresa? No passado, escolher a melhor opção em armazenamento para o seu PC era tão simples quanto encontrar o maior HD que coubesse em seu orçamento. Infelizmente

Leia mais

Fundamentos em Informática

Fundamentos em Informática Fundamentos em Informática 04 Organização de Computadores nov/2011 Componentes básicos de um computador Memória Processador Periféricos Barramento Processador (ou microprocessador) responsável pelo tratamento

Leia mais

Todos os microprocessadores hoje disponíveis em micros compatíveis com PC utilizam o funcionamento do 80386 como ponto de partida.

Todos os microprocessadores hoje disponíveis em micros compatíveis com PC utilizam o funcionamento do 80386 como ponto de partida. 8 0 Introdução Todos os microprocessadores hoje disponíveis em micros compatíveis com PC utilizam o funcionamento do 80386 como ponto de partida. Isso acontece por pelo menos três motivos técnicos: 0 80386

Leia mais

Gravando Dados e Cópias de CD s com o Nero 6.0 Disciplina Operação de Sistemas Aplicativos I

Gravando Dados e Cópias de CD s com o Nero 6.0 Disciplina Operação de Sistemas Aplicativos I CENTRO ESTADUAL DE EDUCAÇÃO TECNOLÓGICA PAULA SOUZA Escola Técnica Estadual de Avaré ETE-AVARÉ CURSO DE TÉCNICO EM INFORMÁTICA NÚCLEO DE APOIO Gravando Dados e Cópias de CD s com o Nero 6.0 Disciplina

Leia mais

Hardware Fundamental

Hardware Fundamental Hardware Fundamental Arquitectura de Computadores 10º Ano 2006/2007 Unidade de Sistema Um computador é um sistema capaz de processar informação de acordo com as instruções contidas em programas. Na década

Leia mais

MEMÓRIA. A memória do computador pode ser dividida em duas categorias:

MEMÓRIA. A memória do computador pode ser dividida em duas categorias: Aula 11 Arquitetura de Computadores - 20/10/2008 Universidade do Contestado UnC/Mafra Sistemas de Informação Prof. Carlos Guerber MEMÓRIA Memória é um termo genérico usado para designar as partes do computador

Leia mais

PROCESSADORES. Introdução. O que é processador? 1/10

PROCESSADORES. Introdução. O que é processador? 1/10 1/10 PROCESSADORES Introdução Os processadores (ou CPU, de Central Processing Unit - Unidade Central de Processamento) são chips responsáveis pela execução de cálculos, decisões lógicas e instruções que

Leia mais

Gerenciamento de Entrada e Saída Hélio Crestana Guardia e Hermes Senger

Gerenciamento de Entrada e Saída Hélio Crestana Guardia e Hermes Senger Gerenciamento de Entrada e Saída Hélio Crestana Guardia e Hermes Senger O controle da entrada e saída (E/S ou I/O, input/output) de dados dos dispositivos é uma das funções principais de um sistema operacional.

Leia mais

Admistração de Redes de Computadores (ARC)

Admistração de Redes de Computadores (ARC) Admistração de Redes de Computadores (ARC) Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina - Campus São José Prof. Glauco Cardozo glauco.cardozo@ifsc.edu.br RAID é a sigla para Redundant

Leia mais

Informática, Internet e Multimídia

Informática, Internet e Multimídia Informática, Internet e Multimídia 1 TIPOS DE COMPUTADOR Netbook Notebook Computador Pessoal 2 Palmtop / Handheld Mainframe TIPOS DE COMPUTADOR Computador Pessoal O Computador Pessoal (PC Personal Computer),

Leia mais

Microinformática Introdução ao hardware. Jeronimo Costa Penha SENAI - CFP/JIP

Microinformática Introdução ao hardware. Jeronimo Costa Penha SENAI - CFP/JIP Microinformática Introdução ao hardware Jeronimo Costa Penha SENAI - CFP/JIP Informática Informática é o termo usado para se descrever o conjunto das ciências da informação, estando incluídas neste grupo:

Leia mais

Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari. amanda@fcav.unesp.br

Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari. amanda@fcav.unesp.br Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari amanda@fcav.unesp.br Documentário http://www.youtube.com/watch?v=sx1z_mgwds8 Introdução Computadores de primeira geração (1946 1959): A primeira geração

Leia mais

Hardware de Computadores

Hardware de Computadores Placa Mãe Hardware de Computadores Introdução Placa-mãe, também denominada mainboard ou motherboard, é uma placa de circuito impresso eletrônico. É considerado o elemento mais importante de um computador,

Leia mais

Circuitos de Memória: Tipos e Funcionamento. Fabrício Noveletto

Circuitos de Memória: Tipos e Funcionamento. Fabrício Noveletto Circuitos de Memória: Tipos e Funcionamento Fabrício Noveletto Memória de semicondutores São dispositivos capazes de armazenar informações digitais. A menor unidade de informação que pode ser armazenada

Leia mais