ELETRICIDADE E MAGNETISMO

Tamanho: px
Começar a partir da página:

Download "ELETRICIDADE E MAGNETISMO"

Transcrição

1 PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA Professores: Edson Vaz e Renato Medeiros ELETRICIDADE E MAGNETISMO NOTA DE AULA IV Goiânia

2 MAGNETISMO As primeiras observações de fenômenos magnéticos são muito antigas. Acreditase que estas observações foram realizadas pelos gregos, em uma região denominada Magnésia. Eles verificaram que existia, nesta região, certo tipo de pedra (minério de ferro atualmente denominado imã natural) que era capaz de atrair pedaços de ferro. Portanto, os primeiros fenômenos magnéticos observados foram associados aos chamados imãs naturais, fragmentos das rochas encontradas perto da cidade de Magnésia. Esses imãs naturais têm a propriedade de atrair ferro desmagnetizado, o efeito sendo mais pronunciado em certas regiões do imã conhecidas como polos. A Terra tem um campo magnético próprio, como mostra a figura abaixo. Nesta figura podemos observar que os polos Norte e Sul geográficos terrestre estão invertidos com relação aos polos Norte e Sul magnéticos. Devemos observar que os polos magnéticos e geográficos não são coincidentes, ou seja, o polo sul do campo magnético da Terra está situado nas proximidades do polo norte geográfico. Observa-se que um pedaço de ferro, depois de colocada perto de um imã, adquire as mesmas propriedades deste imã. Assim, foi possível obter-se os imãs artificiais. Os imãs (naturais ou artificiais) apresentam determinados fenômenos magnéticos, entre os quais destacamos: Polos de um imã os pedaços de ferro são atraídos com maior intensidade por certas partes do imã, as quais são denominadas polos do imã. Polo norte de um imã é aquela extremidade que, quando o imã pode girar livremente, aponta para o norte geográfico (sul magnético) da Terra. A extremidade que aponta para o sul geográfico (norte magnético) da Terra é o polo sul do imã. Princípio da atração e repulsão Polos de mesmo nome se repelem e polos de nomes contrários se atraem.

3 Inseparabilidade dos polos Quando uma barra de um imã é cortada, ao invés de obter um polo norte isolado e um polo sul isolado, obtemos dois imãs, cada um dos quais tem polos norte e sul. Portanto, é impossível obter um polo magnético isolado. Durante muitos anos, o estudo dos fenômenos magnéticos esteve restrito aos imãs, não havia conexão entre os fenômenos elétricos e magnéticos. Em 1819 o cientista dinamarquês Hans Cristian Oersted ( ) observou que a agulha de uma bússola era defletida quando colocada próxima de um fio por onde passava uma corrente elétrica. Doze anos mais tarde, o físico inglês Michael Faraday ( ) verificou que aparecia uma corrente momentânea em um circuito, quando, em um circuito vizinho, se iniciava ou se interrompia uma corrente. Pouco depois, seguiu-se a descoberta de que o movimento de um imã que se aproximava ou se afastava de um circuito produzia o mesmo efeito. O trabalho de Oersted demonstrou que efeitos magnéticos podiam ser produzidos por cargas elétricas em movimento, enquanto os de Faraday mostraram que correntes podiam ser produzidas por imãs em movimento. Após as descobertas das relações entre os fenômenos elétricos e magnéticos temos os estudos de eletromagnetismo. Acredita-se, hoje em dia, que os chamados fenômenos magnéticos resultam de forças entre cargas elétricas em movimento. Isto é, cargas em movimento criam tanto um campo magnético quanto um campo elétrico e esse campo magnético exerce força sobre uma segunda carga que esteja em movimento. Como os elétrons nos átomos estão em movimento em torno dos núcleos atômicos e como cada elétron parece estar em rotação contínua em torno de um eixo passando por ele, espera-se que todos os átomos exibam efeitos magnéticos; de fato, verifica-se que este é o caso. A possibilidade de que as propriedades magnéticas da matéria resultassem de minúsculas correntes atômicas foi, primeiramente, sugerida por Ampère em Campo Magnético Já estudamos que um corpo carregado produz um campo vetorial (o campo elétrico E ) em todos os pontos do espaço ao seu redor. De forma análoga, um imã produz um campo vetorial (o campo magnético B ) em todos os pontos no espaço ao seu redor. Você pode ter uma noção desse campo magnético sempre que prende um bilhete a uma

4 porta de geladeira com um pequeno imã. O imã age sobre a porta por meio do seu campo magnético. Linhas de Indução de um Campo Magnético Podemos representar campos magnéticos com linhas de campo, como fizemos para os campos elétricos. Regras semelhantes se aplicam; ou seja, estas linhas devem ser traçadas de tal modo que o vetor B seja sempre tangente a elas em qualquer um de seus pontos. Além disso, o espaçamento entre as linhas representa a intensidade de B, o campo magnético é mais intenso onde as linhas estiverem mais próximas. As linhas de campo saem do polo norte e chega ao polo sul.

5 ELETROMAGNETISMO Podemos considerar como princípio básico do eletromagnetismo, o fato de que: quando duas cargas elétricas estão em movimento, manifesta-se entre elas, além da força eletrostática, outra força, denominada força magnética. Ou seja, uma carga em movimento cria, no espaço em torno dela, um campo magnético que atuará sobre outra carga, também em movimento, exercendo sobre ela uma força magnética. Antes de iniciarmos o estudo do nosso próximo assunto (a força magnética), iremos discutir o conceito de produto vetorial. PRODUTO VETORIAL O produto vetorial entre dois vetores, a e b, representados por a x b, é um vetor c cujo módulo c é dado pela expressão c ab sen, Onde é o menor dos ângulos entre as direções de a e b. A direção de c é perpendicular ao plano formado por a e b, o sentido ao longo desta direção pode ser dado pela regra da mão direita. Quando a e b forem paralelos ou antiparalelos ( 0 ou 180º), ab 0. EXERCÍCIO 1. Usando a regra do determinante, mostre que o produto vetorial entre dois vetores a e b pode ser escrito como: a x b ( a b b a ) iˆ ( a b b a ) ˆj ( a b b a ) kˆ y z y z z x z x x y x y Força magnética sobre cargas elétricas em movimento Alguns aspectos da Força magnética sobre uma carga em movimento são análogos a propriedades correspondentes da força do campo elétrico. Ambos têm intensidade proporcional à carga. Além disto, ambos são proporcionais à intensidade ou ao módulo do campo.

6 A dependência da força magnética com a velocidade da partícula é muito diferente do caso da força do campo elétrico. A força elétrica sobre uma carga não depende da velocidade; ela é a mesma quer a carga se mova ou não; já a força magnética tem um módulo que é proporcional à componente de velocidade perpendicular ao campo. A força magnética que atua em uma partícula com carga q, pode ser definida como o produto da carga q pelo produto vetorial da sua velocidade v pelo campo magnético B. onde: F = q v B F = q v B sen F é o módulo da força magnética que atua na carga q v é o módulo da velocidade de q B é o módulo do campo magnético Direção e sentido da força magnética A força magnética tem direção perpendicular a v e a B, isto é, ao plano definido por v e B. O sentido de F é o mesmo do produto vetorial v B, se a carga q for positiva e contrária a este sentido se q for negativa. A direção e sentido da força magnética podem ser encontrados por várias regras práticas, entre elas podemos citar a regra da mão direita ou da mão esquerda. Observando a equação anterior podemos verificar que a força será igual a zero se a carga for nula ou se a partícula estiver em repouso. A mesma equação também nos diz que a intensidade da força será nula se v e B forem paralelos ( 0 ) ou antiparalelos ( 180 ), e a força atingirá seu valor máximo quando v e B forem perpendiculares um ao outro. Como a força magnética não possui uma componente paralela à v, ela não consegue alterar o valor da velocidade da partícula (portanto não consegue alterar a energia cinética da partícula). A força pode modificar apenas a direção da velocidade da partícula, mudando, portanto, a direção de sua trajetória.

7 Regra da mão direita. dedão F B dedos v B Unidade de campo magnético A unidade do campo magnético no SI é o Newton. Segundo por Coulomb.Metro. Por conveniência, esta unidade e chamada de tesla ( ). Ns. 1 = 1 tesla = 1 Cm. No eletromagnetismo é comum a representação de vetores perpendiculares ao plano da folha, portanto alguns alunos relacionam, equivocadamente, a representação de vetores entrando ou saindo da folha, apenas com grandezas estudadas no eletromagnetismo. Devemos lembrar que esta representação pode ser usada para qualquer grandeza vetorial.

8 Como iremos trabalhar no plano, usamos a seguinte definição para as linhas de campo: entrando pelo plano saindo pelo plano E X E R C Í C I O 2. Suponha que você possua alguns imãs nos quais assinalou quatro polos com as letras A, B, C e D. Você verifica que: o polo A repele o polo B o polo A atrai o polo C o polo C repele o polo D e sabe-se que o polo D é um polo norte. Nestas condições determine se o polo B é um polo norte ou sul. 3. Represente a força magnética que age sobre a carga elétrica q, lançada no campo magnético B, nos seguintes casos: a) B q v b) B q v c) q B v d) v q B 4. Por que, simplesmente não definimos a direção e o sentido do campo magnético B como sendo idênticos aos da força magnética que atua sobre uma carga em movimento? Movimento de uma carga elétrica em um campo magnético uniforme 1 o Caso: A carga elétrica é lançada paralelamente às linhas de indução. Neste caso = 0 o ou = 180 o sen = 0 e a força magnética é nula. Então, a carga elétrica realiza um movimento retilíneo e uniforme.

9 2 o Caso: A carga elétrica é lançada perpendicularmente às linhas de indução. Neste caso, o ângulo entre a velocidade e o campo magnético é de noventa graus. Isso significa que o sen é igual a um, e a força magnética é constante e igual a: da curva, e, portanto, o movimento é circular e uniforme. FB qvb, essa força é apontada para o centro Cálculo do raio da trajetória F magnética = F centrípeta 2 v F m qvb r mv r qb Cálculo do período ( T ) Sabemos que o período T é o intervalo tempo que corresponde a uma volta completa.

10 2r 2mv T v vqb 2 m T qb Observe que o período T não depende da velocidade. 3 o Caso: A carga elétrica é lançada obliquamente às linhas de indução. Neste caso a componente v (paralela ao campo magnético) ocasiona um MRU e a componente v (perpendicular ao campo magnético) ocasiona um MCU. A composição destes dois movimentos é um movimento helicoidal uniforme e a trajetória é chamada de hélice cilíndrica. Na figura abaixo temos a representação de trajetória para o caso de um campo magnético uniforme (b) e de um campo não uniforme (c). Ver estudo mais detalhado sobre garrafa magnética, cinturões de radiação de Van Allen e aurora, no livro texto. O passo da hélice (p) pode ser encontrado da seguinte maneira: 2 m p v T v cos qb 2 mv p cos 2 rcos qb Aceleradores de partículas

11 Aceleradores de partículas podem usar campos elétricos e magnéticos para obter partículas com alta energia. O cíclotron e o sincrotron são aceleradores de partículas que utilizam um campo magnético para fazer a partícula passar repetidas vezes por uma região onde existe um campo elétrico, o qual gera um aumento no valor da velocidade da partícula. O cíclotron é um instrumento que foi desenvolvido em 1931 pelos físicos Lawrence e Livingston da Universidade da Califórnia. A teoria envolvida na descrição do funcionamento do cíclotron é bastante simples. A parte principal do acelerador é formada por um par de câmaras metálicas em forma de um semicírculo, algumas vezes denominadas de "D", por causa da sua forma. No caso do cíclotron, as partículas descrevem uma trajetória espiral, ganhando energia cada vez que atravessa a região onde existe um campo elétrico (o espaço entre os dês). O funcionamento do cíclotron se baseia no fato de que a frequência com a qual a partícula circula, sob o efeito do campo magnético, não depende da velocidade. Portanto podemos ter um oscilador que inverte o sentido do campo elétrico na mesma frequência que a partícula circula. No sincrotron a frequência de revolução das partículas varia com o tempo, mas permanece em fase com a frequência do oscilador. Neste caso a trajetória das partículas é circular em vez de espiral. E X E R C Í C I O 5. Quais são as funções fundamentais (a) do campo elétrico e (b) do campo magnético no cíclotron?

12 6. Uma partícula eletrizada positivamente, colocada em um campo magnético uniforme, é lançada para a direita com uma velocidade v, como mostra a figura abaixo. Desenhe, na figura, a trajetória que a partícula descreverá. 7. Considerando o esquema do exercício anterior, desenhe a trajetória da partícula supondo que sua carga seja negativa. 8. Uma partícula eletrizada positivamente é lançada horizontalmente para a direita, com uma velocidade v. Deseja-se aplicar à partícula um campo magnético B, perpendicular a v, de tal modo que a força magnética equilibre o peso da partícula. a) Qual devem ser a direção e o sentido do vetor B para que isto aconteça? b) Supondo que a massa da partícula seja m = 4,0 miligramas, que sua carga seja q = 2, C e que sua velocidade seja v = 100 m / s, determine qual deve ser o valor de B. R: a) B b) 1,96 T 9. Em um laboratório de Física Moderna, um dispositivo emite íons positivos que se deslocam com uma velocidade v muito elevada. Desejando medir o valor desta velocidade, um cientista aplicou na região onde os íons se deslocam os campos uniformes, E e B, mostrados na figura deste problema. Fazendo variar os valores de E e B ele verificou que, quando E = 1,0x10 3 N /C e B = 2,0x10-2 T, os íons atravessavam os dois campos em linha reta, como está indicado na figura. Com estes dados, o cientista conseguiu determinar o valor de v. Qual foi o valor encontrado por ele? Despreze a massa do íons. R: 5x10 4 m/s

13 10. Uma partícula com carga q = 2,0 C, de massa m= 1,0x10-7 kg penetra, com uma velocidade v = 20 m/s, num campo magnético uniforme de indução B = 4,0 T através de um orifício existente no ponto O de um anteparo. R: 0,5 m a) Esquematize a trajetória descrita pela partícula no campo, até incidir pela primeira vez no anteparo. b) Determine a que distância do ponto O a partícula incide no anteparo. 11. Um elétron que tem velocidade v = (2,0x10 6 m/s ) i + ( 3,0x10 6 m/s ) j penetra num campo magnético B = ( 0,03 T ) i - ( 0,15 T ) j. Determine o módulo, a direção e o sentido da força magnética sobre o elétron. R: 6,24x10-14 N na direção positiva do eixo z 12. Um elétron num campo magnético uniforme tem uma velocidade v = (40 km/s) i + (35 km/s) j. Ele experimenta uma força F = - (4,2 fn) i + (4,8 fn) j. Sabendo-se que B x = 0, calcular as componentes B y e B z do campo magnético. (1fN = N). R: B y =0 e B z =0,75T 13. Um elétron num tubo de TV está se movendo a 7,20 x 10 6 m/s num campo magnético de intensidade 83,0 mt. (a) Sem conhecermos a direção do campo, quais são o maior e o menor módulo da força que o elétron pode sentir devido a este campo? (b) Num certo ponto a aceleração do elétron é 4,90 x m/s 2. Qual o ângulo entre a velocidade do elétron e o campo magnético? A massa do elétron é 9,11 x kg. R: a) 0 e 9,44x10-14 N b) 0,27º 14. Um próton que se move num ângulo de 23 0 em relação a um campo magnético de intensidade 2,6 mt experimenta uma força magnética de 6,50x10-17 N. Calcular (a) a

14 velocidade escalar e (b) a energia cinética em elétron - volts do próton. A massa do próton é 1,67x10-27 kg, 1eV = 1,6x10-19 J. R: a) 4x10 5 m/s b) 835 ev 15. Campos magnéticos são frequentemente usados para curvar um feixe de elétrons em experiências físicas. Que campo magnético uniforme, aplicado perpendicularmente a um feixe de elétrons que se move a 1,3x10 6 m/s, é necessário para fazer com que os elétrons percorram uma trajetória circular de raio 0,35 m? R: 2,11x10-5 T 16. (a) Num campo magnético com B = 0,5 T, qual é o raio da trajetória circular percorrida por um elétron a 10% da velocidade escalar da luz? (c = Km/s). (b) Qual é a sua energia cinética em elétron - volts? R: a) 3,41x10-4 m b) 2,56x10 3 ev 17. Um elétron com energia cinética de 1,20 kev está circulando num plano perpendicular a um campo magnético uniforme. O raio da órbita é 25,0 cm. Calcular (a) a velocidade escalar do elétron, (b) o campo magnético. R: a) 6,49x10 7 m/s b) 1,48x10-3 T 18. Um feixe de elétrons de energia cinética K emerge de uma janela de folha de alumínio na extgremidade de um acelerador. A uma distância d dessa janela existe uma placa de metal perpendicular à direção do feixe (figura abaixo). (a) Mostre que é possível evitar que o feixe atinge a placa aplicando um campo uniforme B tal que: 2mK B 2 2 ed Onde me e a massa e a carga do el[étron. (b) Qual deve ser a orientação do campo elétrico B? 19. O espectrômetro de massa de Bainbridgem, mostrado de forma esquemática na figura abaixo, separa íons de mesma velocidade e mede a razão q/m desses íons. Depois de entrar no aparelho através das fendas colimadoras S1 e S2, os íons passam por um seletor de velocidade composto por um campo elétrico produzido pelas placas

15 carregadas P e P sem serem desviados (ou seja, os que possuem uma velocidade E/B), entram em uma região onde existe um segundo campo magnético ' B que os faz descrever um semicírculo. Uma placa fotográfica (ou um detector moderno) registra a posição final dos íons. Mostre que a razão entre a carga e a massa dos íons é dada por ' q / m E / rbb, onde r é o raio do semicírculo. 20. Um elétron é acelerado a partir do repouso por uma ddp de 350 V. Ele penetra, a seguir, num campo magnético uniforme de módulo 200 mt com sua velocidade perpendicular ao campo. Calcular (a) a velocidade escalar do elétron e (b) o raio de sua trajetória no campo magnético. R: a) 1,11 x 10 7 m/s b) 3,16 x 10-4 m Força magnética sobre um condutor retilíneo percorrido por uma corrente elétrica Se há interação entre campo magnético e partículas portadoras de carga elétrica, há uma interação entre campo magnético e um condutor percorrido por corrente elétrica, pois a corrente elétrica é constituída pelo movimento de portadores de carga elétrica. Se um segmento de fio retilíneo, de comprimento L, percorrido por uma corrente i, for colocado numa região onde existe um campo magnético uniforme B (como está representado na figura abaixo), sobre este segmento de fio atuará uma força magnética dada por onde: F il B F B i L sen F é a força magnética que atua no fio L é o comprimento do segmento do fio, sendo que: L é um vetor de intensidade L e está dirigido na mesma direção do segmento do fio no sentido (convencional) da corrente elétrica.

16 ϕ é o ângulo entre o campo magnético B e a corrente i ou o vetor L. Direção da força magnética A direção (e sentido) da força magnética é a do produto vetorial L x B. Então, a força magnética é sempre perpendicular ao plano definido pelos vetores L x B, e o sentido de F pode ser dado pela regra da mão direita ou da mão esquerda. Observação: Se o fio não for retilíneo ou o campo magnético não for uniforme, podemos imaginar o fio repartido em pequenos segmentos retos e calcular a força em cada segmento. A força sobre o fio como um todo e, então, a soma vetorial de todas as forças que agem sobre os segmentos que compõem o fio. No limite diferencial, podemos escrever o elemento de força sobre dl como: df i dl B Podemos determinar a força resultante sobre qualquer arranjo fornecido de correntes por meio da integração de df sobre este arranjo. Torque em uma espira percorrida por corrente elétrica. O princípio de funcionamento dos motores elétricos é baseado no torque produzido por forças magnéticas. Na figura abaixo temos a representação de uma espira percorrida por uma corrente elétrica, imersa em um campo magnético. As forças magnéticas produzem um torque na espira que tende a fazê-la girar em torno de um eixo central.

17 Uma bobina na presença de um campo magnético uniforme experimente um torque dado por: B, onde é o momento magnético dado por: NiA, onde N é o número de espiras e A é a área da espira (Ver a demonstração desta expressão no livro texto). Usando a definição de produto vetorial, temos: Bsen NiABsen

18 E X E R C Í C I O 21. Represente a força magnética que atua sobre cada condutor retilíneo, percorrido por corrente elétrica e imerso no interior de um campo magnético uniforme, nos casos: a ) b ) B B i i c) d) 22. A figura abaixo mostra uma espira retangular CDEG, situada no plano da folha de papel, colocada entre os polos de um imã. Observando o sentido da corrente que está passando na espira responda: a) Qual é o sentido da força que atua em cada um dos lados GE, ED e DC da espira? b) Descreva o movimento que a espira tende a adquirir. 23. Um condutor, mesmo transportando uma corrente elétrica, tem carga líquida zero. Por que, então, um campo magnético exerce força sobre ele?

19 24. Um condutor reto e horizontal de comprimento L = 0,5m, e massa m = 2, kg, percorrido por uma corrente elétrica de intensidade i = 8,0 A, encontra-se em equilíbrio sob ação exclusiva do campo da gravidade e de um campo magnético uniforme B, conforme mostra a figura abaixo. Determine: R: a) 4,9x 10-2 T; b) para direita a) A intensidade do vetor B. B b) O sentido da corrente i. 25. Um fio de 50 cm de comprimento, situado ao longo do eixo x, é percorrido por uma corrente de 0,50 A, no sentido positivo dos x. O fio está imerso num campo magnético dado por B = (0,003 T) j + (0,01 T) k. Determine a força magnética sobre o fio. R: (- 2,5x10-3 N) j + (7,5x10-4 N) k 26. Um fio reto de 1,8 m de comprimento transporta uma corrente de 13 A e faz um ângulo de 35 o com um campo magnético uniforme B = 1,5 T. Calcular o valor da força magnética sobre o fio. R: 20,13 N 27. Um fio com 13,0 g de massa e L = 62,0 cm de comprimento está suspenso por um par de contatos flexíveis na presença de um campo magnético uniforme de módulo 0,440 T entrando pelo plano da folha (veja figura abaixo). Determine (a) o valor absoluto e (b) o sentindo (para direita ou para a esquerda) da corrente necessária para remover a tensão dos contatos. R:a) 0,47 A; b) a Corrente está para a direita. 28. Considere a possibilidade de um novo projeto para um trem elétrico. O motor é acionado pela força devido ao componente vertical do campo magnético da Terra

20 sobre um eixo de condução. Uma corrente passa debaixo de um dos trilhos, através de uma roda condutora, do eixo, da outra roda condutora e, então, volta à fonte pelo outro trilho. (a) Que corrente é necessário para fornecer uma força modesta de 10 kn? Suponha que o componente vertical do campo magnético da Terra seja igual a 10 μt e que o comprimento do eixo seja 3 m. (b) Quanta potência será dissipada para cada ohm de resistência nos trilhos? (c) Um trem como este é real. R: a)3,33x10 8 A; b) 1,11x10 17 W; c) não. Campo magnético gerado por corrente elétrica Já comentamos que a experiência de Oersterd levou à conclusão de que as cargas elétricas em movimento (corrente elétrica) criam campo magnético no espaço em torno delas. Em 1820, Hans Christian Oersted ( ) mostrou que uma bússola sofria deflexão quando era colocada perto de um fio percorrido por corrente elétrica. Por outro lado era conhecido que campos magnéticos produzem deflexão em bússola, o que levou Oersted a concluir que correntes elétricas induzem campos magnéticos. Com isto ele havia encontrado, então, uma conexão entre eletricidade e o magnetismo. Iremos, agora, analisar a relação entre o campo magnético e as correntes elétricas que originaram este campo. Estudaremos os campos magnéticos que são estabelecidos por alguns tipos particulares de condutores percorridos por uma corrente elétrica. Devemos lembrar que o campo magnético é uma grandeza vetorial e que este campo pode ser representado por linhas de campo. Para facilitar a representação do campo magnético gerado por corrente elétrica podemos usar uma regra da mão direita que relaciona a corrente elétrica com o campo magnético gerado por esta corrente elétrica. Esta regra prática, muito usada, nos permite facilmente obter o sentido do campo magnético em torno de um fio. Dispondo o polegar da mão direita ao longo do fio condutor, no sentido da corrente elétrica, e os demais dedos envolvendo o condutor, estes dedos nos indicarão o sentido das linhas de campo magnético. O sentido das linhas de campo em cada pondo nos indica a direção e sentido do campo magnético neste ponto. Na figura abaixo temos a representação desta regra da mão direita e das linhas de campo magnético gerado por um fio reto percorrido por uma corrente elétrica i.

21 No estudo do campo elétrico usamos duas leis para determinar este campo, a lei de Coulomb e a lei de Gauss. De modo semelhante vamos usar duas leis para estudar o campo magnético gerado por corrente elétrica, a lei de Biot - Savart e a lei de Ampère. Lei de Biot Savart O campo magnético criado por um condutor transportando uma corrente elétrica pode ser encontrado pela lei de Biot Savart. Para determinarmos o campo magnético gerado por um fio de forma arbitrária podemos dividir mentalmente o fio em elementos infinitesimais ds e definir para cada elemento um vetor comprimento ds de módulo ds e sentido da corrente em ds. Se definirmos um elemento de corrente i ds, a lei de Biot Savart assegura que a contribuição db do campo magnético, devido ao elemento de corrente i ds, num ponto P, a uma distância r do elemento de corrente, é dado por: 0i dsr db 3 4 r Podemos calcular o campo resultante B no ponto P somando, por meio de integração, as contribuições db de todos os elementos de corrente.

22 Na expressão acima, o é uma constante chamada de permeabilidade do vácuo, cujo valor é: o =4 x10-7 T.m/A. Campo Magnético no centro de uma espira circular O campo magnético no centro de uma espira circular, percorrida por uma corrente elétrica i, é diretamente proporcional à corrente elétrica e inversamente proporcional ao raio da espira. i B 2r onde: r é o raio da espira Direção e sentido de B A direção do campo magnético é normal ao plano da espira. O sentido de B pode ser dado pela regra da mão direita. Podemos usar a lei de Biot - Savart para demonstrar a expressão usada para o cálculo do campo magnético no centro de uma espira circular de raio r, percorrida por uma corrente i. Partindo da Lei de Biot-Savart, temos: o o ids r o idsrsen90 o ids db db r 4 r 4 r int egrando : db o ids 2 4 r i i B ds 2 r 4 4 i B o 2r 2 r o o 2 2 r r 0

23 LEI DE AMPÈRE Podemos determinar o campo magnético resultante devido a qualquer distribuição de correntes com a lei de Biot-Savart, mas se a distribuição for complicada, podemos ter que usar um computador para o cálculo. Entretanto se a distribuição apresentar determinada simetria é possível que possamos aplicar a lei de Ampère para determinar o campo magnético com um esforço consideravelmente menor (de modo semelhante ao uso da lei de Gauss para calcular o campo elétrico). A lei de Ampére pode ser enunciada da seguinte maneira: A integral de linha do campo magnético B em torno de qualquer trajetória fechada é igual a 0 vezes a corrente líquida que atravessa a área limitada pela trajetória. Ou seja, para uma curva amperiana (curva fechada), temos que: B.d s 0i A integral de linha nesta equação é calculada ao redor da curva amperiana, e i é a corrente líquida englobada pela curva amperiana. Não precisamos saber o sentido de B antes de fazer estão integração. Supomos arbitrariamente B como estando geralmente no mesmo sentido da integração e usamos a seguinte regra da mão direita para atribuir o sinal de cada uma das correntes envolvida pela curva amperiana: curve a sua mão direita ao redor da curva amperiana, com os seus dedos apontados no sentido de integração. A uma corrente que atravessa a curva, no sentido do seu dedo polegar estendido se atribui um sinal positivo e a uma corrente no sentido contrário se atribui um sinal negativo. Campo magnético devido a uma corrente em um fio reto e longo A intensidade do campo magnético a uma distância d de um fio reto e longo transportando uma corrente i é diretamente proporcional à corrente elétrica i e inversamente proporcional à distância d. Esta relação é dada por i B 2 d onde: B é a intensidade do campo magnético

24 é a permeabilidade magnética do meio d é a distância do ponto até o condutor As linhas de campo de B formam círculos concêntricos ao redor do fio, como está representado na figura abaixo. Podemos usar a lei de Ampère para demonstrar a expressão usada para o cálculo do campo magnético gerado por uma corrente i, a uma distância r de um fio reto e longo. Usando a lei de Ampère B. ds i o Bds cos0 o B ds i B2 r i o i o o

25 Com isso temos que o módulo do campo magnético em um fio retilíneo longo é dado por: i o B 2 r Vamos usar a lei de Ampère para estudar o campo magnético no interior de um fio longo retilíneo percorrido por corrente elétrica distribuída uniformemente na seção reta do fio. B. ds B2r i int erior oo i B 2 r. o oo i o Como a corrente está uniformemente distribuída na seção reta do fio, a densidade de corrente tem o mesmo valor para a área no interior da curva amperiana e em toda a área do fio: J i o Jo o o ir R 2 2 i i i i A A R r o 2 2 Substituindo, temos: oi o ir B. 2r 2r R oir B 2 2 R 2 2 Observe que no interior do fio o campo magnético é proporcional a r; o campo é nulo centro do fio e máximo na superfície, onde r = R.

26 Campo magnético de um solenóide Denomina-se por solenoide um fio condutor enrolado em uma helicoidal com voltas de espaçamento muito próximo, ou seja, uma bobina helicoidal formada por espiras circulares muito próximas. Ele é considerado um solenoide ideal quando for infinitamente grande, com isto queremos dizer que ele é formado por um número muito grande de espiras. Se uma corrente percorre o solenoide ela induz campos magnéticos em seu entorno. Se o solenoide é considerado infinito (solenoide ideal) não teremos efeitos de bordas, portanto só existirão campos magnéticos no seu interior. Então, quanto mais longo for o solenoide mais uniforme é o campo magnético no seu interior e mais fraco é o campo magnético no seu exterior. Deste modo, o vetor campo magnético (ou indução magnética) B em qualquer ponto no interior de um solenoide ideal é o mesmo, ou seja, ele é uniforme. Este campo magnético tem as seguintes características: - O vetor B, no interior do solenoide é paralelo ao seu eixo central. - O sentido de B pode ser dado pela regra da mão direita. - O campo magnético no solenoide é equivalente ao campo criado por imãs, com polos Norte e Sul. - O campo magnético no interior do solenoide é uniforme e diretamente proporcional à intensidade da corrente nas espiras e ao número de espiras por unidade de comprimento do solenoide. B in onde: n é o número de espiras por unidade de comprimento. 0

27 Podemos usar a lei de Ampère para demonstrar e expressão do campo magnético no interior de um solenoide. B. ds i B. ds B. ds B. ds B. ds i B. ds i 0Bds 0B0 0Bds o env b c d a a b c d b a Bh i o o env Bh inh o B in o env o env A importâcia de estudarmos modêlos ideais, se justifica na aproximação destes modêlos ideais com modêlos reais. Em pontos bem afastados das extremidades de um solenóide real (quando o comprimento deste solenóide for muito maior do que o seu diâmetro) podemos aplicar as mesmas propriedades de um solenóide ideal. Um solenóide fornece uma forma prática de se criar um campo magnético uniforme conhecido, da mesma forma que um capacitor de placas paralelas fornece uma forma prática de criar um campo elétrico uniforme conhecido. Estes campos têm importantes aplicações para experimentos.

28 Campo Magnético de um Toróide O toróide pode ser considerado como um solenóide que foi encurvado em forma de um círculo, assumindo a forma da câmara de ar de um pneu. O módulo do campo magnético B criado em seus pontos interiores (dentro do tubo 0iN em forma de pneu) é dado por B. 2 r Onde: i é a corrente nos enrolamentos do toróide N é o número total de voltas r é a distância do ponto até o centro do toróide O campo magnético no interior de um toróide ou de um solenóide pode ser dado por outra regra da mão direita: envolva o toróide (ou solenóide) com os quatro dedos da mão direita, curvados no sentido da corrente nos enrolamentos; o seu dedo polegar estendido aponta no sentido do campo magnético. O campo magnético é nulo em pontos no exterior de um toróide ideal (como se o toróide fosse feito de um solenóide ideal). Força magnética entre dois fios retos e paralelos percorridos por correntes elétricas Dois fios longos e paralelos, percorridos por correntes elétricas, exercem forças um sobre o outro. Considere dois fios percorridos pelas correntes i a e i b, separados por uma distância d.

29 A força que o fio percorrido por i a exerce sobre o comprimento L do outro é dado por F i LB b b a O campo magnético criado por este fio, a uma distância d (posição do outro fio), é igual a: B a oa i 2 d Substituindo esta equação na equação da força temos que, oa i Fb ib LBa ibl 2 d oliaib F 2 d Representando as forças que atuam em cada fio, quando as correntes forem de sentidos opostos ou de mesmo sentido, podemos verificar que: Quando as correntes forem no mesmo sentindo os fios irão se atrair. Caso as correntes tenham sentidos opostos os fios irão se repelir. E X E R C Í C I O 29. Topógrafo está usando uma bússola a 6m abaixo de uma linha de transmissão na qual existe uma corrente constante de 100 A. (a) Qual é o valor do campo magnético no local da bússola em virtude da linha de transmissão? (b) Isso irá interferir seriamente

30 na leitura da bússola? O componente horizontal do campo magnético da Terra no local é de 20 μt. R:a) 3,33x10-6 T; b)sim. 30. Um fio retilíneo longo transporta uma corrente de 50 A horizontalmente para a direita. Um elétron está se movendo a uma velocidade de 1, m/s ao passar a 5 cm deste fio. Que força atuará sobre o elétron se a sua velocidade estiver orientada (a) verticalmente para cima e (b) horizontalmente para a direita? 31. Na figura abaixo estão representados dois fios retos e longos, percorridos pelas correntes elétricas i 1 e i 2. Considerando o meio, o vácuo, determine o módulo, a direção e o sentido do campo magnético resultante no ponto P. R: 1,0x10-5 T i 1 = 3A i 2 = 4A P 2 cm 4 cm 32. Duas espiras circulares, concêntricas e coplanares, de raios R 1 = 6 cm e R 2 = 24 cm são percorridas por correntes elétricas i 1 e i 2 respectivamente. R: a) i 2 = 4 i ; b) antihorário a) Determine a relação entre i 1 e i 2, sabendo-se que o campo magnético resultante no centro das espiras é nulo. b) Se i 1 tem sentido horário, qual o sentido de i Duas bobinas (solenoides 1 e 2), cada uma com 100 espiras e cujos comprimentos são L 1 = 20cm e L 2 = 40cm, são ligadas em série aos polos de uma bateria. R: a) igual ; b) maior c) B 2 = 3x10-3 T a) A corrente que passa na bobina (1) é maior, menor ou igual àquela que passa na bobina (2)? b) O campo magnético B 1 no interior da bobina (1), é maior, menor ou igual ao campo magnético B 2 no interior da bobina (2)? c) Sabendo-se que B 1 = 6, T, qual é o valor de B 2?

31 34. Módulo do campo magnético a 88,0 cm do eixo de um fio retilíneo longo é 7,3 T. Calcule o valor da corrente que passa no fio. R: 32,12 A 35. Um fio retilíneo longo transportando uma corrente de 100 A é colocado num campo magnético externo uniforme de 5,0 mt como está representado na figura abaixo. Localize os pontos onde o campo magnético resultante é zero. R: nos pontos sobre uma reta a m abaixo do fio. 36. Dois fios longos e paralelos estão separados uma distância de 8,0 cm. Que correntes de mesma intensidade devem passar pelos fios para que o campo magnético a meia distância entre eles tenha módulo igual a 300 μt? R: 30A em sentidos opostos 37. Dois fios, retilíneos e longos, separados por 0,75 cm estão perpendiculares ao plano da página, como mostra a figura abaixo. O fio 1 transporta uma corrente de 6,5 A para dentro da página. Qual deve ser a corrente (intensidade e sentido) no fio 2 para que o campo magnético resultante no ponto P seja zero? R: 4,33 A p/ fora da página. 38. Dois fios longos e paralelos, separados por uma distância d, transportam correntes i e 3i no mesmo sentido. Localize o ponto ou os pontos em que seus campos magnéticos se cancelam.

32 R: nos pontos sobre uma reta, entre os fios, a uma distância d/4 do fio que transporta a corrente i. 39. Na figura abaixo dois arcos de circunferência têm raios R 2 = 7,80 cm e R 1 = 3,15 cm, submetem um ãngulo θ = 180 o, conduzem uma corrente i = 0,281 A e têm o mesmo centro de curvatura C. determine (a) o módulo e (b) o sentido (para dentro ou para fora do papel) do campo magnético no ponto C 40. Na figura abaixo, um fio é formado por uma semicircunferência de raio R = 9,26 cm e dois segmentos retilíneos (radiais) de comprimento L = 13,12 cm cada um. A corrente no fio é i = 34,8 ma. Determine (a) o módulo e (b) o sentido (para dentro ou para fora do papel) do campo magnético no centro de curvatura C da semicircunferência. 41. Na figura abaixo um fio retilíneo longo conduz uma corrente i 1 = 30,0 A e uma espira retangular conduz uma corrente i 2 = 20,0 A. Suponha que a = 1,00 cm e b = 8,00 cm e L = 30,0 cm. Em ermos dos vetores unitários, qual é a força a que está submetida a espira? : 3,2 10 R x N j 3 ˆ 42. Os oito fio da figura abaixo conduzem correntes iguais de 2,0 A para dentro ou para fora do papel. Duas curvas estão indicadas para a integral de linha o valor da integral (a) para a curva 1; (b) para a curva 2. R : a)2 o b)0 B d s. Determine

33 43. A figura abaixo mostra um seção reta de um fio cilíndrico longo de raio a = 2,00 cm que conduz uma corrente uniforme de 170 A. determine o módulo do campo magnético produzido pela corrente a uma distância do eixo do fio igual a (a) 0; (b) 1,00 cm; (c) 2,00 cm (superfície do fio); (d) 4,00 cm. 44. A figura abaixo mostra uma seção reta de um condutor cilíndrico oco de raios a e b que conduz uma corrente i uniformemente distribuída. (a) mostre que, no intervalo b < r < a, o módulo B(r) do campo elétrico a uma distância r do eixo central do condutor é dado por B 2 i o r b 2 2 a b r 2 2. (b) mostre que, para r = a, a equação do item (a) fornece o módulo B do campo magnético na superfície do condutor; para r = b, o campo magnético é zero; para b= 0, a equação fornece o módulo do campo magnético no interior de um condutor cilíndrico maciço de rio a. FORÇA ELETROMOTRIZ INDUZIDA Desde que Oersted, em 1820, descobriu que uma corrente elétrica gera um campo magnético, a simetria das relações entre o magnetismo e a eletricidade levou os físicos a acreditar na proposição inversa: se a corrente elétrica num condutor gera um campo

34 magnético então um campo magnético deve gerar uma corrente elétrica. A questão era saber como isso poderia ser feito, o que acabou sendo descoberto por Faraday, em A produção de corrente elétrica por campo magnético é chamada de indução eletromagnética e a corrente elétrica de corrente induzida. No exercício abaixo, temos uma maneira bem simples de gerar uma força eletromotriz e uma corrente induzida. E X E R C Í C I O 45. Considere uma barra metálica C D deslocando-se com velocidade v, dentro de um campo magnético B, como mostra a figura abaixo: a. Qual é o sentido da força magnética que atua nos elétrons livres da barra? b. Então, diga qual das extremidades da barra ficará eletrizada positivamente e qual ficará eletrizada negativamente? c. Ligando-se C e D por um fio condutor, como mostra a figura abaixo, represente o sentido da corrente induzida neste fio. D B F v C R: a) C para D b) C positiva e D negativa c) CFD 46. No exercício anterior, suponha que fosse interrompido o movimento da barra CD. A separação das cargas na barra permaneceria? Explique. R: não, a força magnética seria nula

35 Fluxo do campo magnético Para entender o Fenômeno da Indução eletromagnética é necessário introduzir o conceito de fluxo de campo magnético. Semelhante ao conceito de fluxo do campo elétrico (estudado na lei de Gauss), o fluxo do campo magnético está relacionado ao número de linhas de campo magnético que atravessam determinada superfície. Na Figura abaixo está representada uma espira retangular envolvendo uma área A, colocada em uma região onde existe um campo magnético B. O fluxo magnético através desta espira é B. d A B Como no estudo do fluxo do campo elétrico, o vetor da é perpendicular a uma área diferencial da. da B A unidade de fluxo magnético, no SI é o tesla-metro quadrado, que é chamado e weber (abreviado por Wb) 1 weber = 1wb = 1T.m 2 Para o caso particular onde o campo B tem o mesmo módulo por toda uma superfície de área A e que o ângulo seja constante, temos que: B BAcos onde: B - é o fluxo magnético através da superfície de área A - é o ângulo entre da (normal à superfície) e B (campo magnético uniforme)

36 Lei de Faraday da Indução Eletromagnética Quando ocorrer uma variação do fluxo magnético através de uma espira condutora, aparece nesta espira uma força eletromotriz induzida. A intensidade desta fem é igual à taxa de variação do fluxo magnético através dessa espira. d dt B B Para uma taxa de variação constante no fluxo ( constante), temos que: t Se variarmos o fluxo magnético através de uma bobina de N voltas, enroladas de forma compacta de modo que o mesmo fluxo magnético B atravesse todas as voltas, a fem total induzida na bobina é: NdB dt Apresentamos a seguir algumas maneiras, por meio das quais podemos variar o fluxo magnético que atravessa uma bobina. 1. Variando a intensidade B do campo magnético no interior da bobina. 2. Variando a área da bobina, ou a porção dessa área que esteja dentro de uma região onde existe campo magnético (por exemplo, deslocando a bobina para dentro ou para fora do campo). 3. Variando o ângulo entre B e da (por exemplo, girando a bobina de modo que o campo B esteja primeiramente perpendicular ao plano da bobina e depois esteja paralelo a esse plano). No esquema representado na figura abaixo, quando o imã em forma de barra se aproximar ou se afastar da espira, o fluxo magnético através da espira sofre uma variação e, portanto aparece uma corrente induzida na espira. No entanto, se o imã permanecer em repouso em relação à espira, não haverá variação no fluxo magnético e, portanto não teremos corrente induzida na espira.

37 LEI DE LENZ O sinal negativo na lei de Faraday indica que a força eletromotriz se opõe à variação do fluxo magnético. Este sinal é frequentemente omitido, pois geralmente esta lei é usada para se obter o módulo da força eletromotriz induzida. Para determinar o sentido da corrente induzida podemos usar uma regra proposta por Heinrich Friedrich Lenz, a qual é conhecida como lei de Lenz. A lei de Lenz pode ser enunciada da seguinte maneira: A corrente induzida em uma espira tem um sentido tal que o campo magnético produzido por esta corrente se opõe à variação do fluxo magnético através da espira. Exemplo: Vamos usar o caso em que uma espira retangular passa por uma região onde existe um campo magnético uniforme para aplicar a lei de Lenz. Considerando que na região limitada pelo retângulo tracejado tenha um campo uniforme B, e que fora desta região não tenha campo magnético, represente o sentido da corrente induzida, na espira, em cada caso, ou seja, quando a espira penetra no campo magnético, quando ela está completamente imersa neste campo e quando ela está saindo da região onde existe o campo magnético: R B B B v E X E R C Í C I O 47. Qual é o sentido da corrente induzida no amperímetro da bobina Y representada na figura abaixo (a) quando a bobina Y é movida na direção da bobina X e (b) quando a

38 corrente na bobina X é diminuída, sem qualquer alteração na posição relativa das bobinas? R: a) esquerda b) direita AMPERÍMETRO 48. Um ímã, polo norte voltado para um anel de cobre, é afastado do anel como mostra a figura abaixo. Na parte do anel mais afastada do leitor, em que sentido aponta a corrente? R: Direita 49. Uma espira circular é deslocada com velocidade constante através de regiões onde campos magnéticos uniformes de módulos iguais estão orientados para fora ou para dentro da página, como mostra a figura abaixo. Para quais das sete posições mostradas a corrente induzida será (a) horária, (b) anti-horária e (c) zero? R: a) 2 e 6 b) 4 c) 1,3,5 e 7

39 50. A resistência R no lado esquerdo do circuito da figura abaixo está sendo aumentada numa taxa constante. Qual é o sentido da corrente induzida na espira do lado direito do circuito? R: Horário 51. Considere uma barra metálica CD deslocando-se com velocidade constante v, numa região onde existe um campo magnético uniforme B. A barra desloca-se apoiando em dois trilhos, também metálicos, separados de uma distância L, como mostra a figura abaixo. Usando a lei de Faraday, mostre que o valor da fem induzida na barra é dado por: = L B v. C L B v D 52. Na figura abaixo o segmento retilíneo de fio está se movendo para a direita com velocidade constante v. Uma corrente induzida aparece no sentido mostrado. Qual deve ser o sentido do campo magnético uniforme (suposto constante e perpendicular à página) na região A? R: entrando na página 53. Uma antena circular de televisão para UHF (frequência ultra-elevada) tem um diâmetro de 11 cm. O campo magnético de um sinal de TV é normal ao plano da

40 antena e, num dado instante, seu módulo está variando na taxa de 0,16 T/s. O campo é uniforme. Qual é a fem na antena? R: 1,5x10-3 V 54. O fluxo magnético através da espira mostrada na figura abaixo cresce com o tempo de acordo com a relação onde B t t 2 6,0 7,0, B é dado em miliwebers e t em segundos. (a) Qual é o módulo da fem induzida na espira quando t = 2,0s? (b) Qual é o sentido da corrente em R? R: a) 31mV ; b) esquerda 55. A figura abaixo mostra uma barra condutora de comprimento L sendo puxada ao longo de trilhos condutores horizontais, sem atrito, com um velocidade constante v. Um campo magnético vertical e uniforme B, preenche a região onde a barra se move. Suponha que L = 10 cm, v = 5,0 m/s e B = 1,2 T (a) Qual é a fem induzida na barra? (b) Qual é a corrente na espira condutora? Considere que a resistência da barra seja 0,40 e que a resistência dos trilhos seja desprezível. (c) Com que taxa a energia térmica está sendo gerada na barra? (d) Que força um agente externo deve exercer sobre a barra para manter seu movimento? (e) Com que taxa este agente externo realiza trabalho sobre a barra? Compare esta resposta com a do item (c). R: a) 0,6V; b) 1,5ª; c) 0,9W; d) 0,18N; e) 0,9W

41 56. Uma barra metálica está se movendo com velocidade constante ao longo de dois trilhos metálicos paralelos, ligados por tira metálica numa das extremidades, como mostra a figura do exercício 55. Um campo magnético B = 0,350T aponta para fora da página. (a) Sabendo-se que os trilhos estão separados em 25,0 cm e a velocidade escalar da barra é 55,0 cm/s, que fem é gerada? (b) sabendo-se que a resistência elétrica da barra vale 18,0 e que a resistência dos trilhos é desprezível, qual é a corrente na barra? R: a) 4,8x10-2 V b) 2,67 x 10-3 A

42 INDUTORES Assim como os capacitores podem ser usados para produzir um campo elétrico numa determinada região os indutores podem ser usados para produzir um campo magnético. O tipo mais simples de indutor é um solenoide longo. Um indutor pode ser representado pelo símbolo da figura abaixo. Indutância Quando uma corrente i percorre as N espiras de um indutor (por exemplo, um solenóide), um fluxo magnético é produzido, pela corrente elétrica, no interior do indutor. A indutância L do indutor é dada por: N L i Unidade de indutância no SI. 1 T m 2 / A = 1 henry (H) Indutância de solenóide A indutância L por unidade de comprimento l, na região central, de um solenóide longo, de seção transversal de área A e com n espiras por unidade de comprimento, é dada por (ver demonstração no livro texto): L 1 2 0nA Observações: Para um solenóide de comprimento muito maior do que o seu raio, a equação acima fornece a sua indutância com uma boa aproximação. Assim como a capacitância de um capacitor a indutância de um indutor depende apenas das características (forma geométrica) deste dispositivo.

43 EXERCÍCIOS 57. Mostre que a indutância por unidade de comprimento próximo a região central de um solenóide longo é dada por: Auto indução L l 2 0nA Quando houver uma variação do fluxo magnético em um circuito, mesmo uma variação do fluxo magnético produzido pela corrente fluindo no próprio circuito, será induzido uma força eletromotriz no circuito. As forças eletromotrizes geradas por correntes do próprio circuito são chamadas de força eletromotriz auto-induzidas. Então uma fem auto-induzida L aparece numa bobina quando a corrente nesta bobina estiver variando. Aplicando a lei da indução de Faraday podemos encontrar a relação entre está fem auto-induzida e a taxa de variação da corrente elétrica. N L N il i L dn ( ) dt ( di) L L dt onde: ( di) dt é a taxa de variação da corrente elétrica com o tempo. Observação: O sentido da fem auto-induzida pode ser encontrado usando a lei de Lenz. Esta fem atua num sentido tal que ela se opõe à variação do fluxo magnético que a produz. O sentido de um campo elétrico auto-induzido (não eletrostático) pode ser encontrado pela lei de Lenz. Considerando-se a fonte deste campo e, portanto, a fem a ele associado, como a corrente variável no condutor. Se a corrente estiver aumentando, o sentido do campo induzido será oposto ao desta corrente. Se a corrente diminui, o campo induzido terá o mesmo sentido da corrente. Então, o campo induzido se opõe à variação da corrente e não a corrente em si.

44 EXERCÍCIOS 58. A indutância de uma bobina compacta de 400 espiras vale 8,0 mh. Calcule o fluxo magnético através da bobina quando a corrente é de 5,0 ma. R : 1x10 7 Wb 59. Um solenóide é enrolado com uma única camada de fio de cobre isolado (diâmetro = 2,5 mm). O solenóide tem 4,0 cm de diâmetro, um comprimento de 2,0 m e 800 espiras. Qual é a indutância por metro de comprimento, na região central do solenóide? Suponha que as espiras adjacentes se toquem e que a espessura do isolamento seja desprezível.r : 2,52x10 4 H / m. 60. Num dado instante, a corrente e a fem induzida num indutor têm os sentidos indicados na Fig.01. (a) A corrente está crescendo ou decrescendo? (b) A fem vale 17 V e a taxa de variação da corrente é 25 ka/s; qual é o valor da indutância? R: a) decrescente ; b) 6,8x10 4 H E i 61. Indutores em Série. Dois indutores L 1 e L 2 estão ligados em série e separados por uma distância grande. (a) Mostre que a indutância equivalente é dada por L eq = L 1 + L 2 (b) porque a separação entre os indutores tem de ser grande para que a relação acima seja válida? (c) Qual é a generalização do item (a) para N indutores em série? R: b) para que um não induza corrente no outro. 62. Indutores em paralelo. Dois indutores L 1 e L 2 estão ligados em paralelo e separados por uma distância grande. (a) Mostre que a indutância equivalente é dada por

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA Professor: Renato Medeiros EXERCÍCIOS NOTA DE AULA IV Goiânia - 2014 EXERCÍCIOS 1. Uma partícula eletrizada positivamente é

Leia mais

3º Bimestre. Física I. Autor: Geraldo Velazquez

3º Bimestre. Física I. Autor: Geraldo Velazquez 3º Bimestre Autor: Geraldo Velazquez SUMÁRIO UNIDADE III... 4 Capítulo 3: Eletromagnetismo... 4 3.1 Introdução... 4 3.2 Campo Magnético (B)... 6 3.3 Campo Magnético Gerado Por Corrente... 7 3.4 Campo

Leia mais

MAGNETISMO - ELETROMAGNETISMO

MAGNETISMO - ELETROMAGNETISMO MAGNETISMO - ELETROMAGNETISMO MAGNETISMO Estuda os corpos que apresentam a propriedade de atrair o ferro. Estes corpos são denominados imãs ou magnetos. Quando suspendemos um imã deixando que ele gire

Leia mais

Eletricidade e Magnetismo - Lista de Exercícios IV CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA

Eletricidade e Magnetismo - Lista de Exercícios IV CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA Eletricidade e Magnetismo - Lista de Exercícios IV CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA Campo Magnético (Fundamentos de Física Vol.3 Halliday, Resnick e Walker, Cap.

Leia mais

Cap. 7 - Fontes de Campo Magnético

Cap. 7 - Fontes de Campo Magnético Universidade Federal do Rio de Janeiro Instituto de Física Física III 2014/2 Cap. 7 - Fontes de Campo Magnético Prof. Elvis Soares Nesse capítulo, exploramos a origem do campo magnético - cargas em movimento.

Leia mais

Eletromagnetismo: imãs, bobinas e campo magnético

Eletromagnetismo: imãs, bobinas e campo magnético Eletromagnetismo: imãs, bobinas e campo magnético 22 Eletromagnetismo: imãs, bobinas e campo magnético 23 Linhas do campo magnético O mapeamento do campo magnético produzido por um imã, pode ser feito

Leia mais

EXPERIMENTO DE OERSTED 313EE 1 TEORIA

EXPERIMENTO DE OERSTED 313EE 1 TEORIA EXPERIMENTO DE OERSTED 313EE 1 TEORIA 1. UM BREVE HISTÓRICO No século XIX, o período compreendido entre os anos de 1819 e 1831 foi dos mais férteis em descobertas no campo da eletricidade. Os fenômenos

Leia mais

LISTA DE EXERCÍCIOS CAMPO MAGNÉTICO

LISTA DE EXERCÍCIOS CAMPO MAGNÉTICO 1. (Fuvest 96) A figura esquematiza um ímã permanente, em forma de cruz de pequena espessura, e oito pequenas bússolas, colocadas sobre uma mesa. As letras N e S representam, respectivamente, pólos norte

Leia mais

Deverão ser apresentados os cálculos e/ou as justificativas das respostas.

Deverão ser apresentados os cálculos e/ou as justificativas das respostas. Ensino Médio Unidade Parque Atheneu Professor (a): Pedro Paulo Aluno (a): Série: 2ª Data: / / 2015. LISTA DE FÍSICA I Deverão ser apresentados os cálculos e/ou as justificativas das respostas. 1) (FAMERP

Leia mais

LISTA 10 INDUÇÃO ELETROMAGNÉTICA

LISTA 10 INDUÇÃO ELETROMAGNÉTICA 1. (Ufmg 95) Esta figura mostra uma espira retangular, de lados a = 0,20 m e b = 0,50 m, sendo empurrada, com velocidade constante v = 0,50 m/s, para uma região onde existe um campo magnético uniforme

Leia mais

Lista de Exercícios Física 2 - Prof. Mãozinha Tarefa 15 Eletromagnetismo. Resumo de fórmulas. Fórmulas para cargas elétricas

Lista de Exercícios Física 2 - Prof. Mãozinha Tarefa 15 Eletromagnetismo. Resumo de fórmulas. Fórmulas para cargas elétricas Resumo de fórmulas Força magnética em uma carga elétrica em movimento F = q. v. B. senθ Fórmulas para cargas elétricas Raio de uma trajetória circular gerada por uma partícula em um campo magnético R =

Leia mais

FONTES DE CAMPO MAGNÉTICO. Caracterizar e mostrar o campo magnético produzido por uma carga a velocidade constante.

FONTES DE CAMPO MAGNÉTICO. Caracterizar e mostrar o campo magnético produzido por uma carga a velocidade constante. FONTES DE CAMPO MAGNÉTICO META Aula 8 Caracterizar e mostrar o campo magnético produzido por uma carga a velocidade constante. Mostrar a lei da circulação de Ampère-Laplace e a lei de Biot-Savart. Estudar

Leia mais

Exercícios de Física Eletromagnetismo

Exercícios de Física Eletromagnetismo Exercícios de Física Eletromagnetismo 1-Considerando as propriedades dos ímãs, assinale a alternativa correta. a) Quando temos dois ímãs, podemos afirmar que seus pólos magnéticos de mesmo nome (norte

Leia mais

Exercícios de Física Eletromagnetismo

Exercícios de Física Eletromagnetismo Exercícios de Física Eletromagnetismo 1-Considerando as propriedades dos ímãs, assinale a alternativa correta. a) Quando temos dois ímãs, podemos afirmar que seus pólos magnéticos de mesmo nome (norte

Leia mais

Exercícios Eletromagnetismo

Exercícios Eletromagnetismo Exercícios Eletromagnetismo 1-Considerando as propriedades dos ímãs, assinale a alternativa correta. a) Quando temos dois ímãs, podemos afirmar que seus pólos magnéticos de mesmo nome (norte e norte, ou

Leia mais

PARADOXO DA REALIZAÇÃO DE TRABALHO PELA FORÇA MAGNÉTICA

PARADOXO DA REALIZAÇÃO DE TRABALHO PELA FORÇA MAGNÉTICA PARADOXO DA REALIZAÇÃO DE TRABALHO PELA FORÇA MAGNÉTICA Marcelo da S. VIEIRA 1, Elder Eldervitch C. de OLIVEIRA 2, Pedro Carlos de Assis JÚNIOR 3,Christianne Vitor da SILVA 4, Félix Miguel de Oliveira

Leia mais

INDUÇÃO ELETROMAGNÉTICA

INDUÇÃO ELETROMAGNÉTICA INDUÇÃO ELETROMAGNÉTICA Desde 1820 quando Oersted descobriu que quando uma corrente elétrica percorria um condutor gerando em torno deste um campo magnético, que uma pergunta surgiu, seria possível que

Leia mais

1. Descobertas de Oersted

1. Descobertas de Oersted Parte II - ELETROMAGNETISMO 1. Descobertas de Oersted Até o início do século XIX acreditava-se que não existia relação entre os fenômenos elétricos e magnéticos. Em 1819, um professor e físico dinamarquês

Leia mais

EXPERIMENTO 11: DEMONSTRAÇÕES SOBRE ELETROMAGNETISMO. Observar, descrever e explicar algumas demonstrações de eletromagnetismo.

EXPERIMENTO 11: DEMONSTRAÇÕES SOBRE ELETROMAGNETISMO. Observar, descrever e explicar algumas demonstrações de eletromagnetismo. EXPERIMENTO 11: DEMONSTRAÇÕES SOBRE ELETROMAGNETISMO 11.1 OBJETIVOS Observar, descrever e explicar algumas demonstrações de eletromagnetismo. 11.2 INTRODUÇÃO Força de Lorentz Do ponto de vista formal,

Leia mais

Nome 3ª série Nº Conceito

Nome 3ª série Nº Conceito Prova Recuperação do 2º Semestre (Novembro) Física Prof. Reinaldo Nome 3ª série Nº Conceito Nº de questões 14 Tempo 100 min Data 13/11/15 Não é permitido o uso de calculadora. 0 = 4..10 7 T.m/A B = 0.i

Leia mais

Força Eletromotriz Induzida

Força Eletromotriz Induzida Força Eletromotriz Induzida 1. (Uerj 2013) Um transformador que fornece energia elétrica a um computador está conectado a uma rede elétrica de tensão eficaz igual a 120 V. A tensão eficaz no enrolamento

Leia mais

Lista de Eletromagnetismo. 1 Analise as afirmativas seguintes e marque a opção correta.

Lista de Eletromagnetismo. 1 Analise as afirmativas seguintes e marque a opção correta. Lista de Eletromagnetismo 1 Analise as afirmativas seguintes e marque a opção correta. I. Se duas barras de ferro sempre se atraem, podemos concluir que uma das duas não está magnetizada. II. Para conseguirmos

Leia mais

Microfone e altifalante. Conversão de um sinal sonoro num sinal elétrico. sinal elétrico num sinal sonoro.

Microfone e altifalante. Conversão de um sinal sonoro num sinal elétrico. sinal elétrico num sinal sonoro. Microfone e altifalante Conversão de um sinal sonoro num sinal elétrico. Conversão de um sinal elétrico num sinal sonoro. O funcionamento dos microfones e dos altifalantes baseia-se na: - acústica; - no

Leia mais

Considerando a polaridade do ímã, as linhas de indução magnética criadas por ele e o sentido da corrente elétrica induzida no tubo condutor de cobre

Considerando a polaridade do ímã, as linhas de indução magnética criadas por ele e o sentido da corrente elétrica induzida no tubo condutor de cobre 1. Em uma aula de laboratório, os estudantes foram divididos em dois grupos. O grupo A fez experimentos com o objetivo de desenhar linhas de campo elétrico e magnético. Os desenhos feitos estão apresentados

Leia mais

E L E T R O M AG N E T I S M O. Professor Alex Siqueira

E L E T R O M AG N E T I S M O. Professor Alex Siqueira E L E T R O M AG N E T I S M O Professor Alex Siqueira Equipe de Física UP 2015 DESCOBERTA DOS IMÃS Há muito tempo se observou que certos corpos tem a propriedade de atrair o ferro. Esses corpos foram

Leia mais

TEXTO PARA A PRÓXIMA QUESTÃO (Ufpe) Constantes físicas necessárias para a solução dos problemas:

TEXTO PARA A PRÓXIMA QUESTÃO (Ufpe) Constantes físicas necessárias para a solução dos problemas: TEXTO PARA A PRÓXIMA QUESTÃO (Ufpe) Constantes físicas necessárias para a solução dos problemas: aceleração da gravidade: 10 m/s constante de Planck: 6,6 x 10 J.s 3. (Fuvest) A figura adiante mostra, num

Leia mais

professordanilo.com Considerando a intensidade da aceleração da gravidade de tração em cada corda é de g 10 m / s, a intensidade da força

professordanilo.com Considerando a intensidade da aceleração da gravidade de tração em cada corda é de g 10 m / s, a intensidade da força 1. (Espcex (Aman) 015) Em uma espira condutora triangular equilátera, rígida e homogênea, com lado medindo 18 cm e massa igual a 4,0 g, circula uma corrente elétrica i de 6,0 A, no sentido anti-horário.

Leia mais

Magnetismo: Campo Magnético

Magnetismo: Campo Magnético INSTITUTO FEDERAL DE EDUCAÇÃO CIÊNCIA E TECNOLOGIA PARAÍBA Campus Princesa Isabel Magnetismo: Campo Magnético Disciplina: Física III Professor: Carlos Alberto Aurora Austral Polo Sul Aurora Boreal Polo

Leia mais

Força Magnética. www.soexatas.com Página 1

Força Magnética. www.soexatas.com Página 1 Força Magnética 1. (Fuvest 2014) Partículas com carga elétrica positiva penetram em uma câmara em vácuo, onde há, em todo seu interior, um campo elétrico de módulo E e um campo magnético de módulo B, ambos

Leia mais

Experimento 3 # Professor: Data: / / Nome: RA:

Experimento 3 # Professor: Data: / / Nome: RA: BC-0209 Fenômenos Eletromagnéticos Experimento 3 # Campo Magnético de Correntes Elétricas Professor: Data: / / Introdução e Objetivos Relatos históricos indicam que a bússola já era um instrumento utilizado

Leia mais

Lista de Eletromagnetismo - Tubarão. amostra em relação à localização dos. 1. Num laboratório de biofísica, um. lagos de onde vieram.

Lista de Eletromagnetismo - Tubarão. amostra em relação à localização dos. 1. Num laboratório de biofísica, um. lagos de onde vieram. 1. Num laboratório de biofísica, um pesquisador realiza uma experiência com "bactérias magnéticas", bactérias que tem pequenos ímãs no seu interior. Com auxílio desses imãs, amostra em relação à localização

Leia mais

Hoje estou elétrico!

Hoje estou elétrico! A U A UL LA Hoje estou elétrico! Ernesto, observado por Roberto, tinha acabado de construir um vetor com um pedaço de papel, um fio de meia, um canudo e um pedacinho de folha de alumínio. Enquanto testava

Leia mais

Engenharias, Física Elétrica, prof. Simões. Eletromagnetismo. Campo magnético produzido em um fio percorrido por uma corrente elétrica. Exercícios 1.

Engenharias, Física Elétrica, prof. Simões. Eletromagnetismo. Campo magnético produzido em um fio percorrido por uma corrente elétrica. Exercícios 1. Engenharias, Física Elétrica, prof. Simões Eletromagnetismo. Campo magnético produzido em um fio percorrido por uma corrente elétrica. Exercícios 1. 1.(EEM-SP) É dado um fio metálico reto, muito longo,

Leia mais

Física II Curso Licenciatura em Química Selma Rozane 2015.2

Física II Curso Licenciatura em Química Selma Rozane 2015.2 Física II Curso Licenciatura em Química Selma Rozane 2015.2 INTRODUÇÃO A palavra magnetismo tem sua origem na Grécia Antiga, porque foi em Magnésia, região da Ásia Menor (Turquia), que se observou um minério

Leia mais

FÍSICA 3 Campo Magnético. Prof. Alexandre A. P. Pohl, DAELN, Câmpus Curitiba

FÍSICA 3 Campo Magnético. Prof. Alexandre A. P. Pohl, DAELN, Câmpus Curitiba FÍSICA 3 Campo Magnético Prof. Alexandre A. P. Pohl, DAELN, Câmpus Curitiba EMENTA Carga Elétrica Campo Elétrico Lei de Gauss Potencial Elétrico Capacitância Corrente e resistência Circuitos Elétricos

Leia mais

DATA: / / 2014 ETAPA: 3ª VALOR: 20,0 pontos NOTA:

DATA: / / 2014 ETAPA: 3ª VALOR: 20,0 pontos NOTA: DISCIPLINA: Física PROFESSORES: Fabiano Vasconcelos Dias DATA: / / 2014 ETAPA: 3ª VALOR: 20,0 pontos NOTA: NOME COMPLETO: ASSUNTO: TRABALHO DE RECUPERAÇÃO FINAL SÉRIE: 3ª SÉRIE EM TURMA: Nº: I N S T R

Leia mais

APOSTILA TECNOLOGIA MECANICA

APOSTILA TECNOLOGIA MECANICA FACULDADE DE TECNOLOGIA DE POMPEIA CURSO TECNOLOGIA EM MECANIZAÇÃO EM AGRICULTURA DE PRECISÃO APOSTILA TECNOLOGIA MECANICA Autor: Carlos Safreire Daniel Ramos Leandro Ferneta Lorival Panuto Patrícia de

Leia mais

Aluno(a): Nº. Professor: Fabrízio Gentil Série: 3 o ano Disciplina: Física - Magnetismo

Aluno(a): Nº. Professor: Fabrízio Gentil Série: 3 o ano Disciplina: Física - Magnetismo Lista de Exercícios Pré Universitário Uni-Anhanguera Aluno(a): Nº. Professor: Fabrízio Gentil Série: 3 o ano Disciplina: Física - Magnetismo 01 - (PUC SP) Na figura abaixo temos a representação de dois

Leia mais

Eletricidade e Magnetismo - Lista de Exercícios I CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA

Eletricidade e Magnetismo - Lista de Exercícios I CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA Eletricidade e Magnetismo - Lista de Exercícios I CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA Carga Elétrica e Lei de Coulomb 1. Consideremos o ponto P no centro de um quadrado

Leia mais

Campo Magnético gerado por um condutor (fio) reto

Campo Magnético gerado por um condutor (fio) reto Campo Magnético gerado por um condutor (fio) reto 1. (Unesp 2015) Dois fios longos e retilíneos, 1 e 2, são dispostos no vácuo, fixos e paralelos um ao outro, em uma direção perpendicular ao plano da folha.

Leia mais

Bacharelado Engenharia Civil

Bacharelado Engenharia Civil Bacharelado Engenharia Civil Disciplina: Física Geral e Experimental I Força e Movimento- Leis de Newton Prof.a: Msd. Érica Muniz Forças são as causas das modificações no movimento. Seu conhecimento permite

Leia mais

Fortaleza Ceará TD DE FÍSICA ENEM PROF. ADRIANO OLIVEIRA/DATA: 30/08/2014

Fortaleza Ceará TD DE FÍSICA ENEM PROF. ADRIANO OLIVEIRA/DATA: 30/08/2014 TD DE FÍSICA ENEM PROF. ADRIANO OLIVEIRA/DATA: 30/08/2014 1. Uma ave marinha costuma mergulhar de uma altura de 20 m para buscar alimento no mar. Suponha que um desses mergulhos tenha sido feito em sentido

Leia mais

Força Magnética (Força de Lorentz) sobre Carga Lançada em Campo Magnético

Força Magnética (Força de Lorentz) sobre Carga Lançada em Campo Magnético PROESSOR Edney Melo ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO: orça Magnética (orça de Lorentz) sobre Carga Lançada em Campo Magnético magnética, a força magnética tem o sentido de um tapa dado com

Leia mais

TD DE FÍSICA 2 Questões de Potencial elétrico e Trabalho da Força Elétrica PROF.: João Vitor

TD DE FÍSICA 2 Questões de Potencial elétrico e Trabalho da Força Elétrica PROF.: João Vitor 1. (Ita) Considere as afirmações a seguir: I. Em equilíbrio eletrostático, uma superfície metálica é equipotencial. II. Um objeto eletrostaticamente carregado induz uma carga uniformemente distribuída

Leia mais

V = 0,30. 0,20. 0,50 (m 3 ) = 0,030m 3. b) A pressão exercida pelo bloco sobre a superfície da mesa é dada por: P 75. 10 p = = (N/m 2 ) A 0,20.

V = 0,30. 0,20. 0,50 (m 3 ) = 0,030m 3. b) A pressão exercida pelo bloco sobre a superfície da mesa é dada por: P 75. 10 p = = (N/m 2 ) A 0,20. 11 FÍSICA Um bloco de granito com formato de um paralelepípedo retângulo, com altura de 30 cm e base de 20 cm de largura por 50 cm de comprimento, encontra-se em repouso sobre uma superfície plana horizontal.

Leia mais

TC 1 UECE 2012 FASE 2. PROF.: Célio Normando

TC 1 UECE 2012 FASE 2. PROF.: Célio Normando TC 1 UECE 01 FASE PROF.: Célio Normando Conteúdo: Aritmética Ordem de Grandeza 1. Racionalizar o uso da água significa usá-la sem desperdício e considerá-la uma prioridade social e ambiental, para que

Leia mais

RECUPERAÇÃO TURMAS: 2º ANO FÍSICA

RECUPERAÇÃO TURMAS: 2º ANO FÍSICA RECUPERAÇÃO TURMAS: 2º ANO Professor: XERXES DATA: 22 / 11 / 2015 RECUPERAÇÃO FINAL FORÇA ELÉTRICA (LEI DE COULOMB) FÍSICA Para todas as questões, considere a constante eletrostática no vácuo igual a 9.10

Leia mais

TC DE FÍSICA 2 a SÉRIE ENSINO MÉDIO

TC DE FÍSICA 2 a SÉRIE ENSINO MÉDIO TC DE FÍSICA 2 a SÉRIE ENSINO MÉDIO Professor(es): Odair Mateus 14/6/2010 1.Na(s) questão(ões) a seguir, escreva no espaço apropriado a soma dos itens corretos. Sobre os conceitos e aplicações da Eletricidade

Leia mais

CAMPOS MAGNÉTICOS PRODUZIDOS POR CORRENTES

CAMPOS MAGNÉTICOS PRODUZIDOS POR CORRENTES Física (Eletromagnetismo) 1. Lei de iot-savart CAMPOS MAGNÉTICOS PRODUZIDOS POR CORRENTES A lei de iot-savart é uma lei no eletromagnetismo que descreve o vetor indução magnética em termos de magnitude

Leia mais

FÍSICA CADERNO DE QUESTÕES

FÍSICA CADERNO DE QUESTÕES CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES 2015 1 a QUESTÃO Valor: 1,00 Uma mola comprimida por uma deformação x está em contato com um corpo de massa m, que se encontra

Leia mais

TRANSFORMADORES. P = enrolamento do primário S = enrolamento do secundário

TRANSFORMADORES. P = enrolamento do primário S = enrolamento do secundário TRANSFORMADORES Podemos definir o transformador como sendo um dispositivo que transfere energia de um circuito para outro, sem alterar a frequência e sem a necessidade de uma conexão física. Quando existe

Leia mais

Lista 13: Gravitação. Lista 13: Gravitação

Lista 13: Gravitação. Lista 13: Gravitação Lista 13: Gravitação NOME: Matrícula: Turma: Prof. : Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção. iii. Responder a questão

Leia mais

A Equação de Bernoulli

A Equação de Bernoulli Aula 4 A equação de Bernoulli Objetivos O aluno deverá ser capaz de: Descrever a dinâmica de escoamento de um fluido. Deduzir a Equação de Bernoulli. Aplicar a Equação de Bernoulli e a Equação da Continuidade

Leia mais

(a) a aceleração do sistema. (b) as tensões T 1 e T 2 nos fios ligados a m 1 e m 2. Dado: momento de inércia da polia I = MR / 2

(a) a aceleração do sistema. (b) as tensões T 1 e T 2 nos fios ligados a m 1 e m 2. Dado: momento de inércia da polia I = MR / 2 F128-Lista 11 1) Como parte de uma inspeção de manutenção, a turbina de um motor a jato é posta a girar de acordo com o gráfico mostrado na Fig. 15. Quantas revoluções esta turbina realizou durante o teste?

Leia mais

n 1 L 1 n 2 L 2 Supondo que as ondas emergentes podem interferir, é correto afirmar que

n 1 L 1 n 2 L 2 Supondo que as ondas emergentes podem interferir, é correto afirmar que QUESTÃO 29 QUESTÃO 27 Uma escada de massa m está em equilíbrio, encostada em uma parede vertical, como mostra a figura abaixo. Considere nulo o atrito entre a parede e a escada. Sejam µ e o coeficiente

Leia mais

Fundamentos de Máquinas Elétricas

Fundamentos de Máquinas Elétricas Universidade Federal do ABC Engenharia de Instrumentação, Automação e Robótica Fundamentos de Máquinas Elétricas Prof. Dr. José Luis Azcue Puma Ementa e avaliação Introdução ao circuito magnético 1 Ementa

Leia mais

ACÇÃO DOS CAMPOS MAGNÉTICOS SOBRE CARGAS

ACÇÃO DOS CAMPOS MAGNÉTICOS SOBRE CARGAS ACÇÃO DOS CAMPOS MAGNÉTICOS SOBRE CARGAS EM MOVIMENTO E CORRENTES Física 12.º Ano - Um Breve História do Magnetismo Século XII a.c. Chineses Usam a agulha magnética (invenção árabe ou indiana) 800 anos

Leia mais

Cap. 6 - Campo Magnético e Força Magnética

Cap. 6 - Campo Magnético e Força Magnética Universidade Federal do Rio de Janeiro Instituto de Física Física III 2014/2 Cap. 6 - Campo Magnético e Força Magnética Prof. Elvis Soares Nesse capítulo, estudaremos as forças que agem em cargas elétricas

Leia mais

Física: Eletromagnetismo

Física: Eletromagnetismo Física: Eletromagnetismo Questões de treinamento para a banca Cesgranrio elaborada pelo prof. Alex Regis Questão 01 Está(ão) correta(s): Considere as afirmações a seguir a respeito de ímãs. I. Convencionou-se

Leia mais

Os motores de CA podem ser monofásicos ou polifásicos. Nesta unidade, estudaremos os motores monofásicos alimentados por uma única fase de CA.

Os motores de CA podem ser monofásicos ou polifásicos. Nesta unidade, estudaremos os motores monofásicos alimentados por uma única fase de CA. Motores elétricos Os motores de CA podem ser monofásicos ou polifásicos. Nesta unidade, estudaremos os motores monofásicos alimentados por uma única fase de CA. Para melhor entender o funcionamento desse

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 3

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 3 Linhas de Força Mencionamos na aula passada que o físico inglês Michael Faraday (79-867) introduziu o conceito de linha de força para visualizar a interação elétrica entre duas cargas. Para Faraday, as

Leia mais

Curso Wellington Física Magnetismo Prof Hilton Franco

Curso Wellington Física Magnetismo Prof Hilton Franco 1. Um condutor retilíneo de comprimento l percorrido por uma corrente elétrica i é imerso em um campo magnético uniforme B. Na figura a seguir, estão disponibilizadas as seguintes situações I, II, III,

Leia mais

Limalhas de ferro sob ação de um campo magnético (Esquerda). Linhas de campo magnético da Terra (Direita)

Limalhas de ferro sob ação de um campo magnético (Esquerda). Linhas de campo magnético da Terra (Direita) O ampo Magnético Os primeiros registros de campos magnéticos foram feitos pelos gregos quando descobriram a quase 6 anos A.. uma pedra que tinha a propriedade de atrair metais Esta pedra, mais precisamente

Leia mais

Física. Pré Vestibular / / Aluno: Nº: Turma: ENSINO MÉDIO

Física. Pré Vestibular / / Aluno: Nº: Turma: ENSINO MÉDIO Pré Vestibular ísica / / luno: Nº: Turma: LEIS DE NEWTON 01. (TEC daptada) Dois blocos e de massas 10 kg e 20 kg, respectivamente, unidos por um fio de massa desprezível, estão em repouso sobre um plano

Leia mais

www.enemdescomplicado.com.br

www.enemdescomplicado.com.br Exercícios de Física Gravitação Universal 1-A lei da gravitação universal de Newton diz que: a) os corpos se atraem na razão inversa de suas massas e na razão direta do quadrado de suas distâncias. b)

Leia mais

TC 2 UECE 2012 FASE 1 PROF. : Célio Normando

TC 2 UECE 2012 FASE 1 PROF. : Célio Normando TC UECE 01 FASE 1 PROF. : Célio Normando Conteúdo: Cinemática - MRUV 1. Um avião vai decolar em uma pista retilínea. Ele inicia seu movimento na cabeceira da pista com velocidade nula e corre por ela com

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA Professores: Edson Vaz e Renato Medeiros EXERCÍCIOS NOTA DE AULA IV Goiânia - 2013 EXERCÍCIO 1. Usando a regra do determinante,

Leia mais

Refração da Luz Índice de refração absoluto Índice de refração relativo Leis da refração Reflexão total da luz Lentes Esféricas Vergência de uma lente

Refração da Luz Índice de refração absoluto Índice de refração relativo Leis da refração Reflexão total da luz Lentes Esféricas Vergência de uma lente Refração da Luz Índice de refração absoluto Índice de refração relativo Leis da refração Reflexão total da luz Lentes Esféricas Vergência de uma lente Introdução Você já deve ter reparado que, quando colocamos

Leia mais

Sexta Lista - Fontes de Campo Magnético

Sexta Lista - Fontes de Campo Magnético Sexta Lista - Fontes de Campo Magnético FGE211 - Física III Sumário A Lei de Biot-Savart afirma que o campo magnético d B em um certo ponto devido a um elemento de comprimento d l que carrega consigo uma

Leia mais

Capítulo 5: Aplicações da Derivada

Capítulo 5: Aplicações da Derivada Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f

Leia mais

Lista de Exercícios para Recuperação Final. Nome: Nº 1 º ano / Ensino Médio Turma: A e B Disciplina(s): Física LISTA DE EXERCÍCIOS RECUPERAÇÃO - I

Lista de Exercícios para Recuperação Final. Nome: Nº 1 º ano / Ensino Médio Turma: A e B Disciplina(s): Física LISTA DE EXERCÍCIOS RECUPERAÇÃO - I Lista de Exercícios para Recuperação Final Nome: Nº 1 º ano / Ensino Médio Turma: A e B Disciplina(s): Física Data: 04/12/2014 Professor(a): SANDRA HELENA LISTA DE EXERCÍCIOS RECUPERAÇÃO - I 1. Dois móveis

Leia mais

Resolução Vamos, inicialmente, calcular a aceleração escalar γ. Da figura dada tiramos: para t 0

Resolução Vamos, inicialmente, calcular a aceleração escalar γ. Da figura dada tiramos: para t 0 46 a FÍSICA Um automóvel desloca-se a partir do repouso num trecho retilíneo de uma estrada. A aceleração do veículo é constante e algumas posições por ele assumidas, bem como os respectivos instantes,

Leia mais

Questão 2 Uma esfera de cobre de raio R0 é abandonada em repouso sobre um plano inclinado de forma a rolar ladeira abaixo. No entanto, a esfera

Questão 2 Uma esfera de cobre de raio R0 é abandonada em repouso sobre um plano inclinado de forma a rolar ladeira abaixo. No entanto, a esfera Questão 1 Na figura abaixo, vê-se um trecho de uma linha de produção de esferas. Para testar a resistência das esferas a impacto, são impulsionadas a partir de uma esteira rolante, com velocidade horizontal

Leia mais

ESTUDO DIRIGIDO DE REVISÃO PARA RECUPERAÇÃO FINAL - 2015

ESTUDO DIRIGIDO DE REVISÃO PARA RECUPERAÇÃO FINAL - 2015 Nome: 3ª série: n o Professor: Luiz Mário Data: / / 2015. ESTUDO DIRIGIDO DE REVISÃO PARA RECUPERAÇÃO FINAL - 2015 Orientações: - Este estudo dirigido poderá ser usado para revisar a matéria que será cobrada

Leia mais

FÍSICA FENÔMENOS ONDULATÓRIOS E MAGNETISMO FÍSICA 1

FÍSICA FENÔMENOS ONDULATÓRIOS E MAGNETISMO FÍSICA 1 20_Física_2 ano FÍSICA Prof. Bruno Roberto FENÔMENOS ONDULATÓRIOS E MAGNETISMO FÍSICA 1 1. (Ufg 20) O princípio de funcionamento do forno de micro-ondas é a excitação ressonante das vibrações das moléculas

Leia mais

AULA 17.1. Eletromagnetismo: Introdução ao eletromagnetismo.

AULA 17.1. Eletromagnetismo: Introdução ao eletromagnetismo. AULA 17.1 Eletromagnetismo: Introdução ao eletromagnetismo. 1 INTRODUÇÃO AO ELETROMAGNETISMO A palavra magnetismo está relacionada à Magnésia, região da Ásia onde foi encontrada, pela primeira vez, a magnetita,

Leia mais

Introdução ao Estudo da Corrente Eléctrica

Introdução ao Estudo da Corrente Eléctrica Introdução ao Estudo da Corrente Eléctrica Num metal os electrões de condução estão dissociados dos seus átomos de origem passando a ser partilhados por todos os iões positivos do sólido, e constituem

Leia mais

Interbits SuperPro Web Física XIII Paulo Bahiense, Naldo, Wilson e Ausgusto

Interbits SuperPro Web Física XIII Paulo Bahiense, Naldo, Wilson e Ausgusto 1. (Unesp 015) Em um experimento de eletrostática, um estudante dispunha de três esferas metálicas idênticas, A, B e C, eletrizadas, no ar, com cargas elétricas 5Q, 3Q e Q, respectivamente. Utilizando

Leia mais

TIPO-A FÍSICA. x v média. t t. x x

TIPO-A FÍSICA. x v média. t t. x x 12 FÍSICA Aceleração da gravidade, g = 10 m/s 2 Constante gravitacional, G = 7 x 10-11 N.m 2 /kg 2 Massa da Terra, M = 6 x 10 24 kg Velocidade da luz no vácuo, c = 300.000 km/s 01. Em 2013, os experimentos

Leia mais

Fio de resistência desprezível Bateria ideal. Amperímetro ideal. Voltímetro ideal. Lâmpada

Fio de resistência desprezível Bateria ideal. Amperímetro ideal. Voltímetro ideal. Lâmpada 1 Na figura mostrada abaixo têm-se duas baterias comuns de automóvel, B 1 e B 2, com forças eletromotrizes 12 V e 6 V, respectivamente, associadas em série. A lâmpada L conectada aos terminais da associação

Leia mais

É usual dizer que as forças relacionadas pela terceira lei de Newton formam um par ação-reação.

É usual dizer que as forças relacionadas pela terceira lei de Newton formam um par ação-reação. Terceira Lei de Newton A terceira lei de Newton afirma que a interação entre dois corpos quaisquer A e B é representada por forças mútuas: uma força que o corpo A exerce sobre o corpo B e uma força que

Leia mais

Lista de Eletrostática da UFPE e UPE

Lista de Eletrostática da UFPE e UPE Lista de Eletrostática da UFPE e UPE 1. (Ufpe 1996) Duas pequenas esferas carregadas repelem-se mutuamente com uma força de 1 N quando separadas por 40 cm. Qual o valor em Newtons da força elétrica repulsiva

Leia mais

Lista de Exercícios - Unidade 8 Eu tenho a força!

Lista de Exercícios - Unidade 8 Eu tenho a força! Lista de Exercícios - Unidade 8 Eu tenho a força! Forças 1. (UFSM 2013) O uso de hélices para propulsão de aviões ainda é muito frequente. Quando em movimento, essas hélices empurram o ar para trás; por

Leia mais

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica. Módulo 4

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica. Módulo 4 Universidade Federal do Rio de Janeiro Princípios de Instrumentação Biomédica Módulo 4 Faraday Lenz Henry Weber Maxwell Oersted Conteúdo 4 - Capacitores e Indutores...1 4.1 - Capacitores...1 4.2 - Capacitor

Leia mais

FUVEST 2000-2 a Fase - Física - 06/01/2000 ATENÇÃO

FUVEST 2000-2 a Fase - Física - 06/01/2000 ATENÇÃO ATENÇÃO VERIFIQUE SE ESTÃO IMPRESSOS EIXOS DE GRÁFICOS OU ESQUEMAS, NAS FOLHAS DE RESPOSTAS DAS QUESTÕES 1, 2, 4, 9 e 10. Se notar a falta de uma delas, peça ao fiscal de sua sala a substituição da folha.

Leia mais

O Princípio da Complementaridade e o papel do observador na Mecânica Quântica

O Princípio da Complementaridade e o papel do observador na Mecânica Quântica O Princípio da Complementaridade e o papel do observador na Mecânica Quântica A U L A 3 Metas da aula Descrever a experiência de interferência por uma fenda dupla com elétrons, na qual a trajetória destes

Leia mais

Problemas de eletricidade

Problemas de eletricidade Problemas de eletricidade 1 - Um corpo condutor está eletrizado positivamente. Podemos afirmar que: a) o número de elétrons é igual ao número de prótons. b) o número de elétrons é maior que o número de

Leia mais

Data 23/01/2008. Guia do Professor. Introdução

Data 23/01/2008. Guia do Professor. Introdução Guia do Professor Data 23/01/2008 Introdução A inserção de tópicos da Eletricidade nas escolas de nível básico e médio é fundamental para a compreensão de alguns fenômenos da vida moderna. Você já imaginou

Leia mais

COLÉGIO NOSSA SENHORA DA PIEDADE. Programa de Recuperação Paralela. 2ª Etapa 2014

COLÉGIO NOSSA SENHORA DA PIEDADE. Programa de Recuperação Paralela. 2ª Etapa 2014 COLÉGIO NOSSA SENHORA DA PIEDADE Programa de Recuperação Paralela 2ª Etapa 2014 Disciplina: Física Série: 3ª Professor (a): Marcos Vinicius Turma: FG Caro aluno, você está recebendo o conteúdo de recuperação.

Leia mais

( ) ( ) ( ( ) ( )) ( )

( ) ( ) ( ( ) ( )) ( ) Física 0 Duas partículas A e, de massa m, executam movimentos circulares uniormes sobre o plano x (x e representam eixos perpendiculares) com equações horárias dadas por xa ( t ) = a+acos ( ωt ), ( t )

Leia mais

Agrupamento de Escolas Anselmo de Andrade Avaliação Sumativa - Ciências Físico - Químicas 11.º Ano - Ano Lectivo 09/10

Agrupamento de Escolas Anselmo de Andrade Avaliação Sumativa - Ciências Físico - Químicas 11.º Ano - Ano Lectivo 09/10 Agrupamento de Escolas Anselmo de Andrade Avaliação Sumativa - Ciências Físico - Químicas 11.º Ano - Ano ectivo 09/10 Duração da Actividade: 90 minutos Data: 04/ 12 / 09 Responda com clareza às questões

Leia mais

sendo as componentes dadas em unidades arbitrárias. Determine: a) o vetor vetores, b) o produto escalar e c) o produto vetorial.

sendo as componentes dadas em unidades arbitrárias. Determine: a) o vetor vetores, b) o produto escalar e c) o produto vetorial. INSTITUTO DE FÍSICA DA UFRGS 1 a Lista de FIS01038 Prof. Thomas Braun Vetores 1. Três vetores coplanares são expressos, em relação a um sistema de referência ortogonal, como: sendo as componentes dadas

Leia mais

Comunicações. Microfone e Altifalante - Resumindo

Comunicações. Microfone e Altifalante - Resumindo Comunicações { Microfone e Altifalante - Resumindo Microfone Finalidades Altifalante { Instalam-se nos circuitos elétricos para: Microfone transforma vibração mecânica em corrente elétrica alternada de

Leia mais

Condensador equivalente de uma associação em série

Condensador equivalente de uma associação em série Eletricidade Condensador equivalente de uma associação em série por ser uma associação em série, a ddp U nos terminais da associação é igual à soma das ddps individuais em cada capacitor. U U U U 1 2 3

Leia mais

UFMG - 2005 2º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

UFMG - 2005 2º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR UFMG - 2005 2º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Física Questão 01 Durante um voo, um avião lança uma caixa presa a um paraquedas. Após esse lançamento, o paraquedas abre-se e uma força F,

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 4

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 4 Lei de Gauss Considere uma distribuição arbitrária de cargas ou um corpo carregado no espaço. Imagine agora uma superfície fechada qualquer envolvendo essa distribuição ou corpo. A superfície é imaginária,

Leia mais

Campo Magnético. e horário. e anti-horário. e horário. e anti-horário. e horário. a) b) c) d) e)

Campo Magnético. e horário. e anti-horário. e horário. e anti-horário. e horário. a) b) c) d) e) Campo Magnético 1. (Ita 2013) Uma espira circular de raio R é percorrida por uma corrente elétrica i criando um campo magnético. Em seguida, no mesmo plano da espira, mas em lados opostos, a uma distância

Leia mais

FÍSICA-2011. Questão 01. Questão 02

FÍSICA-2011. Questão 01. Questão 02 Questão 01-2011 UFBA -- 2ª 2ª FASE 2011 A maioria dos morcegos possui ecolocalização um sistema de orientação e localização que os humanos não possuem. Para detectar a presença de presas ou de obstáculos,

Leia mais

CINEMÁTICA VETORIAL. Observe a trajetória a seguir com origem O.Pode-se considerar P a posição de certo ponto material, em um instante t.

CINEMÁTICA VETORIAL. Observe a trajetória a seguir com origem O.Pode-se considerar P a posição de certo ponto material, em um instante t. CINEMÁTICA VETORIAL Na cinemática escalar, estudamos a descrição de um movimento através de grandezas escalares. Agora, veremos como obter e correlacionar as grandezas vetoriais descritivas de um movimento,

Leia mais

Força Magnética. 0, atingem a Terra em um mesmo ponto com velocidades, VA V B,

Força Magnética. 0, atingem a Terra em um mesmo ponto com velocidades, VA V B, Força Magnética 1. (Espcex (Aman) 013) Partículas com grande velocidade, provenientes do espaço, atingem todos os dias o nosso planeta e algumas delas interagem com o campo magnético terrestre. Considere

Leia mais