2. Sistemas de Numeração

Tamanho: px
Começar a partir da página:

Download "2. Sistemas de Numeração"

Transcrição

1 2. Sistemas de Numeração 2.1. Introdução A necessidade de contar é algo que acompanha o ser humano desde tempos imemoriais. Muitas cavernas pré-históricas registram contagens, provavelmente de animais, na forma de pauzinhos colocados um ao lado do outro, e agrupados por traços diagonais, para melhorar a leitura, como na Figura 2.1. Figura 2.1 Diversas formas de contar e representar números foram inventadas e efetivamente utilizadas por muitos povos. Quando crianças, nós aprendemos a contar nos dedos das duas mãos, de um até dez, e isso nos parece a coisa mais natural do mundo. Porém muitos povos da antiguidade contavam usando uma outra tática, mais eficiente do que a nossa, provavelmente, com uma mão só: eles usavam o polegar para indicar em cada dedo a falange, falanginha e falangeta, e assim, cada dedo podia contar 3 números, possibilitando a contagem de 12 números em cada mão (3 x 4, tirando o polegar obviamente, que era usado para apontar), como visto na Figura 2.2. Figura 2.2

2 Tanto naqueles povos antigos quanto no mundo de hoje, a contagem de pequenas quantidades poderia facilmente ser feita com uma ou duas mãos. Porém quando essa quantidade aumenta, é necessário usar alguma outra tática. Muitas possibilidades existem para manipular números maiores. Para levarmos uma quantidade razoável de dinheiro, nós hoje usamos notas de diferentes valores, de um real, cinco reais, dez, cinqüenta, cem, etc.,, ao invés de uma montanha de notas de um real. De forma muito parecida, os romanos faziam mais ou menos isso, usando as letras I, V, X, L, C, etc. para registrar os números grandes. A representação de um certo valor em notas de dinheiro não é unívoca, como a notação romana também não o era. Seria possível, por exemplo, representar XXXXXX para o número 60 mas na prática se preferia-se a notação LX, mas assim como nós geralmente preferimos uma nota de 50 e outra de 10 e não seis notas de 10. Não havia na notação romana a representação explícita do zero, e a necessidade do uso do zero apareceu um bom tempo depois. Explicando melhor: pense que só existam as notas de dinheiro de 1, 10 e 100 reais. Para representar o valor 372, poderíamos dizer: 3 notas de 100, 7 notas de 10 e 2 notas de 1. Já para representar o valor 302, poderíamos dizer 3 notas de 100, ZERO notas de 10 e 2 notas de 1. Essa informação de ZERO notas de 10 é inócua, e realmente não se usa na prática, como os romanos também não usavam nos seus números. Tanto os romanos quanto nós hoje usamos fortemente o número 10 como um padrão importante na representação da contagem (na verdade os romanos também usavam o número 5). Isso é fácil de aceitar: temos 10 dedos (ou 5 dedos em cada mão). Mas os babilônios contavam 12 em cada mão, e não 10. Então deve-se esperar que usassem números diferentes. Por exemplo, um mercador contava 1, 2, 3, (acabavam os dedos da mão) e continuava contando: uma mão mais 1, uma mão mais 2, uma mão mais 3, etc. No registro escrito usado na babilônia usavam-se dois símbolos numéricos um ao lado do outro. O primeiro indicava a quantidade de mãos, o segundo a quantidade de dedos no fim da contagem. Por razões que não vale a pena explicar neste contexto, a contagem básica ia até 60 (5 dedos numa mão e 12 falanges na outra). Ainda hoje temos herança da contagem babilônica nos nossos relógios, que contam 12 horas e não 10. Nota: Deve-se notar que o uso da contagem até 60 é muito interessante: este número é múltiplo de 2, 3, 4, 5 e 6 (além de outros), trazendo simplicidade para as operações aritméticas envolvendo divisão, quando realizadas mentalmente. Uma invenção bastante interessante apareceu com os hindus por volta do século V e consistia no uso, lado a lado de dígitos, representando valores multiplicativos. Por exemplo, imaginemos notas de 1, 10 e 100 reais. Então, podemos pensar assim: 3 notas de 100 reais, 7 notas de 10 reais e 2 notas de 1 real. Então não usamos o valor das notas e colocamos apenas a quantidade de bilhetes. Usamos a escrita da esquerda para a direita na ordem decrescente dos valores dos bilhetes, assim: A própria forma de falar este número é uma imagem desta representação: trezentos (ou três centos) e setenta (ou sete entes) e dois. Nesta representação, originalmente se deixava um espaço (e não um zero) para indicar que numa casa específica não existia um fator multiplicativo. Por exemplo, se escrevia 3_2 para representar o número 302. O símbolo zero foi inventado para facilitar a leitura

3 deste espaço. O zero é um símbolo que, ao ser multiplicado por qualquer outro produz um resultado nulo. Zero reais, ou zero dezenas (ou seja zero vezes 10), ou zero centenas (ou seja zero vezes cem), tudo produz um valor nulo. Nota: Fatores religiosos foram usados para proibir durante muitos anos o uso do zero. A razão parece estranha, mas do ponto de vista teológico é extremamente válida. Deus é representado religiosamente como sendo o UM, a unidade, o início de tudo; então como poderia existir uma coisa que vem antes do UM? Esta polêmica religiosa prosseguiu durante mais de um século, até que as vantagens inequívocas do uso matemático do zero acabaram por tornar esta discussão menos aceitável. Note que seria possível usar quaisquer valores para notas de dinheiro, mas os registros históricos mostram que essa invenção usava necessariamente em operações matemáticas, valores múltiplos para as casas representadas: 1, 10, 100, 1000, etc. Esses valores fundamentais para as casas é denominado em matemática de BASE do sistema de numeração posicional. Mas porque usamos base 10? Claro, temos 10 dedos. Mas os babilônios usavam a base 10? Certamente não. Pense a respeito e faça uma pesquisa sobre como eles provavelmente faziam para escrever seus números. Nota: E se fôssemos habitantes de Andrômeda, que têm 6 dedos em cada uma das suas 2 mãos, como contaríamos? E se fôssemos habitantes de Alfa Centauro, que têm 8 dedos em cada uma das suas 4 mãos, como faríamos? Leia mais sobre a interessante história dos sistemas de numeração em Representação posicional de números Com a evolução da matemática a numeração posicional se estabeleceu em praticamente todos os países. Nesta notação, os algarismos (dígitos) são colocados lado a lado, e sua posição indica uma potência da base pela qual eles serão multiplicados. Na base 10 (ou seja usando o sistema de numeração que conhecemos desde o curso primário, e que faz uso dos dígitos 0, 1, 2, 3, 4, 5, 6, 7, 8, 9), um número é representado como no exemplo a seguir: ou seja:

4 10 é a base e os números 100, 10 e 1 são respectivamente: 100 = = = 10 0 Nota: talvez você tenha esquecido, então lembre-se: todo número elevado a zero vale um. 372 = 3 x x x 10 0 A operação de contagem na base 10 é simples. Cada casa começa com 0, e quando se chega a 9 a próxima casa é incrementada. Por simplicidade, zeros à esquerda não precisam ser escritos. Por exemplo, usando 3 dígitos: e assim por diante. Quando se atinge 99 começa-se a contar novamente, considerando mais um dígito igual a 1, ou seja 100, 101, 102, etc... A mesma coisa acontece em 999 ou 9999 ou Na vida diária de hoje, em quase todos os países do mundo, a base 10 é a campeã absoluta. Entretanto poderíamos efetivamente usar outras bases (diversos povos muito evoluídos, como os babilônios, usaram bases não decimais). Imagine por exemplo escolhermos usar a base 5 (ou seja, contar apenas com uma das mãos). Neste sistema de numeração existiriam 5 dígitos básicos: 0, 1, 2, 3 e 4. Vamos então contar, usando apenas esses dígitos:

5 e assim por diante. Repare que não existe nesta base 5 o número 5, bem como nenhum numero formado por dígitos diferentes de 0, 1, 2, 3 ou 4. Poderíamos tentar estabelecer um paralelo entre a base 5 e a base 10. Para não nos confundirmos vamos colocar um subscrito após o número para diferenciar, por exemplo indica um número 13 decimal usual, e 13 5 indica um número na base 5. Se contarmos na base 5, teremos a seguinte seqüência: 0, 1, 2, 3,,4, 10, 11, 12, 13, 14, 20, 21, etc., portanto o número 13 5 será o oitavo número contado. Podemos dizer então que: 13 5 = 8 10 Veremos mais adiante algumas técnicas bastante simples sobre como converter números representados em diversas bases Numeração binária A base 10 era usada também nos primeiros computadores eletromecânicos, como o Mark I. Diversos matemáticos e engenheiros estavam naquela época envolvidos com a criação de computadores e seus programas, mas logo estes cientistas perceberam que os circuitos elétricos que eram usados para implementar operações aritméticas eram bastante complexos exatamente pelo fato de que a base 10 usa 10 representações diferentes para os dígitos. Passou-se então a utilizar um esquema alternativo muito mais confiável eletricamente e mais econômico usando, não 10 dígitos, mas apenas dois dígitos, o zero e o um (em outras palavras, passou-se a usar a base 2). É fácil entender o porquê disso: o zero poderia ser facilmente associado a um circuito elétrico desligado e o um a um circuito ligado: isso é muito mais simples de implementar, por exemplo, do que um circuito que tenha internamente diversos (10) níveis de tensão. Nesta base a contagem dos números seria assim: Dá facilmente para estabelecer que:

6 0 2 = = = = = = 5 10 e assim por diante. Alguém poderia objetar que um número binário relativamente pequeno teria muitos dígitos se comparado à sua contraparte na base 10. Realmente: = mas a simplicidade e tamanho dos circuitos é imensamente menor e compensa essa diferença A base hexadecimal Existe, entretanto, um problema: quando nós, seres humanos, queremos exprimir um número na base 2, também chamada base binária, a possibilidade de transcrição com erro é imensa pois os números têm muitos dígitos. Assim, é comum que nós, programadores, utilizemos duas outras bases alternativas, cuja conversão para a base 2 é quase imediata e pode ser feita sem calculadora, como veremos adiante: a base 8 (hoje em desuso) e a base 16, também chamada base hexadecimal. Veremos mais adiante como essas bases são usadas para a escrita simplificada e alternativa de números binários. Talvez você nem acredite nisso, mas é facílimo converter de cabeça : = Todas as linguagens de programação moderna prevêem facilidades para escrita de números hexadecimais (e algumas, como a linguagem C, também para a base 8). A disponibilidade de uso de uma base não decimal poderia causar um certo espanto a princípio, mas a razão é simples: essas bases são usadas para tornar a escrita de números binários por seres humanos, mais simples e menos sujeita a erro. Na base 8 existiriam 8 dígitos básicos: 0, 1, 2, 3, 4, 5, 6 e 7. Vamos então contar, usando apenas esses dígitos: e assim por diante.

7 Repare que não existe nesta base 8 o dígito 8, e que só existem números formados por dígitos entre 0 e 7. Depois do número 778 vem o número Já na base 16 temos um problema: existirão 16 símbolos diferente. Entretanto, desde a escola primária, estamos acostumados a usar apenas 10 dígitos (de 0 a 9). Como fazer para representar os seis dígitos que faltam? A solução mais usada, especialmente para não ter que inventar novos símbolos é usar as letras A, B, C, D, E e F para representar estes novos dígitos. A contagem então seria assim: e assim por diante. Depois do AF vem B0, B1,... BF. Depois do BF vem C0, C1... CF. etc. Depois do EF vem F0, F1... FF. Depois do FF vem 100, 101, 102 etc. É importante guardar de cabeça, por conta das conversões que teremos que realizar, uma equivalência entre as letras da representação hexadecimal e seus valores absolutos de representação na base 10. A vale 10 B vale 11 C vale 12 D vale 13 E vale 14 F vale 15

8 2.5. Conversão entre bases Existem motivações (sejam históricas, de costume ou eletrônicas.) para escolhermos usar uma certa base na representação dos números em determinadas situações. Nosso relógio apresenta as informações na bases 12 e 60, por razões completamente históricas, e isso em geral não nos traz maiores complicações (a menos que queiramos saber, por exemplo, quantas horas e minutos leva para assar 10 bolos num forno, sendo que cada um leva 6 minutos e 30 segundos para assar). Um outro exemplo, na memória dos computadores modernos a informação está armazenada na base 2, e a motivação é o fato de que essa escolha simplifica enormemente os circuitos eletrônicos e permite que estes sejam mais rápidos. Entretanto, nós fomos educados na base 10, e é nesta base que conseguimos raciocinar com clareza. Vamos ensinar as técnicas simples que são usadas para converter números para bases diversas, enfatizando: a base 10 que nós conhecemos muito bem; a base 2 útil no projeto e programação dos computadores atuais; as bases que são potência de 2, em especial a base 16 - muito usadas como uma alternativa para representar números binários de uma forma mais simples. a) Conversão de um número em qualquer base para a base 10 Nós mostramos anteriormente a representação de um número decimal comum, 372, como seria representado como uma soma de múltiplos de potências de dez: ou seja: ou ainda: = 3 x x x = 3 x x x 10 0 Então por analogia podemos tomar um outro número em outra base qualquer, e aplicar o mesmo raciocínio. Por exemplo: o número seria calculado usando potências de 8, em vez de potências de 10. ou seja: = 1 x x x 8 0

9 142 8 = 1 x x x = = Outro exemplo, usando a base 2: repare que o último fator multiplicativo, o da direita, será sempre elevado a zero. E qualquer coisa elevada a zero NÃO DÁ ZERO, cuidado, dá UM! = 1 x x x x 2 0 = = 9 10 Outro exemplo usando a base hexadecimal: 1C7A 16 = 1 x C x x A x 16 0 Antes de mais nada: lembre-se que, em hexadecimal: C vale 12 A vale 10 1C7A 16 = 1 x x x x C7A 16 = = 7290 b) conversão de um número na base 10 para qualquer base Para converter um número na base 10 para uma base B, a idéia é fazer divisões sucessivas do número pela base B, até o quociente ser zero. Então tomar os restos em ordem inversa. Exemplo: queremos calcular a representação do número na base 5. Vamos dividir sucessivamente 100 por = 20 resto = 4 resto = 0 resto 4 Agora lemos os restos de trás para diante: = Conferindo: 4 x x x 5 0 = = A maior parte das pessoas faz isso na mão fazendo uma escadinha de divisões, parando quando não der mais para dividir. Neste caso não esquecer de pegar também o último quociente e juntar com os restos, em ordem reversa (ou então fingir uma última divisão em que o último quociente seja zero).

10 Lemos último quociente e os restos de trás para diante: = Ex: converter para a base = Ex.: converter para a base 16 (hexadecimal) O problema é resolvido exatamente da mesma maneira, lembrando-se de traduzir, sempre que o resto for maior que 9 pelas letras A, B, C, D, E ou F. portanto = 18 resto vale C = 1 resto = 0 resto = 12C 16

11 c) conversão de números em bases potência de dois para a base binária Para entendermos a idéia desta conversão, fizemos uma contagem seqüencial usando a base 8. Do lado desta contagem colocamos a representação em binário, usando 5 dígitos binários. Só para facilitar a leitura usamos um espacinho separando os três dígitos binários da direita Repare agora: Os números binários começam sempre; Na primeira coluna, por 00 0 em decimal Na segunda coluna, por 01 1 em decimal Na terceira coluna, por 10 2 em decimal Na quarta coluna, por 11 3 em decimal Existe uma repetição na parte direita dos dígitos binários, em todas as colunas. Com um pouco de imaginação então você chegará a uma regra muito simples: para converter um número numa base potência de dois para a base 2, simplesmente escreva individualmente os dígitos do número na 2, com um número de casas igual à potência de dois! Ex.: Base 8 8 é 2 elevado a 3, então = vale quanto na base 2? Pode-se escrever assim: 4 escrito em binário com 3 casas escrito em binário com 3 casas escrito em binário com 3 casas 110 ou seja = Para não nos enganarmos, é interessante escrever a tabelinha completa de conversão da base, por exemplo, na base 8, seria assim:

12 Ex.: escrever o número 3CF116 na base Antes de mais nada, para não nos enganarmos, vamos escrever a tabelinha de contagem da base A 1010 B 1011 C 1100 D 1101 E 1110 F 1111

13 Agora converta automaticamente: 3CF116 = FFFF 0001 Nota: deixei estes espaços em branco no meio do número binário que teria na verdade 16 dígitos coladinhos, só para ficar mais fácil a leitura, e para você conseguir perceber claramente que usei os números da tabela. Uma dica para decorar a tabelinha da base 16: Decore apenas a tabelinha de conversão binária da base 8. Para escrever a tabelinha da base 16, escreva esta tabelinha binária duas vezes em duas colunas, como mostrado aqui, colocando um dígito zero antes dos números binários da primeira coluna e o dígito 1 na segunda coluna. d) conversão genérica entre quaisquer bases Para converter entre uma base B1 e outra base B2 genéricas, a técnica mais usada é a seguinte: faça em dois passos. - Converta o número na base B1 para a base 10; - Depois converta este novo número na base 10 para a base B2. Exemplo: Converter para a base 5. Primeiro converta para a base 10 Agora converta para a base 5 então: = 3 x x x 8 0 = = 41 resto = 8 resto = 1 resto = 0 resto = =

Sistemas de Numerações.

Sistemas de Numerações. Matemática Profº: Carlos Roberto da Silva; Lourival Pereira Martins. Sistema de numeração: Binário, Octal, Decimal, Hexadecimal; Sistema de numeração: Conversões; Sistemas de Numerações. Nosso sistema

Leia mais

3 Sistemas de Numeração:

3 Sistemas de Numeração: 3 Sistemas de Numeração: Os computadores eletrônicos têm como base para seu funcionamento a utilização de eletricidade. Diferente de outras máquinas que a presença ou ausência de eletricidade apenas significam

Leia mais

SISTEMAS DE NUMERAÇÃO

SISTEMAS DE NUMERAÇÃO Atualizado em Prof. Rui Mano E mail: rmano@tpd.puc rio.br SISTEMAS DE NUMERAÇÃO Sistemas de Numer ação Posicionais Desde quando se começou a registrar informações sobre quantidades, foram criados diversos

Leia mais

Sistemas de Numeração

Sistemas de Numeração Sistemas de Numeração Um numeral é um símbolo ou grupo de símbolos que representa um número em um determinado instante da evolução do homem. Tem-se que, numa determinada escrita ou época, os numerais diferenciaram-se

Leia mais

Sistemas de Numeração

Sistemas de Numeração Professor Menezes SISTEMA DE NUMERAÇÃO 1-1 Sistemas de Numeração Observe que alguns números decimais a possuem uma representação muito curiosa no sistema binário: 1 decimal = 1 binário; 2 decimal = 10

Leia mais

Representação de Dados e Sistemas de Numeração

Representação de Dados e Sistemas de Numeração 1 Representação de Dados e Sistemas de Numeração Sistema de numeração decimal e números decimais (base 10) Sistema de numeração binário e números binários (base 2) Conversão entre binário e decimal Sistema

Leia mais

Aula 3 - Sistemas de Numeração

Aula 3 - Sistemas de Numeração UEM Universidade Estadual de Maringá DIN - Departamento de Informática Disciplina: Fundamentos da Computação Profª Thelma Elita Colanzi Lopes thelma@din.uem.br Aula 3 - Sistemas de Numeração O ser humano,

Leia mais

Introdução à Engenharia de

Introdução à Engenharia de Introdução à Engenharia de Computação Tópico: Sistemas de Numeração José Gonçalves - LPRM/DI/UFES Introdução à Engenharia de Computação Introdução O número é um conceito abstrato que representa a idéia

Leia mais

Faculdade de Tecnologia de Teresina-PI Tecnologia em Redes de Computadores. Arquitetura de Computadores Prof. Nathan Saraiva

Faculdade de Tecnologia de Teresina-PI Tecnologia em Redes de Computadores. Arquitetura de Computadores Prof. Nathan Saraiva Faculdade de Tecnologia de Teresina-PI Tecnologia em Redes de Computadores Arquitetura de Computadores Prof. Nathan Saraiva Tópicos Introdução Valor analógico x valor digital Sistema Analógico X Sistema

Leia mais

Trabalho compilado da Internet Prof. Claudio Passos. Sistemas Numéricos

Trabalho compilado da Internet Prof. Claudio Passos. Sistemas Numéricos Trabalho compilado da Internet Prof. Claudio Passos Sistemas Numéricos A Informação e sua Representação O computador, sendo um equipamento eletrônico, armazena e movimenta as informações internamente sob

Leia mais

1. Sistemas de numeração

1. Sistemas de numeração 1. Sistemas de numeração Quando mencionamos sistemas de numeração estamos nos referindo à utilização de um sistema para representar uma numeração, ou seja, uma quantidade. Sistematizar algo seria organizar,

Leia mais

Escola Secundária c/3º CEB José Macedo Fragateiro. Curso Profissional de Nível Secundário. Componente Técnica. Disciplina de

Escola Secundária c/3º CEB José Macedo Fragateiro. Curso Profissional de Nível Secundário. Componente Técnica. Disciplina de Escola Secundária c/3º CEB José Macedo Fragateiro Curso Profissional de Nível Secundário Componente Técnica Disciplina de Sistemas Digitais e Arquitectura de Computadores 29/21 Módulo 1: Sistemas de Numeração

Leia mais

Sistemas de Numeração. Introdução ao Computador 2010/1 Renan Manola

Sistemas de Numeração. Introdução ao Computador 2010/1 Renan Manola Sistemas de Numeração Introdução ao Computador 2010/1 Renan Manola Introdução Em sistemas digitais o sistema de numeração binário é o mais importante, já fora do mundo digital o sistema decimal é o mais

Leia mais

2. Sistemas de Numeração, Operações e Códigos. 2. Sistemas de Numeração, Operações e Códigos 1. Números Decimais. Objetivos.

2. Sistemas de Numeração, Operações e Códigos. 2. Sistemas de Numeração, Operações e Códigos 1. Números Decimais. Objetivos. Objetivos 2. Sistemas de Numeração, Operações e Códigos Revisar o sistema de numeração decimal Contar no sistema de numeração binário Converter de decimal para binário e vice-versa Aplicar operações aritméticas

Leia mais

SISTEMAS DE NUMERAÇÃO

SISTEMAS DE NUMERAÇÃO Universidade do Contestado Campus Concórdia Curso de Sistemas de Informação Prof.: Maico Petry SISTEMAS DE NUMERAÇÃO DISCIPLINA: Fundamentos em Informática SISTEMAS DE NUMERAÇÃO E REPRESENTAÇÃO DE DADOS

Leia mais

Sistema de Numeração e Conversão entre Sistemas. Prof. Rômulo Calado Pantaleão Camara. Carga Horária: 60h

Sistema de Numeração e Conversão entre Sistemas. Prof. Rômulo Calado Pantaleão Camara. Carga Horária: 60h Sistema de Numeração e Conversão entre Sistemas. Prof. Rômulo Calado Pantaleão Camara Carga Horária: 60h Representação da Informação Um dispositivo eletrônico, armazena e movimenta as informações internamente

Leia mais

ELETRÔNICA. Changed with the DEMO VERSION of CAD-KAS PDF-Editor (http://www.cadkas.com). INTRODUÇÃO

ELETRÔNICA. Changed with the DEMO VERSION of CAD-KAS PDF-Editor (http://www.cadkas.com). INTRODUÇÃO 0010100111010101001010010101 CURSO DE 0101010100111010100101011101 1010011001111010100111010010 ELETRÔNICA 1010000111101010011101010010 DIGITAL INTRODUÇÃO Os circuitos equipados com processadores, cada

Leia mais

SISTEMAS DIGITAIS Prof. Ricardo Rodrigues Barcelar http://www.ricardobarcelar.com

SISTEMAS DIGITAIS Prof. Ricardo Rodrigues Barcelar http://www.ricardobarcelar.com - Aula 1 - SISTEMA DE NUMERAÇÃO BINÁRIA E DECIMAL Todos os computadores são formados por circuitos digitais, onde as informações e os dados são codificados com dois níveis de tensão, pelo que o seu sistema

Leia mais

centena dezena unidade 10 2 10 1 10 0 275 2 7 5 200 + 70 + 5 275

centena dezena unidade 10 2 10 1 10 0 275 2 7 5 200 + 70 + 5 275 A. Sistemas de Numeração. Para se entender a linguagem do computador (o Código de Máquina), é necessário conhecer um pouco da teoria dos números. Não é uma tarefa tão difícil quanto pode parecer. Sabendo-se

Leia mais

Sistemas de Numeração. Engenharia da Computação 3 Período Alex Vidigal Bastos

Sistemas de Numeração. Engenharia da Computação 3 Período Alex Vidigal Bastos UNIPAC Sistemas Digitais Sistemas de Numeração Engenharia da Computação 3 Período Alex Vidigal Bastos 1 Agenda Objetivos Introdução Sistema Binário Sistema Octal Sistema Hexadecimal Aritméticas no Sistema

Leia mais

Curso: Técnico de Informática Disciplina: Redes de Computadores. 1- Apresentação Binária

Curso: Técnico de Informática Disciplina: Redes de Computadores. 1- Apresentação Binária 1- Apresentação Binária Os computadores funcionam e armazenam dados mediante a utilização de chaves eletrônicas que são LIGADAS ou DESLIGADAS. Os computadores só entendem e utilizam dados existentes neste

Leia mais

Sistemas de Numeração

Sistemas de Numeração Sistemas de Numeração Representação da Informação para seres humanos Números (1,2,3,4...) Letras (a,a,b,b,c,c...) Sinais de pontuação (:,;...) Operadores aritméticos (+,-,x,/) Representação da Informação

Leia mais

Fundamentos em Informática (Sistemas de Numeração e Representação de Dados)

Fundamentos em Informática (Sistemas de Numeração e Representação de Dados) 1 UNIVERSIDADE DO CONTESTADO / UnC CAMPUS CONCÓRDIA/SC CURSO DE SISTEMAS DE INFORMAÇÃO Fundamentos em Informática (Sistemas de Numeração e Representação de Dados) (Apostila da disciplina elaborada pelo

Leia mais

Fabio Bento fbento@ifes.edu.br

Fabio Bento fbento@ifes.edu.br Fabio Bento fbento@ifes.edu.br Eletrônica Digital Sistemas de Numeração e Códigos 1. Conversões de Binário para Decimal 2. Conversões de Decimal para Binário 3. Sistema de Numeração Hexadecimal 4. Código

Leia mais

Hardware de Computadores

Hardware de Computadores Sistema Binário Hardware de Computadores O sistema binário é um sistema de numeração posicional em que todas as quantidades são representadas, utilizando-se como base as cifras: zero e um (0 e 1). Os computadores

Leia mais

Sistema de Numeração e Códigos. Sistemas de Informação CPCX UFMS Prof. Renato F. dos Santos

Sistema de Numeração e Códigos. Sistemas de Informação CPCX UFMS Prof. Renato F. dos Santos Sistema de Numeração e Códigos Sistemas de Informação CPCX UFMS Prof. Renato F. dos Santos Objetivos Converter um número de um sistema de numeração (decimal, binário ou hexadecimal) no seu equivalente

Leia mais

Conversões em Sistemas de Numeração. José Gustavo de Souza Paiva

Conversões em Sistemas de Numeração. José Gustavo de Souza Paiva Conversões em Sistemas de Numeração José Gustavo de Souza Paiva 1 Conversões entre bases que são potências entre si Primeiro caso base binária para base octal Como 2 3 = 8, podemos separar os bits de um

Leia mais

ORGANIZAÇÃO DE COMPUTADORES MÓDULO 13

ORGANIZAÇÃO DE COMPUTADORES MÓDULO 13 ORGANIZAÇÃO DE COMPUTADORES MÓDULO 13 Índice 1. Circuitos Digitais - Continuação...3 1.1. Por que Binário?... 3 1.2. Conversão entre Bases... 3 2 1. CIRCUITOS DIGITAIS - CONTINUAÇÃO 1.1. POR QUE BINÁRIO?

Leia mais

ARQUITETURA DE COMPUTADORES. Sistemas de Numeração. 1 Arquitetura de Computadores

ARQUITETURA DE COMPUTADORES. Sistemas de Numeração. 1 Arquitetura de Computadores ARQUITETURA DE COMPUTADORES Sistemas de Numeração 1 Sistemas de Numeração e Conversão de Base Sistema Decimal É o nosso sistema natural. Dígitos 0,1,2,3,4,5,6,7,8 e 9. Números superiores a 9; convencionamos

Leia mais

Sistemas Numéricos Eletrônica Digital PROFESSOR LUCAS KOEPSEL ROSA

Sistemas Numéricos Eletrônica Digital PROFESSOR LUCAS KOEPSEL ROSA Sistemas Numéricos Eletrônica Digital PROFESSOR LUCAS KOEPSEL ROSA Definição de Sistemas Numéricos Eletrônica Digital PROFESSOR LUCAS KOEPSEL ROSA Definição Sistemas Numéricos Em condições ideais, um sistema

Leia mais

ANALÓGICA X DIGITAL. Vamos começar essa aula estabelecendo os dois tipos de eletrônica: Eletrônica Analógica. Eletrônica Digital

ANALÓGICA X DIGITAL. Vamos começar essa aula estabelecendo os dois tipos de eletrônica: Eletrônica Analógica. Eletrônica Digital ANALÓGICA X DIGITAL Vamos começar essa aula estabelecendo os dois tipos de eletrônica: Eletrônica Analógica Eletrônica Digital ANALÓGICA X DIGITAL A eletrônica analógica é caracterizada por um sinal que

Leia mais

Notas de aula #1 SISTEMAS NUMÉRICOS

Notas de aula #1 SISTEMAS NUMÉRICOS UTFPR Disciplina: EL66J Prof. Gustavo B. Borba Notas de aula #1 SISTEMAS NUMÉRICOS - Notação posicional Definição: A posição de cada algarismo no número indica a sua magnitude. A magnitude também é chamada

Leia mais

Sistemas de Numeração

Sistemas de Numeração Universidade Tecnológica Federal do Paraná Bacharelado em Ciência da Computação IC3A Introdução à Ciência da Computação Sistemas de Numeração Marcos Silvano O. Almeida Baseado no material do prof. Rogério

Leia mais

Sistemas de Numeração. Bases Numéricas e Conversão entre bases

Sistemas de Numeração. Bases Numéricas e Conversão entre bases Sistemas de Numeração Bases Numéricas e Conversão entre bases Objetivos Contar em binário, octal, hexadecimal Conversões: DECIMAL BINÁRIO OCTAL HEXADECIMAL Histórico A origem dos conceitos sobre números

Leia mais

Notação Posicional. Introdução à Computação. Bases. Bases. Sistemas de Numeração. Exemplo:

Notação Posicional. Introdução à Computação. Bases. Bases. Sistemas de Numeração. Exemplo: Notação Posicional Introdução à Computação Sistas de Numeração O objetivo principal de qualquer base numérica é a de representar números É a posição do algarimo (dígito) que determina seu valor Ex: número

Leia mais

No microfone, sua saída pode assumir qualquer valor dentro de uma faixa de 0 à 10mV. 1 - Sistemas de numeração

No microfone, sua saída pode assumir qualquer valor dentro de uma faixa de 0 à 10mV. 1 - Sistemas de numeração 1 - Sistemas de numeração Lidamos constantemente com quantidades. Quantidades são medidas monitoradas, gravadas, manipuladas aritmeticamente e observadas. Quando lidamos com quantidades, é de suma importância

Leia mais

Bases Numéricas e Conversão. DCC 122 - Circuitos Digitais

Bases Numéricas e Conversão. DCC 122 - Circuitos Digitais Bases Numéricas e Conversão DCC 122 - Circuitos Digitais Objetivos Bases numéricas utilizadas em sistemas computacionais. Conversões: DECIMAL BINÁRIO HEXADECIMAL Sistemas de Numeração Não posicional Ex.

Leia mais

Conversão de Bases e Aritmética Binária

Conversão de Bases e Aritmética Binária Conversão de Bases e Aritmética Binária Prof. Glauco Amorim Sistema de Numeração Decimal Dígitos Decimais: 0 2 3 4 5 6 7 8 9 Potências de base 0 0 0 2 0 0 3 4 0 0 00 000 0 000 Sistema de Numeração Binário

Leia mais

REPRESENTAÇÃO DE DADOS E SISTEMAS DE NUMERAÇÃO

REPRESENTAÇÃO DE DADOS E SISTEMAS DE NUMERAÇÃO REPRESENTAÇÃO DE DADOS E SISTEMAS DE NUMERAÇÃO Profs. M.Sc. Lucio M. Duarte e Ph.D. Avelino Zorzo 1 Faculdade de Informática - PUCRS 1 REPRESENTAÇÃO DE DADOS Acredita-se que a criação de números veio com

Leia mais

Sistemas numéricos. Prof. Leandro Tonietto Introdução a computação e suas aplicações Curso de Segurança da Informação UNISINOS ago-09

Sistemas numéricos. Prof. Leandro Tonietto Introdução a computação e suas aplicações Curso de Segurança da Informação UNISINOS ago-09 Sistemas numéricos Prof. Leandro Tonietto Introdução a computação e suas aplicações Curso de Segurança da Informação UNISINOS ago-09 Introdução Tempos remotos... A necessidade de contar!! Animais, alimentos

Leia mais

Pontifícia Universidade Católica do Rio Grande do Sul Faculdade de Engenharia Disciplina de Lógica Computacional Aplicada. Prof. Dr.

Pontifícia Universidade Católica do Rio Grande do Sul Faculdade de Engenharia Disciplina de Lógica Computacional Aplicada. Prof. Dr. Índice 1. SISTEMAS NUMÉRICOS 1.1 Caracterização dos Sistemas Numéricos 1.2 Sistemas Numéricos em uma Base B Qualquer 1.2.1 Sistema de Numeração Decimal 1.2.2. Sistema de Numeração Binário 1.2.3 Sistema

Leia mais

Capítulo UM Bases Numéricas

Capítulo UM Bases Numéricas Capítulo UM Bases Numéricas 1.1 Introdução Quando o homem aprendeu a contar, ele foi obrigado a desenvolver símbolos que representassem as quantidades e grandezas que ele queria utilizar. Estes símbolos,

Leia mais

ELETRÔNICA DIGITAL 1

ELETRÔNICA DIGITAL 1 CENTRO FEDERAL DE ENSINO TECNOLÓGICO DE SANTA CATARINA UNIDADE SÃO JOSÉ ÁREA DE TELECOMUNICAÇÕES ELETRÔNICA DIGITAL 1 CAPÍTULO 1 SUMÁRIO INTRODUÇÃO...2 1. SISTEMAS DE NUMERAÇÃO...4 1.1 Introdução...4

Leia mais

Sistemas de Numeração. Professor: Rogério R. de Vargas INFORMÁTICA 2014/2

Sistemas de Numeração. Professor: Rogério R. de Vargas INFORMÁTICA 2014/2 INFORMÁTICA Sistemas de Numeração Professor: Rogério R. de Vargas 2014/2 Sistemas de Numeração São sistemas de notação usados para representar quantidades abstratas denominadas números. Um sistema numérico

Leia mais

Matemática Aplicada à Informática

Matemática Aplicada à Informática Matemática Aplicada à Informática Unidade 3.0 Sistemas numéricos Curso Técnico em Informática Aline Maciel Zenker SUMÁRIO SUMÁRIO... 2 CONVERSÃO DE BASE NUMÉRICA... 3 1 DECIMAL X BINÁRIO... 3 1.1 Onde

Leia mais

2. Representação Numérica

2. Representação Numérica 2. Representação Numérica 2.1 Introdução A fim se realizarmos de maneira prática qualquer operação com números, nós precisamos representa-los em uma determinada base numérica. O que isso significa? Vamos

Leia mais

Sistemas de numeração

Sistemas de numeração E Sistemas de numeração Aqui estão apenas números ratificados. William Shakespeare A natureza tem algum tipo de sistema de coordenadas geométrico-aritmético, porque a natureza tem todos os tipos de modelos.

Leia mais

INTRODUÇÃO AOS SISTEMAS LÓGICOS

INTRODUÇÃO AOS SISTEMAS LÓGICOS 1 INTRODUÇÃO AOS SISTEMAS LÓGICOS SISTEMA NUMÉRICO PROF. ANDRÉ MONTEVECCHI ANDRE.MONTEVECCHI@PROF.UNIBH.BR 19/02/2014 Prof. André Montevecchi / Profa. Anna Tostes 2 SUMÁRIO Sistemas Numéricos Notação Posicional

Leia mais

O número é algo abstrato que representa a idéia de quantidade, expressos através de símbolos previamente acordados.

O número é algo abstrato que representa a idéia de quantidade, expressos através de símbolos previamente acordados. Sistemas Numéricos Nos primórdios os homens primitivos não tinham a necessidade de contar, porém este conceito foi se transformando com o decorrer da história, o surgindo a escrita e do comércio nas civilizações

Leia mais

Capítulo 2. Representação de dados em sistemas computacionais

Capítulo 2. Representação de dados em sistemas computacionais Capítulo 2 Representação de dados em sistemas computacionais Adaptado dos transparentes das autoras do livro The Essentials of Computer Organization and Architecture Objectivos [1] Compreender o conceito

Leia mais

Unidade 3: Sistemas de Numeração Conversões Entre Quaisquer Bases e Aritmética em Bases Alternativas Prof. Daniel Caetano

Unidade 3: Sistemas de Numeração Conversões Entre Quaisquer Bases e Aritmética em Bases Alternativas Prof. Daniel Caetano Arquitetura e Organização de Computadores 1 Unidade 3: Sistemas de Numeração Conversões Entre Quaisquer Bases e Aritmética em Bases Alternativas Prof. Daniel Caetano Objetivo: Apresentar métodos genéricos

Leia mais

Ano letivo: 2012/2013. Sistemas de numeração. Pág.: 1/11. Escola profissional de Fafe SDAC. Trabalho elaborado por: Ana Isabel, nº905 TURMA 7.

Ano letivo: 2012/2013. Sistemas de numeração. Pág.: 1/11. Escola profissional de Fafe SDAC. Trabalho elaborado por: Ana Isabel, nº905 TURMA 7. Pág.: 1/11 Escola profissional de Fafe SDAC Trabalho elaborado por: Ana Isabel, nº905 TURMA 7.5 Pág.: 2/11 Índice Introdução... 3 Sistemas de numeração posicionais... 4 Representação na base 2... 4 Representação

Leia mais

Sistemas de Numeração e Conversão de Base

Sistemas de Numeração e Conversão de Base 1 No estudo de sistemas digitais recorre-se a diferentes sistemas de numeração. Sistema Decimal É o nosso sistema natural. Dígitos 0,1,2,...,9. Números superiores a 9; convencionamos o significado da posição

Leia mais

PC Fundamentos Revisão 4

PC Fundamentos Revisão 4 exatasfepi.com.br PC Fundamentos Revisão 4 André Luís Duarte...mas os que esperam no Senhor renovarão as suas forças; subirão com asas como águias; correrão, e não se cansarão; andarão, e não se fatigarão.is

Leia mais

Circuitos Digitais. Conteúdo. Sistema de Numeração e Códigos :: Conversões de Binário para Decimal SISTEMA DE NUMERAÇÃO E CÓDIGOS

Circuitos Digitais. Conteúdo. Sistema de Numeração e Códigos :: Conversões de Binário para Decimal SISTEMA DE NUMERAÇÃO E CÓDIGOS Ciência da Computação Sistemas de Numeração e Conversões Prof. Sergio Ribeiro Material adaptado das aulas do Prof. José Maria da UFPI Conteúdo Conversões de binário para decimal. Conversões de decimal

Leia mais

Unidade: Arquitetura de computadores e conversão entre

Unidade: Arquitetura de computadores e conversão entre Unidade: Arquitetura de computadores e conversão entre Unidade bases I: numéricas 0 Unidade: Arquitetura de computadores e conversão entre bases numéricas 1 - Conceitos básicos sobre arquitetura de computadores

Leia mais

Sistemas de Numeração. 1 Introdução aos sistemas numeração

Sistemas de Numeração. 1 Introdução aos sistemas numeração Sistemas de Numeração 1 Introdução aos sistemas numeração Sistemas de Numeração Base Decimal Base Binária Base Octal Base Hexadecimal Sistemas de numeração ria\base Oct tal\ Base He exadecimal l\base Biná

Leia mais

Organização de Computadores. Cálculos Binários e Conversão entre Bases Aritmética Binária

Organização de Computadores. Cálculos Binários e Conversão entre Bases Aritmética Binária Organização de Computadores Capítulo 4 Cálculos Binários e Conversão entre Bases Aritmética Binária Material de apoio 2 Esclarecimentos Esse material é de apoio para as aulas da disciplina e não substitui

Leia mais

UNIBRATEC Ensino Superior e Técnico em Informática DHD Desenvolvimento em Hardware

UNIBRATEC Ensino Superior e Técnico em Informática DHD Desenvolvimento em Hardware UNIBRATEC Ensino Superior e Técnico em Informática DHD Desenvolvimento em Hardware 1 Francisco Fechine Borges quinta-feira, 24 de agosto de 2006 UNIBRATEC Ensino Superior e Técnico em Informática DHD Desenvolvimento

Leia mais

1. Introdução 2. Representação de números 2.1. Conversão Numérica 2.2. Aritmética de ponto flutuante 3. Erros 3.1 Erros Absolutos e Relativos

1. Introdução 2. Representação de números 2.1. Conversão Numérica 2.2. Aritmética de ponto flutuante 3. Erros 3.1 Erros Absolutos e Relativos 1. Introdução 2. Representação de números 2.1. Conversão Numérica 2.2. Aritmética de ponto flutuante 3. Erros 3.1 Erros Absolutos e Relativos 1. Introdução O que é cálculo numérico? Corresponde a um conjunto

Leia mais

Sistemas Numéricos e a Representação Interna dos Dados no Computador

Sistemas Numéricos e a Representação Interna dos Dados no Computador Capítulo 2 Sistemas Numéricos e a Representação Interna dos Dados no Computador 2.0 Índice 2.0 Índice... 1 2.1 Sistemas Numéricos... 2 2.1.1 Sistema Binário... 2 2.1.2 Sistema Octal... 3 2.1.3 Sistema

Leia mais

Hit dos Bits. Série Matemática na Escola

Hit dos Bits. Série Matemática na Escola Hit dos Bits Série Matemática na Escola Objetivos 1. Apresentar o sistema de numeração binário; 2. Mostrar aplicações de sistemas de numeração diferentes do decimal; Hit dos Bits Série Matemática na Escola

Leia mais

Números base 2, 8, 10, 16. Sistemas da Computação Prof. Rossano Pablo Pinto, Msc. rossano at gmail com 2 semestre 2007

Números base 2, 8, 10, 16. Sistemas da Computação Prof. Rossano Pablo Pinto, Msc. rossano at gmail com 2 semestre 2007 Números base 2, 8, 10, 16 Sistemas da Computação Prof. Rossano Pablo Pinto, Msc. rossano at gmail com 2 semestre 2007 Tópicos Números binário, decimal, octal, hexadecimal Conversões entre bases Números

Leia mais

Aula 08. Sistemas Numéricos Conversões. Prof. Dr. Dilermando Piva Jr.

Aula 08. Sistemas Numéricos Conversões. Prof. Dr. Dilermando Piva Jr. 8 Aula 8 Sistemas Numéricos Conversões Prof. Dr. Dilermando Piva Jr. Site Disciplina: http://fundti.blogspot.com.br/ Sistemas Numéricos É um conjunto de dígitos para representar quantidades. Dígito símbolo

Leia mais

Representação de Dados

Representação de Dados Representação de Dados Introdução Todos sabemos que existem diferentes tipos de números: fraccionários, inteiros positivos e negativos, etc. Torna-se necessária a representação destes dados em sistema

Leia mais

Aula 2 Modelo Simplificado de Computador

Aula 2 Modelo Simplificado de Computador Aula 2 Modelo Simplificado de Computador Um computador pode ser esquematizado de maneira bastante simplificada da seguinte forma: Modelo Simplificado de Computador: Memória Dispositivo de Entrada Processador

Leia mais

Aula 2 Sistemas de Numeração (Revisão)

Aula 2 Sistemas de Numeração (Revisão) Aula 2 Sistemas de Numeração (Revisão) Anderson L. S. Moreira anderson.moreira@recife.ifpe.edu.br http://dase.ifpe.edu.br/~alsm 1 O que fazer com essa apresentação 2 Agenda Breve revisão da aula anterior

Leia mais

LÓGICA DE PROGRAMAÇÃO PARA ENGENHARIA INTRODUÇÃO À ORGANIZAÇÃO DE COMPUTADORES

LÓGICA DE PROGRAMAÇÃO PARA ENGENHARIA INTRODUÇÃO À ORGANIZAÇÃO DE COMPUTADORES LÓGICA DE PROGRAMAÇÃO PARA ENGENHARIA INTRODUÇÃO À ORGANIZAÇÃO DE COMPUTADORES Prof. Dr. Daniel Caetano 2012-1 Objetivos Apresentar o funcionamento do computador Apresentar a função da memória e dos dispositivos

Leia mais

Experimento. Guia do professor. Mágica das cartelas. Governo Federal. Ministério da Educação. Secretaria de Educação a Distância

Experimento. Guia do professor. Mágica das cartelas. Governo Federal. Ministério da Educação. Secretaria de Educação a Distância números e funções Guia do professor Experimento Mágica das cartelas Objetivos da unidade 1. Relembrar diferentes sistemas de numeração; 2. Aprofundar o estudo sobre a base binária; 3. Conhecer aplicações

Leia mais

Aritmética com Maple:

Aritmética com Maple: Aritmética com Maple: Capítulo 2 Objetivos: 1.Revisar os sistemas decimais e convertendo números para outras bases. 2.Usar Maple para converter números binários e hexadecimais para outras bases. 3.Distinguir

Leia mais

Lição 1 Introdução à programação de computadores

Lição 1 Introdução à programação de computadores Lição Introdução à programação de computadores Introdução à Programação I Objetivos Ao final desta lição, o estudante será capaz de: Identificar os diferentes componentes de um computador Conhecer linguagens

Leia mais

Laboratório - Uso da calculadora do Windows com endereços de rede

Laboratório - Uso da calculadora do Windows com endereços de rede Laboratório - Uso da calculadora do Windows com endereços de rede Objetivos Parte 1: Acesso à Calculadora do Windows Parte 2: Converter entre os sistemas numéricos Parte 3: Converter endereços IPv4 de

Leia mais

Codificação 1. Introdução. C 2 R r {! + codificação

Codificação 1. Introdução. C 2 R r {! + codificação Codificação 1. Introdução A unidade básica de memória é o digito binário (bit). Para representar diferentes em memória é necessário que o bit armazene pelo menos 2 valores. A informação pode ser armazenada

Leia mais

Programação de Computadores

Programação de Computadores Aula 01 Introdução Departamento de Computação Universidade Federal de Ouro Preto 2011.1 1 Processamento de dados 2 Organização de Computadores 3 Sistemas de Numeração Processamento de dados Processamento

Leia mais

Computadores XII: Aprendendo a Somar A4 Texto 3

Computadores XII: Aprendendo a Somar A4 Texto 3 Computadores XII: Aprendendo a Somar A4 Texto 3 http://www.bpiropo.com.br/fpc20051017.htm Sítio Fórum PCs /Colunas Coluna: B. Piropo Publicada em 17/10/2005 Autor: B.Piropo Na coluna anterior, < http://www.forumpcs.com.br/viewtopic.php?t=131250

Leia mais

1 - Processamento de dados

1 - Processamento de dados Conceitos básicos sobre organização de computadores 2 1 - Processamento de dados O que é processamento? O que é dado? Dado é informação? Processamento é a manipulação das informações coletadas (dados).

Leia mais

ICC - Aula 6. Ivan da Silva Sendin. November 17, 2014. Bits, portas logicas, flip-flops,... Numeros e Simbolos Exercicios

ICC - Aula 6. Ivan da Silva Sendin. November 17, 2014. Bits, portas logicas, flip-flops,... Numeros e Simbolos Exercicios ICC - Aula 6 Ivan da Silva Sendin November 17, 2014 Só existem 10 tipos de pessoas: as que entendem números binários e as que não entendem Bits 0 e 1 portas logicas operadores lógicos Circuitos f : {0,

Leia mais

Sistemas de Numeração

Sistemas de Numeração Arquitectura de Computadores I Engenharia Informática (11537) Tecnologias e Sistemas de Informação (6616) Sistemas de Numeração Nuno Pombo / Miguel Neto Arquitectura Computadores I 2014/2015 1 Conversão

Leia mais

Cálculo Numérico. ECA / 4 créditos / 60 h Introdução, Erros e Matlab. Ricardo Antonello. www.antonello.com.br

Cálculo Numérico. ECA / 4 créditos / 60 h Introdução, Erros e Matlab. Ricardo Antonello. www.antonello.com.br Cálculo Numérico ECA / 4 créditos / 60 h Introdução, Erros e Matlab Ricardo Antonello www.antonello.com.br Conteúdo Erros na fase de modelagem Erros na fase de resolução Erros de arredondamento Erros de

Leia mais

Sistemas de Numeração

Sistemas de Numeração Sistemas de Numeração Este material é uma adaptação das notas de aula dos professores Edino Fernandes, Juliano Maia, Ricardo Martins e Luciana Guedes Sistemas de Numeração Prover símbolos e convenções

Leia mais

Disciplina: : ELETRÔNICA DIGITAL

Disciplina: : ELETRÔNICA DIGITAL Disciplina: : ELETRÔNICA DIGITAL Professor: Júlio César Madureira Silva Julho 2011 1 Ementa: 1. Sistemas de numeração Numeração decimal Numeração binária Numeração octal Numeração

Leia mais

Exemplo de Subtração Binária

Exemplo de Subtração Binária Exemplo de Subtração Binária Exercícios Converta para binário e efetue as seguintes operações: a) 37 10 30 10 b) 83 10 82 10 c) 63 8 34 8 d) 77 8 11 8 e) BB 16 AA 16 f) C43 16 195 16 3.5.3 Divisão binária:

Leia mais

Conversão Entre Bases Numéricas.

Conversão Entre Bases Numéricas. Conversão Entre Bases Numéricas. Conversão de Decimal para Binário Para encontrar o número binário correspondente a um número decimal, são realizadas sucessivas divisões do número decimal por 2. Em seguida,

Leia mais

Aula 6. Sistemas de Numeração. SEL 0414 - Sistemas Digitais. Prof. Dr. Marcelo Andrade da Costa Vieira

Aula 6. Sistemas de Numeração. SEL 0414 - Sistemas Digitais. Prof. Dr. Marcelo Andrade da Costa Vieira Aula 6 Sistemas de Numeração SEL 0414 - Sistemas Digitais Prof. Dr. Marcelo Andrade da Costa Vieira Sistemas de Numeração 1. SISTEMA DECIMAL Composto por 10 símbolos ou numerais; Base 10 0, 1, 2, 3, 4,

Leia mais

Introdução à Lógica de Programação. / NT Editora. -- Brasília: 2013. 135p. : il. ; 21,0 X 29,7 cm.

Introdução à Lógica de Programação. / NT Editora. -- Brasília: 2013. 135p. : il. ; 21,0 X 29,7 cm. Autor José Jesse Gonçalves Graduado em Licenciatura em Matemática pela Universidade Estadual de São Paulo - UNESP, de Presidente Prudente (1995), com especialização em Análise de Sistemas (1999) e mestrado

Leia mais

Introdução. Introdução. Introdução. Organização Estruturada de Computadores. Introdução. Máquinas Multiníveis

Introdução. Introdução. Introdução. Organização Estruturada de Computadores. Introdução. Máquinas Multiníveis Ciência da Computação Arq. e Org. de Computadores Máquinas Multiníveis Prof. Sergio Ribeiro Computador digital máquina que resolve problemas executando uma série de instruções. Programa conjunto de instruções

Leia mais

PRETENSA HISTÓRIA DO SISTEMA DE NUMERAÇÃO

PRETENSA HISTÓRIA DO SISTEMA DE NUMERAÇÃO CALENDÁRIO MAIA DE YUCATAN (Boyer, Carl Benjamin,História da Matemática.São Paulo,Edgard Blücher, 1974) PRETENSA HISTÓRIA DO SISTEMA DE NUMERAÇÃO Rogério Rodrigues Há histórias que não podem ser contadas

Leia mais

Deste modo, por razões tecnológicas e conceituais, os números binários e a álgebra boole-ana formam a base de operação dos computadores atuais.

Deste modo, por razões tecnológicas e conceituais, os números binários e a álgebra boole-ana formam a base de operação dos computadores atuais. 25BCapítulo 2: Números e Aritmética Binária Os computadores armazenam e manipulam a informação na forma de números. Instruções de programas, dados numéricos, caracteres alfanuméricos, são todos representados

Leia mais

Disciplina: Organização de computadores

Disciplina: Organização de computadores Disciplina: Organização de computadores Professora: Carolina D. G. dos Santos E-mail: profcarolinadgs@gmail.com Página: profcarolinadgs.webnode.com.br Unip / Prof. a Carolina 1 à Computador Conceitos Básicos

Leia mais

Controladores Lógicos Programáveis CLP (parte-3)

Controladores Lógicos Programáveis CLP (parte-3) Controladores Lógicos Programáveis CLP (parte-3) Mapeamento de memória Na CPU (Unidade Central de Processamento) de um CLP, todas a informações do processo são armazenadas na memória. Essas informações

Leia mais

ARQUITETURA DE COMPUTADORES

ARQUITETURA DE COMPUTADORES ARQUITETURA DE COMPUTADORES Sistema de Numeração Prof Daves Martins Msc Computação de Alto Desempenho Email: daves.martins@ifsudestemg.edu.br Sistemas Numéricos Principais sistemas numéricos: Decimal 0,

Leia mais

Em um sistema de numeração de base b qualquer, um número positivo é representado pelo polinômio:

Em um sistema de numeração de base b qualquer, um número positivo é representado pelo polinômio: ELETRÔNICA DIGITAl I 1 SISTEMAS DE NUMERAÇÃO INTRODUÇÃO A base dos sistemas digitais são os circuitos de chaveamento (switching) nos quais o componente principal é o transistor que, sob o ponto de vista

Leia mais

Capítulo 2. Numéricos e Códigos. 2011 Pearson Prentice Hall. Todos os direitos reservados.

Capítulo 2. Numéricos e Códigos. 2011 Pearson Prentice Hall. Todos os direitos reservados. Capítulo 2 Sistemas Numéricos e Códigos slide 1 Os temas apresentados nesse capítulo são: Conversão entre sistemas numéricos. Decimal, binário, hexadecimal. Contagem hexadecimal. Representação de números

Leia mais

Revisando a Aritmética

Revisando a Aritmética Revisando a Aritmética 1.Revisando os sistemas decimais e convertendo números para outras bases. 2.Usando Maple para converter números binários e hexadecimais para outras bases. 3.Distinguindo frações

Leia mais

13 Números Reais - Tipo float

13 Números Reais - Tipo float 13 Números Reais - Tipo float Ronaldo F. Hashimoto e Carlos H. Morimoto Até omomentonoslimitamosaouso do tipo inteiro para variáveis e expressões aritméticas. Vamos introduzir agora o tipo real. Ao final

Leia mais

TEXTO DE REVISÃO: Uso da calculadora científica e potências de 10.

TEXTO DE REVISÃO: Uso da calculadora científica e potências de 10. TEXTO DE REVISÃO: Uso da calculadora científica e potências de 10. Caro aluno (a): No livro texto (Halliday) cap.01 - Medidas alguns conceitos muito importantes são apresentados. Por exemplo, é muito importante

Leia mais

ULA- Unidade Lógica Aritmética. Prof. Rômulo Calado Pantaleão Camara. Carga Horária: 60h

ULA- Unidade Lógica Aritmética. Prof. Rômulo Calado Pantaleão Camara. Carga Horária: 60h ULA- Unidade Lógica Aritmética. Prof. Rômulo Calado Pantaleão Camara Carga Horária: 60h Sumário Unidade Lógica Aritmetrica Registradores Unidade Lógica Operações da ULA Unidade de Ponto Flutuante Representação

Leia mais

REPRESENTAÇÃO DE DADOS EM SISTEMAS DE COMPUTAÇÃO AULA 03 Arquitetura de Computadores Gil Eduardo de Andrade

REPRESENTAÇÃO DE DADOS EM SISTEMAS DE COMPUTAÇÃO AULA 03 Arquitetura de Computadores Gil Eduardo de Andrade REPRESENTAÇÃO DE DADOS EM SISTEMAS DE COMPUTAÇÃO AULA 03 Arquitetura de Computadores Gil Eduardo de Andrade O conteúdo deste documento é baseado no livro Princípios Básicos de Arquitetura e Organização

Leia mais

Introdução à Programação de Computadores

Introdução à Programação de Computadores 1. Objetivos Introdução à Programação de Computadores Nesta seção, vamos discutir os componentes básicos de um computador, tanto em relação a hardware como a software. Também veremos uma pequena introdução

Leia mais

Informática Sistemas de Numeração. Profª. Me. Valéria Espíndola Lessa lessavaleria@gmail.com Valeria-lessa@uergs.edu.br

Informática Sistemas de Numeração. Profª. Me. Valéria Espíndola Lessa lessavaleria@gmail.com Valeria-lessa@uergs.edu.br Sistemas de Numeração Profª. Me. Valéria Espíndola Lessa lessavaleria@gmail.com Valeria-lessa@uergs.edu.br Outros Sistemas de Numeração Já sabemos que existem outros tipos de sistemas de numeração, além

Leia mais