!"#$%&'()!"*"+,$%&-$.$&,!#(!'/.,"& 0*".(%'$*&(&12$!',0,)$34"&5(& )$.6"!"&

Tamanho: px
Começar a partir da página:

Download "!"#$%&'()!"*"+,$%&-$.$&,!#(!'/.,"& 0*".(%'$*&(&12$!',0,)$34"&5(& )$.6"!"&"

Transcrição

1 !"#$%&'()!"*"+,$%&-$.$&,!#(!'/.,"& 0*".(%'$*&(&1$!',0,)$34"&5(& )$.6"!"&!"#$%&'#%()#*%'&"+,-)**".'/0113 8:;AB7C:DB6E41F43

2 $-.(%(!'$34"& G8!1;ADHI:AJK>&L9&)A<M>D>& U8!)>D=BL9<AJV9=&0BDAB=&

3 .().%"%&0*".(%'$,%&

4 .().%"%&0*".(%'$,%&!"

5 .().%"%&0*".(%'$,%& #"

6 .().%"%&0*".(%'$,%& )"!'(W'"& & Z9<:AL>& %>:BAB=& 0*".(%'$*& 6B>LBE9<=BLAL9& )$.6"!"&

7 ,!#(!'/.,"&0*".(%'$*& 1$!',0,)$34"&(&1$*,0,)$34"& & & X<>:9==>=&L9& 9&L9&O9D=;<AJK>& Z9D=;<AJK>& Z>L9?AQ9O& Z>L9?>=& (\;AJV9=&.9Q<9==K>&.9?AJK>&]^L& & & (=HOAHEA=& L9&)A<M>D>&

8 +("'()!"*"+,$%&

9 !,5$5(&& $Z"%'.$*&,!#(!'/.,"&0*".(%'$*& -"-*$34"& $Z"%'.$&

10 Z(!%.$34"&0*".(%'$*&

11 Z(!%.$34"&0*".(%'$*&

12 Y Z"5(*$+(Z& X1, X...

13 &1$!',0,)$34"&5(&)$.6"!"&

14 &1$!',0,)$34"&5(&)$.6"!"&

15 &1$!',0,)$34"&5(&)$.6"!"&

16 &1$!',0,)$34"&5(&)$.6"!"&

17 $*"Z('.,$& Z"5(*$+(Z&.(+.(%%4"&

18 $*"Z('.,$& E:4I78'95'K54E5'K5447?:K<5;:9:8'K5H':8'HB9:;L:8';5'I:H:;05'I5I:?' OPBQ?7R'S'*788<74.'TUVWX13

19 $*"Z('.,$& )A<M>D>& )>XAg& 59D=BLAL9g& %hh>g&& ->=BJK>&%>:B>?iQB:Ag&

20 $*"Z('.,$& w = a log w w = f * x b = a + b*log ( d, h,!...) x )H'AB7Y'3 w'z'f<5h:88:[3 d'z'9:e['3 h'z':?ib4:['3! Z'97;8<9:97'9:'H:97<4:13

21 \%)$%&')\/#)]"%& );I47'5BI4583 h d w d w d d d w h d w h d w log log log log log log log log log log log log! + =! + =! +! +! +! + =! +! +! + =! +! + = " # " # $ " " " " # $ " " " # " " # $%&'("()"&*+",-..#/"01(*1"34" $%&'("()"&*+",-..#/"01(*1"334" 56%78&6%(9":";&**",<=>>4" $*"Z('.,$&

22 $*"Z('.,$& &^*-"_`)&'!%\-+&'+%'"a-&*)')'),-"_`)&' "$%\G*#^!"&'/%#'#)]#)&&b%3 c! ]4:;97'9<8E748d5';58'9:958[3 c! P7I745K79:8NK<9:97[3 c! >:?I:'97'<;97E7;9e;K<:'7';54H:?<9:97'3 3958'478f9B58[3 c! (:<Q:'E47K<8d5'7'78NH:N=:8'K5H'=<J813

23 Y "'.$%& -"%%,6,*,5$5(%g& X1, X...

24 ,!'(*,+j!),$&$.',0,),$*& c! BN?<h:958'E54'HB<I:8'9JK:9:81' &7B8'B858'7'478I4<LM78'97'BN?<h:Ld5' 8d5'F7H'K5;07K<958[3 c! )Q<8I7H'5BI4:8'IJK;<K:8'AB7' E597H'874'BN?<h:9:8'K5H'5' H78H5'E45Ei8<I5j3 c! "'^;I7?<ke;K<:'"4NlK<:?'E597'874' BH:':?I74;:N=:'O5B'K5HE?7H7;I5X' E:4:')AB:LM78'"?5HJI4<K:8j3

25 ,!'(*,+j!),$&$.',0,),$*& c! c! c!!"#"$%&'&'($o\<;74:ld5'97':958xy'j'e:4i7'97'bh' E45K7885'97'K5;07K<H7;I5'7H'F:;K58'97'9:958'O)!!' m')'*+,-.(-$!&/0*1-3$&'$!"#"4"/-/x'e:4:'7;k5;i4:4' E:94M78'nI7<8'7H'9:958'7'k74:Ld5'97'<;654H:Ld5' OK5;07K<H7;I5X'AB7'78Id5'78K5;9<958';7?78[3 c!

26 3,!'(*,+j!),$&$.',0,),$*& *G!+^!"&3 c! \<;74:Ld5'97':958'O!%$5$!"#"$%&'&'(X[3 c! #7978'+7B4:<8'"4NlK<:<8'o'#+"'O677$5$6890&",$7-:",$ 7-#+*;/X[3 c! %"0?&'-X[3 c! c! "?k54<ih58']7;jnk58[3 c! );I47'5BI4:813

27 (%'5"&5(&)$%"&7`&!"#"$%&'&'($ E?:;I:Ld5'97'478I:B4:Ld5'7K5?ik<K:';5')8I:95'95'#<5'97'a:;7<4513

28 (%'5"&5(&)$%"&7`&5$'$&Z,!,!+& E?:;I:Ld5'97'478I:B4:Ld5'7K5?ik<K:';5')8I:95'95'#<5'97'a:;7<4513

29 ESTUDO DE CASO 1: DATA MINING DM: tenta descobrir padrões em grandes volumes de dados. O objenvo global do processo é o de extrair informação de um conjunto de dados numa estrutura compreensível para uso posterior (previsão); Fases: seleção de dados, pré- processamento dos dados, seleção das variáveis independentes, extração de conhecimento (padrões), interpretação e predição.

30 (%'5"&5(&)$%"&7`&5$'$&Z,!,!+&!?:88<lK:95478'(:87:958';:'^;8It;K<:Y'BN?<h:H':'E58<Ld5'97'BH'9:95' 7'8B:'9<8It;K<:'E:4:'47:?<h:4'K?:88<lK:Ld5'7.'K5;87AB7;I7H7;I7.' E479<Ld51'3!

31 ESTUDO DE CASO 1: DATA MINING DM: 4 Npos de distancias foram avaliadas; Vizinhos mas próximos: 1, 3 e 5; Variáveis: dap; dap e ht; dap, ht, da, db; dap, dm, ht, hc, da, db (todas); Transformação Logarítmica; Regressão: modelo de Schumacher- Hall; Critérios de avaliação: R aj, syx, AIC, BIC, análise de resíduos;

32 Distância Euclidiana Distância Euclidiana QuadráNca Distância ManhaCan Distância Chebyshev ) (... ) 3 3 ( ) ( ) 1 1 ( ), ( q Xn Xn p q X p X q X p X q X p X q p d = ) Xnq Xn p (... ) q X p X ( ) q X p X ( ) q X p X ( q ) p, ( d = Xn q Xn p... q X p X q X p X q X p X q ) p, ( dm = ) Xnq Xnp );...; ( q X p X ); ( q X p X ); ( q X p X max ( q ) p, ( dc = ESTUDO DE CASO 1: DATA MINING

33 ESTUDO DE CASO 1: DATA MINING X 1, X, X 3,..., X n = variáveis independentes (dap, dm, ht, hc, da, y db); X np, X npq = qualquer combinação de dois valores (p e q) específico de una variável independente; n = número de dados.

34 (%'5"&5(&)$%"&7`&5$'$&Z,!,!+& Statistical criteria of goodness of fit applied to 180 data of individual biomass of native trees of the Atlantic Forest, using Data Mining (!: 1 neighbor;!: 3 neighbors 1/d ;!: 3 neighbors 1/ d ; " : 5 neighbors 1/d ; ": 5 neighbors 1/d ) ( : all variables; : dbh, ht, da, db; : dbh, ht; : dbh).

35 (%'5"&5(&)$%"&7`&5$'$&Z,!,!+& :3 Syx% Syx% F3 +AD]>&L9& 7SkPl& Statistical criteria for selecting models applied to the data of individual biomass of native trees of the Atlantic Forest, using Data Mining. a) ( " : distance of Chebyshev; : Manhattan distance; : Quadratic Euclidean distance ; : Euclidian distance); (!: 1 neighbor;!: 3 neighbors 1/"d";!: 3 neighbors 1/"d" "; ": 5 neighbors 1/d"; " : 5 neighbors 1/d" "). b) SH: allometric model of Schumacher-Hall; EQ: DM Quadratic Euclidean distance; E: Euclidean distance; M: Manhattan distance; C: Chebyshev distance)."

36 (%'5"&5(&)$%"&7`&5$'$&Z,!,!+& \Y'!07FR807=.' v' =<h<;058.' #7k4788d5Y' &K0BH:K074m P:??3

37 ESTUDO DE CASO 1: DATA MINING CONCLUSÕES DM possibilita a obtenção de esnmanvas precisas de biomassa seca de árvores individuais na restauração da Mata AtlânNca; EsNmaNvas realizadas com o uso de SM são comparáveis às obndas pelo modelo Schumacher- Hall (Ganho de 16,5%); Para gerar esnmanvas mais precisas, a técnica DM requer mais dados e variáveis; A distância Chebyshev provou ser a mais adequada; A grande vantagem da técnica DM é que não é necessário respeitar as restrições estazsncas impostas pela regressão.

38

39 ESTUDO DE CASO : RNA, SVM, RF Dados de biomassa aérea de 545 árvores de acácia- negra (Acacia mearnsii) em uma plantação comercial no Estado do Rio Grande do Sul.

40 (%'5"&5(&)$%"&C`&.!$k&%#Zk&.0& A-"'/&&X'7H'BH:'E?:;I:Ld5'K5H74K<:?';5')8I:95'95'#<5']4:;97'95'&B?13

41 ESTUDO DE CASO : RNA, SVM, RF RNA: paradigma de aprendizagem e processamento autománco inspirado na forma como o sistema nervoso funciona. É uma interconexão de neurônios que trabalham juntos para produzir um eszmulo de saída. Podem ser unlizadas para reconhecer padrões de aprendizagem em relação das variáveis: Saída: biomassa Entrada: dap, h, etc.

42 (%'5"&5(&)$%"&C`&.!$k&%#Zk&.0& &p\y'k5;gb;i5'97':?k54<ih58'97':e47;9<h:95'8be74=<8<5;:95'e:4:' 4785?=74'E45F?7H:8'47?:K<5;:958'x'K?:88<lK:Ld5'7'47k4788d51':95'BH' K5;gB;I5'97'I47<;:H7;I5'7Q7HE?58'O:H58I4:X.'E597H58'45IB?:4':8' K?:8878'7'I47<;:4'BH:'&p\'E:4:'K5;8I4B<4'BH'H597?5'AB7'E47=e'5'NE5' 97'BH:';5=:':H58I4:13 /597'874'7HE47k:95' 7H'K?:88<lK:Ld5'7' 47k4788d513 -N?<h:'0<E74E?:;5813

43 ESTUDO DE CASO : RNA, SVM, RF RF: combinação de "árvores" preditoras (SVM), em que cada árvore depende dos valores de um vector aleatório testado independentemente e com a mesma distribuição em cada uma delas. Usa um conjunto de árvores preditoras e calcula os valores médios para esnmar um novo valor. Pode ser empregado em classificação e regressão. Calcula uma média de uma série de SVMs. Dados de treinamento Visualização de Random Forest depois do treinamento. Modelo de regressão logísnca depois do treinamento.

44 Técnica Modelo R aj syx syx% AIC Regressão Inteligência ArNficial ESTUDO DE CASO : RNA, SVM, RF Schumacher- Hall 0,88 17,3 36, ,61 Spurr 0,97 9,17 19,50.419,84 Kopezky 0,94 1,1 5,97.731,83 RNA 0,97 9,19 19,53.417,45 SVM 0,97 8,46 17,98.37,45 RF 0,99 4,81 10, ,0 Ganho de 47,6%

45 (%'5"&5(&)$%"&C`&.!$k&%#Zk&.0& &EB443 #>3

46 (%'5"&5(&)$%"&C`&.!$k&%#Zk&.0& G(H",I4" #>'Q'&EB443 #>'Q'&K0BH:K074mP:??3

47 ESTUDO DE CASO : RNA, SVM, RF CONCLUSÕES RNA, RF e SVM produzem esnmanvas precisas de biomassa seca de árvores individuais de acácia- negra; EsNmaNvas feitas usando estas técnicas de IA são comparáveis ou superiores às obndas por modelos de regressão; RF mostrou- se a mais acurada entre as técnicas de IA avaliadas, considerando os dados desta pesquisa (Ganho de 47,6%); A grande vantagem de técnicas de IA é que não é necessário respeitar as restrições impostas pela técnica de regressão.

48 CONSIDERAÇÕES FINAIS Inventários Florestais: evoluíram no Brasil e no mundo, mas... pouco; Técnicas promissoras: ainda não disponíveis em escala comercial; QuanNficação de C: um dos objenvos do inventário florestal; Várias técnicas de IA: cada qual com suas caracterísncas e potenciais usos na ciência florestal; IA tem sido pouco explorada (RNA, outras nada) em inventários florestais e na quannficação de carbono; Não exige uma relação matemánca pré- estabelecida e são menos exigentes estansncamente; Procurar manter a simplicidade, mas sempre inovar;

49

50 !,#(.%,5$5(&0(5(.$*&5"&-$.$!/& )$.*"%&."6(.'"&%$!1(''$k&-]858& -<>o9==><&la&dbe9<=blal9&09l9<a?&l>&-a<adf& =AD\;9_Ap;oX<8M<& "6.,+$5" )(!'."&6,"0,W&5(&-(%1,%$%&%"6.(&6,"Z$%%$&(&)$.6"!"& *$6".$'n.,"&5(&,!#(!'/.,"&0*".(%'$*$

17/10/2012. dados? Processo. Doutorado em Engenharia de Produção Michel J. Anzanello. Doutorado EP - 2. Doutorado EP - 3.

17/10/2012. dados? Processo. Doutorado em Engenharia de Produção Michel J. Anzanello. Doutorado EP - 2. Doutorado EP - 3. Definição de Data Mining (DM) Mineração de Dados (Data Mining) Doutorado em Engenharia de Produção Michel J. Anzanello Processo de explorar grandes quantidades de dados à procura de padrões consistentes

Leia mais

INTELIGÊNCIA ARTIFICIAL Data Mining (DM): um pouco de prática. (1) Data Mining Conceitos apresentados por

INTELIGÊNCIA ARTIFICIAL Data Mining (DM): um pouco de prática. (1) Data Mining Conceitos apresentados por INTELIGÊNCIA ARTIFICIAL Data Mining (DM): um pouco de prática (1) Data Mining Conceitos apresentados por 1 2 (2) ANÁLISE DE AGRUPAMENTOS Conceitos apresentados por. 3 LEMBRE-SE que PROBLEMA em IA Uma busca

Leia mais

MINERAÇÃO DE DADOS APLICADA. Pedro Henrique Bragioni Las Casas pedro.lascasas@dcc.ufmg.br

MINERAÇÃO DE DADOS APLICADA. Pedro Henrique Bragioni Las Casas pedro.lascasas@dcc.ufmg.br MINERAÇÃO DE DADOS APLICADA Pedro Henrique Bragioni Las Casas pedro.lascasas@dcc.ufmg.br Processo Weka uma Ferramenta Livre para Data Mining O que é Weka? Weka é um Software livre do tipo open source para

Leia mais

Avaliação Quantitativa de Biomassa Florestal Queimada

Avaliação Quantitativa de Biomassa Florestal Queimada A Multifuncionalidade da Floresta através da Exploração dos Recursos Florestais, Silvopastorícia, Lazer e Turismo Avaliação Quantitativa de Biomassa Florestal Queimada L o u s ã 1 0 A b r i l 2 0 0 8 Medida

Leia mais

O que é a ciência de dados (data science). Discussão do conceito. Luís Borges Gouveia Universidade Fernando Pessoa Versão 1.

O que é a ciência de dados (data science). Discussão do conceito. Luís Borges Gouveia Universidade Fernando Pessoa Versão 1. O que é a ciência de dados (data science). Discussão do conceito Luís Borges Gouveia Universidade Fernando Pessoa Versão 1.3, Outubro, 2015 Nota prévia Esta apresentação tem por objetivo, proporcionar

Leia mais

EQUAÇÕES HIPSOMÉTRICAS PARA PLANTIOS MISTOS DE RESTAURAÇÃO FLORESTAL NA MATA ATLÂNTICA EM SEROPÉDICA-RJ

EQUAÇÕES HIPSOMÉTRICAS PARA PLANTIOS MISTOS DE RESTAURAÇÃO FLORESTAL NA MATA ATLÂNTICA EM SEROPÉDICA-RJ EQUAÇÕES HIPSOMÉTRICAS PARA PLANTIOS MISTOS DE RESTAURAÇÃO FLORESTAL NA MATA ATLÂNTICA EM SEROPÉDICA-RJ Camila Mayer Massaroth Staub¹, Carlos Roberto Sanquetta 2, Ana Paula Dalla Corte 2, Mateus Niroh

Leia mais

Exemplo de Aplicação do DataMinig

Exemplo de Aplicação do DataMinig Exemplo de Aplicação do DataMinig Felipe E. Barletta Mendes 19 de fevereiro de 2008 INTRODUÇÃO AO DATA MINING A mineração de dados (Data Mining) está inserida em um processo maior denominado Descoberta

Leia mais

SISTEMAS DE APRENDIZADO PARA A IDENTIFICAÇÃO DO NÚMERO DE CAROÇOS DO FRUTO PEQUI LEARNING SYSTEMS FOR IDENTIFICATION OF PEQUI FRUIT SEEDS NUMBER

SISTEMAS DE APRENDIZADO PARA A IDENTIFICAÇÃO DO NÚMERO DE CAROÇOS DO FRUTO PEQUI LEARNING SYSTEMS FOR IDENTIFICATION OF PEQUI FRUIT SEEDS NUMBER SISTEMAS DE APRENDIZADO PARA A IDENTIFICAÇÃO DO NÚMERO DE CAROÇOS DO FRUTO PEQUI Fernando Luiz de Oliveira 1 Thereza Patrícia. P. Padilha 1 Conceição A. Previero 2 Leandro Maciel Almeida 1 RESUMO O processo

Leia mais

Inventário Florestal Nacional IFN-BR

Inventário Florestal Nacional IFN-BR Seminário de Informação em Biodiversidade no Âmbito do MMA Inventário Florestal Nacional IFN-BR Dr. Joberto Veloso de Freitas SERVIÇO FLORESTAL BRASILEIRO Gerente Executivo Informações Florestais Brasília,

Leia mais

CRM e Prospecção de Dados

CRM e Prospecção de Dados CRM e Prospecção de Dados Marília Antunes aula de 11 de Maio 09 6 Modelos de regressão 6.1 Introdução No capítulo anterior foram apresentados alguns modelos preditivos em que a variável resposta (a variável

Leia mais

Aula 5 Técnicas para Estimação do Impacto

Aula 5 Técnicas para Estimação do Impacto Aula 5 Técnicas para Estimação do Impacto A econometria é o laboratório dos economistas, que busca reproduzir o funcionamento do mundo de forma experimental, como se faz nas ciências naturais. Os modelos

Leia mais

Factor Analysis (FACAN) Abrir o arquivo ven_car.sav. Clique Extraction. Utilizar as 10 variáveis a partir de Vehicle Type.

Factor Analysis (FACAN) Abrir o arquivo ven_car.sav. Clique Extraction. Utilizar as 10 variáveis a partir de Vehicle Type. Prof. Lorí Viali, Dr. viali@pucrs.br; viali@mat.ufrgs.br; http://www.pucrs.br/famat/viali; http://www.mat.ufrgs.br/~viali/ Factor Analysis (FACAN) Abrir o arquivo ven_car.sav Utilizar as 10 variáveis a

Leia mais

Prof. Msc. Paulo Muniz de Ávila

Prof. Msc. Paulo Muniz de Ávila Prof. Msc. Paulo Muniz de Ávila O que é Data Mining? Mineração de dados (descoberta de conhecimento em bases de dados): Extração de informação interessante (não-trivial, implícita, previamente desconhecida

Leia mais

APRESENTAÇÃO DO PRODUTO. Mais que um software, o método mais eficaz para conciliar.

APRESENTAÇÃO DO PRODUTO. Mais que um software, o método mais eficaz para conciliar. APRESENTAÇÃO DO PRODUTO Mais que um software, o método mais eficaz para conciliar. Com Conciliac é possível conciliar automaticamente qualquer tipo de transação; Bancos, Cartões de Crédito e Débito, Contas

Leia mais

O Processo de KDD. Data Mining SUMÁRIO - AULA1. O processo de KDD. Interpretação e Avaliação. Seleção e Pré-processamento. Consolidação de dados

O Processo de KDD. Data Mining SUMÁRIO - AULA1. O processo de KDD. Interpretação e Avaliação. Seleção e Pré-processamento. Consolidação de dados SUMÁRIO - AULA1 O Processo de KDD O processo de KDD Interpretação e Avaliação Consolidação de dados Seleção e Pré-processamento Warehouse Data Mining Dados Preparados p(x)=0.02 Padrões & Modelos Conhecimento

Leia mais

Universidade Tecnológica Federal do Paraná UTFPR Programa de Pós-Graduação em Computação Aplicada Disciplina de Mineração de Dados

Universidade Tecnológica Federal do Paraná UTFPR Programa de Pós-Graduação em Computação Aplicada Disciplina de Mineração de Dados Universidade Tecnológica Federal do Paraná UTFPR Programa de Pós-Graduação em Computação Aplicada Disciplina de Mineração de Dados Prof. Celso Kaestner Poker Hand Data Set Aluno: Joyce Schaidt Versão:

Leia mais

UTILIZANDO O SOFTWARE WEKA

UTILIZANDO O SOFTWARE WEKA UTILIZANDO O SOFTWARE WEKA O que é 2 Weka: software livre para mineração de dados Desenvolvido por um grupo de pesquisadores Universidade de Waikato, Nova Zelândia Também é um pássaro típico da Nova Zelândia

Leia mais

Aprendizagem de Máquina

Aprendizagem de Máquina Aprendizagem de Máquina Alessandro L. Koerich Programa de Pós-Graduação em Informática Pontifícia Universidade Católica do Paraná (PUCPR) Horários Aulas Sala [quinta-feira, 7:30 12:00] Atendimento Segunda

Leia mais

Utilização Racional de Biomassa Florestal Mitos e Realidades

Utilização Racional de Biomassa Florestal Mitos e Realidades Utilização Racional de Biomassa Florestal Mitos e Realidades Paulo Canaveira Seminário Tecnicelpa Bioenergias. Novas Tendências 30 Março 2007 CELPA, Associação da Indústria Papeleira Pomos o Futuro no

Leia mais

Manejo Florestal Sustentável: Dificuldade Computacional e Otimização de Processos

Manejo Florestal Sustentável: Dificuldade Computacional e Otimização de Processos Manejo Florestal Sustentável: Dificuldade Computacional e Otimização de Processos Daniella Rodrigues Bezerra 1, Rosiane de Freitas Rodrigues 12, Ulisses Silva da Cunha 3, Raimundo da Silva Barreto 12 Universidade

Leia mais

Mobilização - construir parcerias e articulações integradas às dimensões ambientais: social, cultural e econômica.

Mobilização - construir parcerias e articulações integradas às dimensões ambientais: social, cultural e econômica. MISSÃO Desenvolver e implantar projetos que tenham como foco a geração de benefícios para o Planeta, provocando modificações conscientes, tanto no campo das ciências, quanto das atividades humanas. PRINCÍPIOS

Leia mais

Ciência dos Dados. bruno.domingues@intel.com. Preparado por Intel Corporation Bruno Domingues Principal Architect. segunda-feira, 5 de agosto de 13

Ciência dos Dados. bruno.domingues@intel.com. Preparado por Intel Corporation Bruno Domingues Principal Architect. segunda-feira, 5 de agosto de 13 Ciência dos Dados Preparado por Intel Corporation Bruno Domingues Principal Architect bruno.domingues@intel.com Homem na Lua Software Data: 1969 64kb, 2kb, RAM, Fortran Tem que funcionar! Apolo XI Velocidade:

Leia mais

Análise e visualização de dados utilizando redes neurais artificiais auto-organizáveis

Análise e visualização de dados utilizando redes neurais artificiais auto-organizáveis Análise e visualização de dados utilizando redes neurais artificiais auto-organizáveis Adriano Lima de Sá Faculdade de Computação Universidade Federal de Uberlândia 20 de junho de 2014 Adriano L. Sá (UFU)

Leia mais

Qlik Sense Desktop. Qlik Sense 1.1 Copyright 1993-2015 QlikTech International AB. Todos os direitos reservados.

Qlik Sense Desktop. Qlik Sense 1.1 Copyright 1993-2015 QlikTech International AB. Todos os direitos reservados. Qlik Sense Desktop Qlik Sense 1.1 Copyright 1993-2015 QlikTech International AB. Todos os direitos reservados. Copyright 1993-2015 QlikTech International AB. Todos os direitos reservados. Qlik, QlikTech,

Leia mais

KDD UMA VISAL GERAL DO PROCESSO

KDD UMA VISAL GERAL DO PROCESSO KDD UMA VISAL GERAL DO PROCESSO por Fernando Sarturi Prass 1 1.Introdução O aumento das transações comerciais por meio eletrônico, em especial as feitas via Internet, possibilitou as empresas armazenar

Leia mais

Data Mining: Conceitos e Técnicas

Data Mining: Conceitos e Técnicas Data Mining: Conceitos e Técnicas DM, DW e OLAP Data Warehousing e OLAP para Data Mining O que é data warehouse? De data warehousing para data mining Data Warehousing e OLAP para Data Mining Data Warehouse:

Leia mais

Análise de Regressão. Tópicos Avançados em Avaliação de Desempenho. Cleber Moura Edson Samuel Jr

Análise de Regressão. Tópicos Avançados em Avaliação de Desempenho. Cleber Moura Edson Samuel Jr Análise de Regressão Tópicos Avançados em Avaliação de Desempenho Cleber Moura Edson Samuel Jr Agenda Introdução Passos para Realização da Análise Modelos para Análise de Regressão Regressão Linear Simples

Leia mais

Florestas Energéticas: realidade, visão estratégica e demanda de ações

Florestas Energéticas: realidade, visão estratégica e demanda de ações 4º Congresso Internacional de Bioenergia Florestas Energéticas: realidade, visão estratégica e demanda de ações Curitiba, 20 de agosto de 2009 Alexandre Uhlig, PhD. uhlig@uol.com.br Roteiro 2 Introdução

Leia mais

Experimentos de Mineração de Dados em R Disciplina do curso de Pós-Graduação da UTFPR

Experimentos de Mineração de Dados em R Disciplina do curso de Pós-Graduação da UTFPR Experimentos de Mineração de Dados em R Disciplina do curso de Pós-Graduação da UTFPR Paulo Carvalho Diniz Junior CPGEI / UTFPR Avenida Sete de Setembro, 3165 Curitiba-PR - CEP 80.230-910 E-mail: paulo.carvalho.diniz@gmail.com

Leia mais

Utilização do Lidar para o planejamento e monitoramento de operações de exploração e estimativas de biomassa em florestas tropicais

Utilização do Lidar para o planejamento e monitoramento de operações de exploração e estimativas de biomassa em florestas tropicais Utilização do Lidar para o planejamento e monitoramento de operações de exploração e estimativas de biomassa em florestas tropicais Marcus Vinicio Neves d Oliveira Marcus.oliveira@embrapa.br Daniel de

Leia mais

EQUAÇÕES PARA ESTIMAR A QUANTIDADE DE CARBONO NA PARTE AÉREA DE ÁRVORES DE EUCALIPTO EM VIÇOSA, MINAS GERAIS 1

EQUAÇÕES PARA ESTIMAR A QUANTIDADE DE CARBONO NA PARTE AÉREA DE ÁRVORES DE EUCALIPTO EM VIÇOSA, MINAS GERAIS 1 533 EQUAÇÕES PARA ESTIMAR A QUANTIDADE DE CARBONO NA PARTE AÉREA DE ÁRVORES DE EUCALIPTO EM VIÇOSA, MINAS GERAIS 1 Carlos Pedro Boechat Soares 2 e Marcio Leles Romarco de Oliveira 3 RESUMO - Este trabalho

Leia mais

Pré processamento de dados II. Mineração de Dados 2012

Pré processamento de dados II. Mineração de Dados 2012 Pré processamento de dados II Mineração de Dados 2012 Luís Rato Universidade de Évora, 2012 Mineração de dados / Data Mining 1 Redução de dimensionalidade Objetivo: Evitar excesso de dimensionalidade Reduzir

Leia mais

Correlação e Regressão

Correlação e Regressão Correlação e Regressão Análise de dados. Tópico Prof. Dr. Ricardo Primi & Prof. Dr. Fabian Javier Marin Rueda Adaptado de Gregory J. Meyer, University of Toledo, USA; Apresentação na Universidade e São

Leia mais

Recuperação de imagens por conteúdo baseada em realimentação de relevância e classicador por oresta de caminhos ótimos

Recuperação de imagens por conteúdo baseada em realimentação de relevância e classicador por oresta de caminhos ótimos Recuperação de imagens por conteúdo baseada em realimentação de relevância e classicador por oresta de caminhos ótimos André Tavares da Silva Orientador: Léo Pini Magalhães Co-orientador: Alexandre Xavier

Leia mais

COM A TÉCNICA DE REGRESSÃO LINEAR SIMPLES

COM A TÉCNICA DE REGRESSÃO LINEAR SIMPLES DESENVOLVIMENTO DE UM SISTEMA PARA SIMULAÇÃO DE PREVISÃO DE PREÇO DE AÇÕES NA BOVESPA UTILIZANDO DATA MINING COM A TÉCNICA DE REGRESSÃO LINEAR SIMPLES Davi da Silva Nogueira Orientador: Prof. Oscar Dalfovo,

Leia mais

tipos de métodos, técnicas de inteligência artificial e técnicas de otimização. Por fim, concluise com as considerações finais.

tipos de métodos, técnicas de inteligência artificial e técnicas de otimização. Por fim, concluise com as considerações finais. 1. Introdução A previsão de vendas é fundamental para as organizações uma vez que permite melhorar o planejamento e a tomada de decisão sobre o futuro da empresa. Contudo toda previsão carrega consigo

Leia mais

Web Data Mining com R

Web Data Mining com R Web Data Mining com R Fabrício J. Barth fabricio.barth@gmail.com VAGAS Tecnologia e Faculdade BandTec Maio de 2014 Objetivo O objetivo desta palestra é apresentar conceitos sobre Web Data Mining, fluxo

Leia mais

3 Estado da arte em classificação de imagens de alta resolução

3 Estado da arte em classificação de imagens de alta resolução 37 3 Estado da arte em classificação de imagens de alta resolução Com a recente disponibilidade de imagens de alta resolução produzidas por sensores orbitais como IKONOS e QUICKBIRD se tornou-se possível

Leia mais

Legislação Ambiental Brasileira: Entraves, Sucessos e Propostas Inovadoras no Âmbito da Pequena Propriedade

Legislação Ambiental Brasileira: Entraves, Sucessos e Propostas Inovadoras no Âmbito da Pequena Propriedade Legislação Ambiental Brasileira: Entraves, Sucessos e Propostas Inovadoras no Âmbito da Pequena Propriedade Fórum sobre Área de Preservação Permanente e Reserva Legal na Paisagem e Propriedade Rural Piracicaba,

Leia mais

PROJETO DE REDES www.projetoderedes.com.br

PROJETO DE REDES www.projetoderedes.com.br PROJETO DE REDES www.projetoderedes.com.br Centro Universitário de Volta Redonda - UniFOA Curso Tecnológico de Redes de Computadores 5º período Disciplina: Tecnologia WEB Professor: José Maurício S. Pinheiro

Leia mais

IC Inteligência Computacional Redes Neurais. Redes Neurais

IC Inteligência Computacional Redes Neurais. Redes Neurais Universidade Federal do Rio de Janeiro PÓS-GRADUAÇÃO / 2008-2 IC Inteligência Computacional Redes Neurais www.labic.nce.ufrj.br Antonio G. Thomé thome@nce.ufrj.br Redes Neurais São modelos computacionais

Leia mais

Valeska Andreozzi 2010

Valeska Andreozzi 2010 Introdução Valeska Andreozzi 2010 Referências 3 Modelagem estatística 8 Modelagem................................................................... 9 Objetivos....................................................................

Leia mais

MODELOS HIPSOMÉTRICOS PARA Genipa americana L. EM PLANTIO HOMOGÊNEO NO MUNICÍPIO DE VITÓRIA DA CONQUISTA, BAHIA

MODELOS HIPSOMÉTRICOS PARA Genipa americana L. EM PLANTIO HOMOGÊNEO NO MUNICÍPIO DE VITÓRIA DA CONQUISTA, BAHIA MODELOS HIPSOMÉTRICOS PARA Genipa americana L. EM PLANTIO HOMOGÊNEO NO MUNICÍPIO DE VITÓRIA DA CONQUISTA, BAHIA Celsiane Manfredi¹, Thaiana Ferreira Alves¹, Patrícia Anjos Bittencourt Barreto² ¹Engenheira

Leia mais

Exemplos de políticas de compra responsável para produtos florestais. Exemplo 1

Exemplos de políticas de compra responsável para produtos florestais. Exemplo 1 Exemplos de políticas de compra responsável para produtos florestais Exemplo 1 Política de compra responsável produtos florestais Esta organização tem compromisso com a compra responsável de produtos florestais.

Leia mais

AJUSTE DE MODELOS MATEMÁTICOS PARA ESTIMATIVA DE BIOMASSA DE CAATINGA ARBÓREA NO ESTADO DA BAHIA

AJUSTE DE MODELOS MATEMÁTICOS PARA ESTIMATIVA DE BIOMASSA DE CAATINGA ARBÓREA NO ESTADO DA BAHIA AJUSTE DE MODELOS MATEMÁTICOS PARA ESTIMATIVA DE BIOMASSA DE CAATINGA ARBÓREA NO ESTADO DA BAHIA Aline Pereira das Virgens (1) Patrícia Anjos Bittencourt Barreto (2) Alessandro de Paula (2) Flávia Ferreira

Leia mais

Equações de Biomassa para Eucalyptus globulus em Portugal: Uma Avaliação do Carbono Envolvido na Exploração Florestal

Equações de Biomassa para Eucalyptus globulus em Portugal: Uma Avaliação do Carbono Envolvido na Exploração Florestal 202 Equações de Biomassa para Eucalyptus globulus em Portugal: Uma Avaliação do Carbono Envolvido na Exploração Florestal L. Fontes, M. Tomé, M. Baptista Coelho UTL. Instituto Superior de Agronomia. Centro

Leia mais

Potencial de técnicas de mineração de dados para modelos de alerta da ferrugem do cafeeiro

Potencial de técnicas de mineração de dados para modelos de alerta da ferrugem do cafeeiro Potencial de técnicas de mineração de dados para modelos de alerta da ferrugem do cafeeiro Cesare Di Girolamo Neto 1, Luiz Henrique Antunes Rodrigues 2, Thiago Toshiyuki Thamada 1, Carlos Alberto Alves

Leia mais

Aplicação de modelos simétricos transformados a estimação volumétrica do Eucalyptus no Pólo Gesseiro do Araripe-PE

Aplicação de modelos simétricos transformados a estimação volumétrica do Eucalyptus no Pólo Gesseiro do Araripe-PE Aplicação de modelos simétricos transformados a estimação volumétrica do Eucalyptus no Pólo Gesseiro do Araripe-PE Joseilme Fernandes Gouveia 12 David Venancio da Cruz 3 Mácio Augusto de Albuquerque 13

Leia mais

Sci. For., Piracicaba, v. 43, n. 105, p. 83-90, mar. 2015 MATERIAL E MÉTODOS

Sci. For., Piracicaba, v. 43, n. 105, p. 83-90, mar. 2015 MATERIAL E MÉTODOS Scientia Forestalis Modelagem do crescimento e produção para um povoamento de Eucalyptus utilizando dois métodos para quantificação do índice de local Growth and production modeling for a Eucalyptus population

Leia mais

Aprendizagem automática Mapas auto-organizativos (SOMs)

Aprendizagem automática Mapas auto-organizativos (SOMs) Aprendizagem automática Mapas auto-organizativos (SOMs) 1 Redes neuronais de Kohonen self-organizing maps (SOMS) Visão algébrica dum conjunto de informação (valores, sinais, magnitudes,...) vs. Visão topológica

Leia mais

http://www.publicare.com.br/site/5,1,26,5480.asp

http://www.publicare.com.br/site/5,1,26,5480.asp Página 1 de 7 Terça-feira, 26 de Agosto de 2008 ok Home Direto da redação Última edição Edições anteriores Vitrine Cross-Docking Assine a Tecnologística Anuncie Cadastre-se Agenda Cursos de logística Dicionário

Leia mais

Redes Neuronais e Aprendizagem Automática 1

Redes Neuronais e Aprendizagem Automática 1 Redes Neuronais e Aprendizagem Automática 2005/2006 17 a aula Fernando.Silva@ist.utl.pt Instituto Superior Técnico Redes Neuronais e Aprendizagem Automática 1 Sumário Árvores de decisão (continuação) Entropia.

Leia mais

MINERAÇÃO DE DADOS EDUCACIONAIS: UM ESTUDO DE CASO APLICADO AO PROCESSO SELETIVO DO IFSULDEMINAS CÂMPUS MUZAMBINHO

MINERAÇÃO DE DADOS EDUCACIONAIS: UM ESTUDO DE CASO APLICADO AO PROCESSO SELETIVO DO IFSULDEMINAS CÂMPUS MUZAMBINHO MINERAÇÃO DE DADOS EDUCACIONAIS: UM ESTUDO DE CASO APLICADO AO PROCESSO SELETIVO DO IFSULDEMINAS CÂMPUS MUZAMBINHO Fernanda Delizete Madeira 1 ; Aracele Garcia de Oliveira Fassbinder 2 INTRODUÇÃO Data

Leia mais

Tarefas e Técnicas de Mineração de Dados TAREFAS E TÉCNICAS DE MINERAÇÃO DE DADOS

Tarefas e Técnicas de Mineração de Dados TAREFAS E TÉCNICAS DE MINERAÇÃO DE DADOS Tarefas e Técnicas de Mineração de Dados TAREFAS E TÉCNICAS DE MINERAÇÃO DE DADOS Sumário Conceitos / Autores chave... 3 1. Introdução... 3 2. Tarefas desempenhadas por Técnicas de 4 Mineração de Dados...

Leia mais

TÉCNICAS DE COMPUTAÇÃO PARALELA PARA MELHORAR O TEMPO DA MINERAÇÃO DE DADOS: Uma análise de Tipos de Coberturas Florestais

TÉCNICAS DE COMPUTAÇÃO PARALELA PARA MELHORAR O TEMPO DA MINERAÇÃO DE DADOS: Uma análise de Tipos de Coberturas Florestais UNIVERSIDADE ESTADUAL DE PONTA GROSSA PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO APLICADA CRISTIAN COSMOSKI RANGEL DE ABREU TÉCNICAS DE COMPUTAÇÃO PARALELA PARA MELHORAR

Leia mais

4. Que tipos de padrões podem ser minerados. 5. Critérios de classificação de sistemas de Data Mining. 6. Tópicos importantes de estudo em Data Mining

4. Que tipos de padrões podem ser minerados. 5. Critérios de classificação de sistemas de Data Mining. 6. Tópicos importantes de estudo em Data Mining Curso de Data Mining - Aula 1 1. Como surgiu 2. O que é 3. Em que tipo de dados pode ser aplicado 4. Que tipos de padrões podem ser minerados 5. Critérios de classificação de sistemas de Data Mining 6.

Leia mais

QUANTIFICAÇÃO DA BIOMASSA EM PLANTIOS DE Pinus elliottii Engelm. em CLEVELÂNDIA PR 1. MEASUREMENT OF BIOMASS IN PLANTATIONS OF Pinus elliottii Engelm.

QUANTIFICAÇÃO DA BIOMASSA EM PLANTIOS DE Pinus elliottii Engelm. em CLEVELÂNDIA PR 1. MEASUREMENT OF BIOMASS IN PLANTATIONS OF Pinus elliottii Engelm. http://dx.doi.org/10.4322/rif.2015.008 ISSN impresso 0103-2674/on-line 2178-5031 QUANTIFICAÇÃO DA BIOMASSA EM PLANTIOS DE Pinus elliottii Engelm. em CLEVELÂNDIA PR 1 MEASUREMENT OF BIOMASS IN PLANTATIONS

Leia mais

I Curso sobre Pagamentos por Serviços Ambientais Porto Seguro, 1 de junho de 2010. Chris Holvorcem Instituto BioAtlântica

I Curso sobre Pagamentos por Serviços Ambientais Porto Seguro, 1 de junho de 2010. Chris Holvorcem Instituto BioAtlântica I Curso sobre Pagamentos por Serviços Ambientais Porto Seguro, 1 de junho de 2010 Chris Holvorcem Instituto BioAtlântica Localização Corredor Central da Mata Atlântica Sítio do Patrimônio Mundial Natural

Leia mais

Extração de Conhecimento a partir dos Sistemas de Informação

Extração de Conhecimento a partir dos Sistemas de Informação Extração de Conhecimento a partir dos Sistemas de Informação Gisele Faffe Pellegrini & Katia Collazos Grupo de Pesquisa em Eng. Biomédica Universidade Federal de Santa Catarina Jorge Muniz Barreto Prof.

Leia mais

Resultados dos Estudos Preliminares da Captura e Utilização de Biogás dos Aterros Sanitários de Uberaba e Santana do Paraíso

Resultados dos Estudos Preliminares da Captura e Utilização de Biogás dos Aterros Sanitários de Uberaba e Santana do Paraíso Resultados dos Estudos Preliminares da Captura e Utilização de Biogás dos Aterros Sanitários de Uberaba e Santana do Paraíso Belo Horizonte, 26 de Abril de 2011 Jim Michelsen SCS Engineers & Frederico

Leia mais

Informativo Bimestral da Siqueira Campos Associados agosto de 2013 - ano VII - Número 21. Catálogo de Treinamentos 2013

Informativo Bimestral da Siqueira Campos Associados agosto de 2013 - ano VII - Número 21. Catálogo de Treinamentos 2013 Informativo Bimestral da Siqueira Campos Associados agosto de 2013 - ano VII - Número 21 Nesta edição Lean Office - Dez dicas para economizar tempo no trabalho Estatística Seis Sigma - Estatística não

Leia mais

Data Mining II Modelos Preditivos

Data Mining II Modelos Preditivos Data Mining II Modelos Preditivos Prof. Doutor Victor Lobo Mestre André Melo Mestrado em Estatística e Gestão de Informação Objectivo desta disciplina Fazer previsões a partir de dados. Conhecer os principais

Leia mais

TÓPICOS AVANÇADOS EM ENGENHARIA DE SOFTWARE

TÓPICOS AVANÇADOS EM ENGENHARIA DE SOFTWARE TÓPICOS AVANÇADOS EM ENGENHARIA DE SOFTWARE Engenharia de Computação Professor: Rosalvo Ferreira de Oliveira Neto Estudos Comparativos Recentes - Behavior Scoring Roteiro Objetivo Critérios de Avaliação

Leia mais

Rafaelo Balbinot 1, Henrique Soares Koehler 2, Luciano Farinha Watzlawick 3, Edemilson Alexandre Marcene 4

Rafaelo Balbinot 1, Henrique Soares Koehler 2, Luciano Farinha Watzlawick 3, Edemilson Alexandre Marcene 4 AJUSTE DE EQUAÇÕES ALOMÉTRICAS PARA Araucaria angustifolia (Bert.) O. Ktze. UTILIZANDO ANÁLISE DE COMPONENTES PRINCIPAIS CONJUNTAMENTE COM ANÁLISE DE REGRESSÃO Rafaelo Balbinot 1, Henrique Soares Koehler

Leia mais

O objetivo da Mineração de Dados é extrair ou minerar conhecimento de grandes volumes de

O objetivo da Mineração de Dados é extrair ou minerar conhecimento de grandes volumes de MINERAÇÃO DE DADOS MINERAÇÃO DE DADOS O objetivo da Mineração de Dados é extrair ou minerar conhecimento de grandes volumes de dados. A mineração de dados é formada por um conjunto de ferramentas e técnicas

Leia mais

UNIVERSIDADE DE SÃO PAULO ESCOLA SUPERIOR DE AGRICULTURA LUIZ DE QUEIROZ DEPARTAMENTO DE CIÊNCIAS FLORESTAIS LCF-1581

UNIVERSIDADE DE SÃO PAULO ESCOLA SUPERIOR DE AGRICULTURA LUIZ DE QUEIROZ DEPARTAMENTO DE CIÊNCIAS FLORESTAIS LCF-1581 UNIVERSIDADE DE SÃO PAULO ESCOLA SUPERIOR DE AGRICULTURA LUIZ DE QUEIROZ DEPARTAMENTO DE CIÊNCIAS FLORESTAIS LCF-1581 Recursos Florestais em Propriedades Agrícolas Trabalho final: Projeto de adequação

Leia mais

Comparação entre as Redes Neurais Artificiais MLP, RBF e LVQ na Classificação de Dados. Fernando Nunes Bonifácio

Comparação entre as Redes Neurais Artificiais MLP, RBF e LVQ na Classificação de Dados. Fernando Nunes Bonifácio UNIOESTE Universidade Estadual do Oeste do Paraná CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS Colegiado de Ciência da Computação Curso de Bacharelado em Ciência da Computação Comparação entre as Redes Neurais

Leia mais

PROGRAMA/REFERENCIAL DO CURSO

PROGRAMA/REFERENCIAL DO CURSO Nome do curso Auditores Florestais PEFC e FSC Horário Designação e código UFCD Não aplicável Duração 09.00 às 19.00 horas 10.00 às 18.00 horas 87 horas Formador/a,, Luís Janicas, Paula Salazar, e Modalidade

Leia mais

Inteligência Empresarial. BI Business Intelligence. Business Intelligence 22/2/2011. Prof. Luiz A. Nascimento

Inteligência Empresarial. BI Business Intelligence. Business Intelligence 22/2/2011. Prof. Luiz A. Nascimento Inteligência Empresarial Prof. Luiz A. Nascimento BI Pode-se traduzir informalmente Business Intelligence como o uso de sistemas inteligentes em negócios. É uma forma de agregar a inteligência humana à

Leia mais

GOVERNO DO ESTADO DO AMAPÁ ESTRATÉGIAS PARA REDD NO AMAPÁ

GOVERNO DO ESTADO DO AMAPÁ ESTRATÉGIAS PARA REDD NO AMAPÁ GOVERNO DO ESTADO DO AMAPÁ ESTRATÉGIAS PARA REDD NO AMAPÁ INDICADORES Fronteira: Pará, Guiana Francesa e Suriname Municípios: 16 Área: 143.453,71 km 98% de cobertura florestal conservada População: 613.164

Leia mais

Complemento IV Introdução aos Algoritmos Genéticos

Complemento IV Introdução aos Algoritmos Genéticos Complemento IV Introdução aos Algoritmos Genéticos Esse documento é parte integrante do material fornecido pela WEB para a 2ª edição do livro Data Mining: Conceitos, técnicas, algoritmos, orientações e

Leia mais

TÉCNICAS DE APRENDIZAGEM DE MÁQUINA PARA PREVISÃO DE SUCESSO EM IMPLANTES DENTÁRIOS

TÉCNICAS DE APRENDIZAGEM DE MÁQUINA PARA PREVISÃO DE SUCESSO EM IMPLANTES DENTÁRIOS TÉCNICAS DE APRENDIZAGEM DE MÁQUINA PARA PREVISÃO DE SUCESSO EM IMPLANTES DENTÁRIOS Trabalho de Conclusão de Curso Engenharia da Computação Nome do Aluno: Carolina Baldisserotto Orientador: Prof. Adriano

Leia mais

Data Science e Big Data

Data Science e Big Data InforAbERTA IV Jornadas de Informática Data Science e Big Data Luís Cavique, Porto, março 2014 Agenda 1. Definições: padrões micro e Macro 2. Novos padrões para velhos problemas: Similis, Ramex, Process

Leia mais

Predição da Biomassa Aérea da Pinus pinaster Aiton por um Sistema de Equações Aditivas Integrado no Simulador Open Source ModisPinaster

Predição da Biomassa Aérea da Pinus pinaster Aiton por um Sistema de Equações Aditivas Integrado no Simulador Open Source ModisPinaster Silva Lusitana, nº Especial: 77-86, 2013 UEISSAFSV, INIAV, Oeiras, Portugal 77 Predição da Biomassa Aérea da Pinus pinaster Aiton por um Sistema de Equações Aditivas Integrado no Simulador Open Source

Leia mais

Aprendendo a Interpretar Dados Financeiros de uma Empresa Usando Estatística de Forma Simples e Prática

Aprendendo a Interpretar Dados Financeiros de uma Empresa Usando Estatística de Forma Simples e Prática Aprendendo a Interpretar Dados Financeiros de uma Empresa Usando Estatística de Forma Simples e Prática Ederson Luis Posselt (edersonlp@yahoo.com.br) Eduardo Urnau (dudaurnau@gmail.com) Eloy Metz (eloy@softersul.com.br)

Leia mais

Inteligência Computacional [2COP229]

Inteligência Computacional [2COP229] Inteligência Computacional [2COP229] Mestrado em Ciência da Computação Sylvio Barbon Jr barbon@uel.br (2/24) Tema Aula 1 Introdução ao Reconhecimento de Padrões 1 Introdução 2 Componentes clássicos da

Leia mais

Inteligência Artificial Aplicada no Auxílio a Tomadas de Decisões na Área de Saúde

Inteligência Artificial Aplicada no Auxílio a Tomadas de Decisões na Área de Saúde Inteligência Artificial Aplicada no Auxílio a Tomadas de Decisões na Área de Saúde Angelo Oliveira Moura*, Diego da Silva Andrade*, Wagner kazumitsu Kikuchi Associação Educacional Dom Bosco AEDB Estrada

Leia mais

Curso Superior de Tecnologia em Banco de Dados Disciplina: Projeto de Banco de Dados Relacional II Prof.: Fernando Hadad Zaidan

Curso Superior de Tecnologia em Banco de Dados Disciplina: Projeto de Banco de Dados Relacional II Prof.: Fernando Hadad Zaidan Faculdade INED Curso Superior de Tecnologia em Banco de Dados Disciplina: Projeto de Banco de Dados Relacional II Prof.: Fernando Hadad Zaidan 1 Unidade 4.5 2 1 BI BUSINESS INTELLIGENCE BI CARLOS BARBIERI

Leia mais

Aprendizagem de Máquina

Aprendizagem de Máquina Aprendizagem de Máquina Professor: Rosalvo Ferreira de Oliveira Neto Disciplina: Inteligência Artificial Tópicos 1. Definições 2. Tipos de aprendizagem 3. Paradigmas de aprendizagem 4. Modos de aprendizagem

Leia mais

AULAS 13, 14 E 15 Correlação e Regressão

AULAS 13, 14 E 15 Correlação e Regressão 1 AULAS 13, 14 E 15 Correlação e Regressão Ernesto F. L. Amaral 23, 28 e 30 de setembro de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de

Leia mais

Relatório Iniciação Científica

Relatório Iniciação Científica Relatório Iniciação Científica Ambientes Para Ensaios Computacionais no Ensino de Neurocomputação e Reconhecimento de Padrões Bolsa: Programa Ensinar com Pesquisa-Pró-Reitoria de Graduação Departamento:

Leia mais

Redes Complexas Aula 2

Redes Complexas Aula 2 Redes Complexas Aula 2 Aula passada Logística, regras Introdução e motivação Aula de hoje Redes sociais Descobrimento Características Redes Sociais Vértices: pessoas ou grupo de pessoas Arestas: algum

Leia mais

Vetor Quantização e Aglomeramento (Clustering)

Vetor Quantização e Aglomeramento (Clustering) (Clustering) Introdução Aglomeramento de K-partes Desafios do Aglomeramento Aglomeramento Hierárquico Aglomeramento divisivo (top-down) Aglomeramento inclusivo (bottom-up) Aplicações para o reconhecimento

Leia mais

Redes Neurais. Mapas Auto-Organizáveis. 1. O Mapa Auto-Organizável (SOM) Prof. Paulo Martins Engel. Formação auto-organizada de mapas sensoriais

Redes Neurais. Mapas Auto-Organizáveis. 1. O Mapa Auto-Organizável (SOM) Prof. Paulo Martins Engel. Formação auto-organizada de mapas sensoriais . O Mapa Auto-Organizável (SOM) Redes Neurais Mapas Auto-Organizáveis Sistema auto-organizável inspirado no córtex cerebral. Nos mapas tonotópicos do córtex, p. ex., neurônios vizinhos respondem a freqüências

Leia mais

Capítulo. Sistemas de apoio à decisão

Capítulo. Sistemas de apoio à decisão Capítulo 10 1 Sistemas de apoio à decisão 2 Objectivos de aprendizagem Identificar as alterações que estão a ter lugar na forma e função do apoio à decisão nas empresas de e-business. Identificar os papéis

Leia mais

E REGRESSÃO. Cesar Augusto Taconeli. Junho 2013. Taconeli, C. A. (DEST/UFPR) 7 de Junho de 2013 1 / 46 ...

E REGRESSÃO. Cesar Augusto Taconeli. Junho 2013. Taconeli, C. A. (DEST/UFPR) 7 de Junho de 2013 1 / 46 ... . ÁRVORES DE CLASSIFICAÇÃO E REGRESSÃO Cesar Augusto Taconeli Ilhéus-BA Junho 2013 Taconeli, C. A. (DEST/UFPR) 7 de Junho de 2013 1 / 46 Sumário 1 - Introdução; 2 - Apresentação do algoritmo; 3- Árvores

Leia mais

CRM e Prospecção de Dados

CRM e Prospecção de Dados CRM e Prospecção de Dados Marília Antunes aula de 4 de Maio 09 5 Modelos preditivos para classificação (continuação) 5.6 Modelos naive Bayes - classificador bayesiano simples O método ganha a designação

Leia mais

GETINGE FD1600 LAVADORA DE DESCARGA COM ABERTURA FRONTAL

GETINGE FD1600 LAVADORA DE DESCARGA COM ABERTURA FRONTAL GETINGE FD1600 LAVADORA DE DESCARGA COM ABERTURA FRONTAL 2 Getinge FD1600 Getinge FD1600 3 COMBATENDO A INFECÇÃO CRUZADA DE MANEIRA SIMPLES E EFETIVA Com seu projeto moderno e atraente, operação fácil

Leia mais

[2.000] (IP:281473857278462

[2.000] (IP:281473857278462 1. [2.000] (IP:281473857278462 19:36:32 19:32:41 56:09 4.486) Considere e discuta a seguinte afirmativa: "Nem sempre o modelo com o melhor R² não-ajustado é o mais adequado". A afirmativa é verdadeira,

Leia mais

BUSINESS INTELLIGENCE, O ELEMENTO CHAVE PARA O SUCESSO DAS ORGANIZAÇÕES.

BUSINESS INTELLIGENCE, O ELEMENTO CHAVE PARA O SUCESSO DAS ORGANIZAÇÕES. Encontro de Ensino, Pesquisa e Extensão, Presidente Prudente, 22 a 25 de outubro, 2012 88 BUSINESS INTELLIGENCE, O ELEMENTO CHAVE PARA O SUCESSO DAS ORGANIZAÇÕES. Andrios Robert Silva Pereira, Renato Zanutto

Leia mais

Projeto 6.12 Aplicação de Data Mining a Dados de Avaliação da Qualidade de Produtos de Software

Projeto 6.12 Aplicação de Data Mining a Dados de Avaliação da Qualidade de Produtos de Software Programa Brasileiro de Qualidade e Produtividade Projeto 6.12 Aplicação de Data Mining a Dados de Avaliação da Qualidade de Produtos de Software Maria Teresa Villalobos Newton Roy Pampa Quispe Regina Maria

Leia mais

PROJETO AUDIOVISUAL FORMATO: CURTA-METRAGEM 6 MINUTOS LINGUAGEM: HÍBRIDA (CINEMATOGRÁFICA TELEVISIVA)

PROJETO AUDIOVISUAL FORMATO: CURTA-METRAGEM 6 MINUTOS LINGUAGEM: HÍBRIDA (CINEMATOGRÁFICA TELEVISIVA) PROJETO AUDIOVISUAL PROJETO AUDIOVISUAL FORMATO: CURTA-METRAGEM 6 MINUTOS LINGUAGEM: HÍBRIDA (CINEMATOGRÁFICA TELEVISIVA) GÊNERO: DOCUMENTÁRIO/ JORNALÍSTICO OBJETIVO: INSTITUCIONAL E EDUCATIVO O projeto

Leia mais

: Transforme seu plantio em um fundo de investimento ativo. The single source for Forest Resource Management

: Transforme seu plantio em um fundo de investimento ativo. The single source for Forest Resource Management : Transforme seu plantio em um fundo de investimento ativo The single source for Forest Resource Management 2 Tecnologia laser aerotransportada LiDAR LiDAR é um sistema ativo de sensoriamento remoto, originalmente

Leia mais

Marcio Cataldi 1, Carla da C. Lopes Achão 2, Bruno Goulart de Freitas Machado 1, Simone Borim da Silva 1 e Luiz Guilherme Ferreira Guilhon 1

Marcio Cataldi 1, Carla da C. Lopes Achão 2, Bruno Goulart de Freitas Machado 1, Simone Borim da Silva 1 e Luiz Guilherme Ferreira Guilhon 1 Aplicação das técnicas de Mineração de Dados como complemento às previsões estocásticas univariadas de vazão natural: estudo de caso para a bacia do rio Iguaçu Marcio Cataldi 1, Carla da C. Lopes Achão

Leia mais

Identificando necessidades e estabelecendo requisitos

Identificando necessidades e estabelecendo requisitos Identificando necessidades e estabelecendo requisitos Resumo A importância de requisitos Diferentes tipos de requisitos Coleta de dados para requisitos Descrição de tarefas: Cenários Casos de uso Casos

Leia mais

característica dos dados, cálculos, incertezas e sistema de monitoramento Ane Alencar

característica dos dados, cálculos, incertezas e sistema de monitoramento Ane Alencar Carbono florestal nos estados da Amazônia Brasileira: característica dos dados, cálculos, incertezas e sistema de monitoramento Ane Alencar Conteúdo O que é o carbono? Como podemos medir? Quais os tipos

Leia mais

FACULDADE DE CIÊNCIAS SOCIAIS E TECNOLÓGICAS FACITEC CURSO:

FACULDADE DE CIÊNCIAS SOCIAIS E TECNOLÓGICAS FACITEC CURSO: FACULDADE DE CIÊNCIAS SOCIAIS E TECNOLÓGICAS FACITEC CURSO: Bacharelado em Sistemas de Informação DISCIPLINA: Fundamentos de Sistemas de Informação PROFESSOR: Paulo de Tarso Costa de Sousa TURMA: BSI 2B

Leia mais

Tópico 3. Limites e continuidade de uma função (Parte 2)

Tópico 3. Limites e continuidade de uma função (Parte 2) Tópico 3. Limites e continuidade de uma função (Parte 2) Nessa aula continuaremos nosso estudo sobre limites de funções. Analisaremos o limite de funções quando o x ± (infinito). Utilizaremos o conceito

Leia mais

Métodos e Algoritmos de Data Mining(parte 1)

Métodos e Algoritmos de Data Mining(parte 1) Robert Groth Métodos e Algoritmos de Data Mining(parte 1) Usama Fayyad et al 1 Métodos e Algoritmos de Data Mining Soluções distância (K-NN e clustering) Naïve-Bayes Arvores de decisão Regras de associação

Leia mais

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010. Matemática Essencial Extremos de funções reais Departamento de Matemática - UEL - 2010 Conteúdo Ulysses Sodré http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Leia mais