DISPOSITIVOS A ESTADO SÓLIDO FUNCIONANDO COMO CHAVES ELETRÔNICAS. Impurezas em materiais semicondutores e as junções PN

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "DISPOSITIVOS A ESTADO SÓLIDO FUNCIONANDO COMO CHAVES ELETRÔNICAS. Impurezas em materiais semicondutores e as junções PN"

Transcrição

1 DISPOSITIVOS A ESTADO SÓLIDO FUNCIONANDO COMO CHAVES ELETRÔNICAS Os dispositivos a estado sólido podem ser usados como amplificadores ou como chaves. Na eletrônica de potência, eles são usados principalmente como chaves e com freqüência são comparados aos interruptores mecânicos devido as suas similaridades. Os dispositivos de estado sólido são superiores aos mecânicos porque têm vida muito longa e podem ser comutados em freqüências tão elevadas como várias dezenas de quilohertz. Entretanto, os dispositivos a estado sólido são mais delicados, suas propriedades são mais complicadas e devemos ter cuidado em usá-los. Nesta seção, serão discutidas a configuração física básica e algumas propriedades de dispositivos a estado sólido seguida de uma explanação de alguns circuitos de comutação fundamentais para C.C. e C.A. Impurezas em materiais semicondutores e as junções PN Vamos fazer rapidamente uma retrospectiva sobre materiais semicondutores antes de darmos seqüência ao que nos propusemos a fazer nessa seção, ou seja, o estudo de dispositivos semicondutores atuando como chaves eletrônicas. A maioria dos dispositivos a estado sólido, como vimos, é feita de silício cristalino. O silício é um elemento que pertence à quarta coluna da tabela periódica. Isto significa que os átomos do silício possuem quatro elétrons na camada de valência (ou orbital mais afastado do núcleo), como mostra a Fig. 1(a). A estrutura cristalina do silício é similar àquela do diamante, como ilustrado na Fig. 1(b). Nesta estrutura, cada átomo compartilha um destes elétrons de valência com um de seus quatro átomos vizinhos. Em tal estrutura chamada covalente é como se cada átomo tivesse oito elétrons de valência. Quando os átomos possuem oito elétrons em sua camada de valência eles são muito estáveis. Tal estrutura cristalina é geralmente ilustrada pela representação bidimensional da Fig. 1(c). O silício puro ou intrínseco tem pouco valor como dispositivo semicondutor porque tem a condutividade muito baixa devido à estrutura cristalina estável. Para ser usado como diodo ou transistor, o semicondutor deve possuir pequenas concentrações de impurezas. Se, durante a produção de um único cristal de silício, forem introduzidos alguns átomos de um elemento da quinta coluna da tabela periódica, estes átomos vão ocupar várias posições ao longo do cristal (veja Fig. 2(a)). Uma vez que, na vizinhança imediata de cada átomo da impureza, há quatro átomos de silício, então há quatro elétrons de valência destes átomos disponíveis para formar ligações covalentes. Logo, um dos elétrons que pertence ao átomo da impureza não é utilizado na ligação covalente. Estes elétrons em excesso são ligados fracamente ao núcleo, e podem se mover livremente à temperatura ambiente. Este tipo de semicondutor dopado é chamado do tipo N, onde N é derivado da carga negativa da partícula em excesso. O outro tipo de semicondutor dopado é chamado um material do tipo P. Ele é formado pela dopagem com átomos de um elemento da terceira coluna da tabela periódica durante a produção do cristal (veja Fig. 2(b)). Uma vez que o átomo trivalente da impureza é cercado por quatro átomos de silício, falta um elétron para uma ligação covalente em potencial. Este déficit de um elétron comporta-se como um portador positivo de carga e é conhecido como lacuna. Da mesma forma que os elétrons adicionais do material do tipo N, 1

2 as lacunas, num material do tipo P, estão fracamente ligadas aos núcleos de seus átomos e podem mover-se livremente no material quando um campo elétrico é aplicado à temperatura ambiente. Fig. 1 - (a) Quatro dos quatorze elétrons em um átomo de silício estão na órbita ou camada de valência (órbita mais distante do núcleo); (b) A estrutura cristalina do silício é similar à estrutura muito estável de carbono do diamante. Cada átomo é cercado por quatro vizinhos imediatos; (c) Este arranjo é ilustrado numa representação bidimensional. Fig. 2 - Cristal de silício com átomos de impureza: (a) Quando um átomo pentavalente é introduzido, seu quinto elétron de valência está fracamente ligado ao núcleo e pode transformar-se num portador de carga negativa; (b) Se um átomo trivalente é adicionado, a vacância, ou o déficit de um elétron de valência, conhecido como lacuna, pode mover-se livremente devido à energia térmica à temperatura ambiente e pode comportar-se como um portador de carga positivo. Na maioria dos dispositivos semicondutores, as regiões do tipo N e do tipo P existem em um único cristal. O dopante usado mais freqüentemente para o material do tipo P é o boro (b), enquanto que os dopantes típicos para materiais do tipo N são fósforo (P) e arsênico (As). A zona da transição do tipo N para o tipo P é conhecida como uma junção 2

3 PN. Uma junção PN tem uma função importante, e os dispositivos a estado sólido têm uma ou mais junções PN. Tipos de dispositivos a estado sólido Há muitos tipos diferentes de dispositivos a estado sólido. A seguir apresentamos alguns que têm sido usados por muito tempo em equipamentos de eletrônica de potência: (1) diodos; (2) transistores bipolares; (3) MOSFETs de potência (transistores de efeito de campo com tecnologia MOS de Metal-Óxido-Semicondutor); (4) grupo tiristores, que podem ser classificados em: (a) tiristor (também conhecido como o tiristor de bloqueio reverso ou SCR, significando Retificador Controlado de Silício); (b) Tiristores GTO (tiristores Gate turn-off); (c) triacs (conhecidos também como tiristores de corrente alternada). Os símbolos e as características básicas destes dispositivos (com exceção do GTO e do triac) são sumarizados na tabela 1. Tabela 1 Principais dispositivos a estado sólido Dispositivo Símbolo Característica Diodo Ânodo Cátodo Dispositivo mais simples possuindo características retificadoras. De todos os dispositivos a estado sólido é o que é capaz de trabalhar com potência mais elevada (por exemplo, 4000 V/3000 A). Há tipos especiais de diodos tais como diodos Zener, diodos de rápida reversão-recuperação, etc. Transistores Bipolares Coletor Comutação implementada pela corrente de base. Capacidade de potência média. Circuito de controle mais simples que o do Base tiristor e mais complexo que o do MOSFET. A maioria é NPN, mas os PNP também são utilizados. MOSFETs de potência Tiristores Gate Emissor Dreno Fonte Ânodo Cátodo Capacidade de potência é baixa, mas acionamento paralelo é fácil. Comutação em alta freqüência é possível (isto é, tão alta quanto 1 MHz). Interfaceamento simples com microprocessadores ou CIs. Capacidade de potência é tão elevada quanto à do diodo. Adequado para aplicações de alta potência. São necessários circuitos complexos de comutação e para desligamento. Freqüência de comutação menor que a requerida para transistor bipolar Os dispositivos recentemente introduzidos são o SIT (transistor de indução estático), o tiristor SI, e o IGBT (transistor bipolar de porta isolada). 3

4 Examinaremos primeiramente as diferenças entre o diodo, o transistor bipolar, o MOSFET, e os vários tiristores, uma vez que, são considerados dispositivos básicos de comutação em termos de construção do dispositivo e de funções básicas. Fig. 3 - Seção transversal de um diodo de potência. Diodos e junções PN Primeiramente, vamos estudar as características básicas de uma junção PN. Figura 3 mostra a seção transversal de um diodo de potência que tem uma junção PN. Um diodo é um cristal único de silício, com um lado do silício dopado com os átomos de impureza do tipo P e o outro lado com impureza do tipo N. É conhecido que uma junção PN tem a propriedade de um retificador isto é, permite a corrente fluir em um sentido, mas bloqueia a corrente em sentido oposto. Melhor que discussões fisicamente detalhadas, uma explanação simples, mas útil, de como uma junção PN exibe a propriedade de um retificador, é dada na Fig. 4. Como já vimos, quando um potencial positivo é aplicado ao ânodo com relação ao cátodo, a junção PN está polarizada diretamente e por ela pode fluir corrente. Ao contrário, quando a junção PN está polarizada reversamente, isto é, quando um potencial negativo é aplicado ao ânodo com relação ao cátodo, o diodo obstrui o fluxo de corrente. Assim, a polarização direta é equivalente ao estado ON e a polarização reversa ao estado OFF. Conseqüentemente, quando um diodo está conectado como àquele do circuito mostrado na Tabela 2, pelo diodo fluirá uma corrente na metade positiva do ciclo do potencial aplicado de c.a. e a corrente será obstruída na metade negativa do ciclo. A Figura 5 mostra as curvas características (corrente-versus-tensão) de dois diodos típicos. Como ilustrado pela curva contínua, em um diodo normal, a corrente pode fluir somente quando for aplicado ao ânodo um potencial positivo maior que 0,6 V com relação ao cátodo, enquanto, na região reversamente polarizada, somente uma corrente insignificante pode fluir. Como mostra a curva tracejada, entretanto, no diodo Zener um tipo de avalanche pode ocorrer devido ao efeito túnel em um potencial reverso relativamente baixo conhecido como potencial de Zener. Nesta região de avalanche o dispositivo mantém praticamente inalterada a tensão para grandes variações de corrente. 4

5 Esta propriedade é utilizada em circuitos de estabilização de tensão. Em alguns diodos, o potencial de Zener é tão baixo quanto 3 V mas em outros é tão elevado quanto 20 V. Tabela 2 Classificação dos dispositivos semicondutores baseada na estrutura PN (a) (b) (c) Fig. 4 Como trabalha a junção PN. (a) Quando nenhum potencial é aplicado ao diodo, as lacunas ou as partículas positivamente carregadas estão livres para moverem-se na região P, e os elétrons ou as partículas negativas estão livres para moverem-se na região N; (b) Quando diretamente polarizado, isto é, quando um potencial estiver aplicado como mostrado, as lacunas e os elétrons migram para a junção PN devido ao campo elétrico em cada região. Na junção, as lacunas e os elétrons combinam-se, tornando-se neutros e desaparecendo. Entretanto, novas lacunas são fornecidas pelo ânodo e novos elétrons são fornecidos pelo cátodo. Assim, fluxos contínuos de ambos os tipos de partículas são mantidos; isto é uma corrente elétrica. (3) Quando reversamente polarizado, isto é, quando um potencial estiver aplicado como mostrado, as lacunas são atraídas pelo potencial negativo no ânodo e são absorvidos por ele, e os elétrons são atraídos pelo potencial positivo no cátodo e absorvidos por ele. Assim, todos os portadores da carga são evacuados do diodo; nenhuma corrente fluirá. 5

6 Fig. 5 - Características (corrente-versus-tensão) de diodos. A curva contínua é para um diodo retificador normal, e a curva tracejada é para o diodo Zener que tem características de tensão constante na região reversamente polarizada. Transistores bipolares Um transistor de junção bipolar tem duas junções PN em ambas construções: P-N-P ou N- P-N. Não importando o tipo, a região central imprensada pelas duas junções é chamada base e é denotada por B. Uma das duas regiões restantes é maior que a outra, como visto no transistor planar de tripla difusão, ilustrado na Fig. 6; esta região é chamada de coletor e denotada por C. O resto é o emissor (E). Fig. 6 Vista em corte da estrutura de uma unidade de um transistor planar de tripla difusão fabricado em um substrato altamente dopado denotado por N ++. Observa-se que a área do coletor é muito maior que a do emissor. Há uma película de SiO 2 recobrindo o limite das junções PN entre o coletor e a base que serve para aumentar o potencial que o transistor pode suportar. São fabricadas centenas ou milhares unidades, sobre um substrato, e conectadas em paralelo para poder trabalhar com correntes elevadas. Princípios dos transistores A Figura 7 ilustra um transistor NPN conectado na configuração emissor-comum. Neste tipo de conexão, a base é usada como terminal de entrada e o coletor como terminal de 6

7 saída, enquanto o emissor é comum a ambos os estágios de entrada e de saída. Um potencial E 1 de C.C. relativamente baixo, mais um potencial alternado v i são aplicados entre a base e o emissor. O potencial E 2 de C.C., do outro lado, é mais elevado do que E 1. Assim, um potencial reverso é aplicado à junção PN entre o coletor e a base. Uma vez que a junção PN entre B e E está polarizada diretamente, elétrons livres migram para a região da base vindos do emissor. Fig. 7 - Movimento de portadores de carga na conexão emissor-comum. A maioria dos elétrons injetados na base, vindos do emissor, migram por difusão para a região do coletor produzindo a corrente de coletor. Alguns elétrons se recombinam com lacunas na base. Uma corrente flui para base para fornecer as lacunas perdidas. É muito importante que a região da base seja fina para que a maioria dos elétrons, vindos do emissor, ultrapasse a região da base e entre na região de coletor. Nesta região os elétrons são acelerados para o terminal de coletor pelo potencial reverso E 2. Quando o sinal potencial v i é mais elevado, mais elétrons migrarão do emissor à região de coletor produzindo mais corrente. Por outro lado, quando v i é negativo o suficiente para reverter a polarização da junção base-emissor, nenhum elétron migrará para a base ou o coletor; não haverá corrente de coletor. Como indicado antes, a região da base é bastante fina de forma que, a maioria dos elétrons injetados, do emissor à base, entra na região de coletor, não tendo nenhuma oportunidade de se recombinar com uma lacuna. Entretanto, a probabilidade de recombinação entre uma lacuna e um elétron na base não é absolutamente zero. Alguns elétrons e lacunas são perdidos devido à recombinação. Para fornecer lacunas para a região da base, uma corrente flui da fonte de alimentação da entrada (E 1 e v i ) para a base; esta é a corrente de base. Quando a corrente de coletor varia com tempo, o potencial através do resistor R L da carga também variará. A Figura 8 ilustra duas relações entre v i e v o ; uma é para um sinal de entrada senoidal e a outra é para uma onda quadrada como sinal de entrada. Observa-se que um transistor pode ser usado como um amplificador de sinal ou como uma chave a estado sólido. Quando os transistores são usados como amplificadores para acionamento de motores, a configuração simples emissor-comum não é empregada porque nesta configuração parâmetros, tal como o fator de amplificação de corrente, diferem de 7

8 transistor para transistor e são fortemente afetados pela temperatura. O uso prático dos transistores na região linear já foi discutido em aulas anteriores e poderá ser abordado em breve. Fig. 8 Relação entre o sinal de entrada v i e o sinal de saída v o ; (a) sinal de entrada senoidal; (b) onda quadrada como sinal de entrada. Na eletrônica de potência, os transistores bipolares são usados mais freqüentemente como chaves a estado sólido. Os transistores bipolares caracterizam por terem alta densidade de corrente por unidade de área do material do semicondutor. Serão discutidas técnicas detalhadas para esta execução. Características de coletor Já abordamos esse assunto, vamos retomá-lo para podermos avançar. Quando discutimos as propriedades físicas de um transistor, tratamos geralmente delas em termos dos potenciais aplicados às junções. Para discutir um transistor como um elemento de circuito, entretanto, é conveniente analisar sua função em termos de parâmetros de corrente. A Figura 9 mostra um gráfico que representa a relação entre as correntes de coletor e o potencial do coletoremissor com a corrente de base como um parâmetro. Fig. 9 - Características de coletor de um transistor bipolar na configuração emissor-comum. O transistor é visto como tendo três regiões distintas de operação: (1) região ativa ou linear; (2) região de saturação e 8

9 (3) região de corte. Estas regiões características são especificadas fisicamente em termos dos potenciais de polarização aplicados às duas junções como explicado na tabela 3. Tabela 3 - Relação entre polarização e regiões características Ativa Saturação Corte Junção Emissor-base direta direta reversa Junção Coletor-base reversa direta reversa Quando nenhuma corrente é fornecida à base, flui somente uma corrente de coletor insignificante; o transistor está operando na região de corte. Quando uma corrente de base é fornecida, o transistor está operando ou na saturação ou na região ativa. Na região de saturação, as curvas para correntes de base diferentes estão quase alinhadas, partindo da origem. Na região ativa, as curvas para vários parâmetros são quase paralelas ao eixo horizontal, ramificando a partir da região de saturação. A Figura 10 explica a similaridade entre uma chave transistor e uma chave mecânica. Quando nenhuma corrente é fornecida à base, o transistor se comporta como uma chave aberta; quando é fornecida corrente de base suficiente, ele trabalha como uma chave fechada. Fig Correspondência entre uma chave mecânica e uma chave transistor. A relação entre a corrente de coletor I C e a corrente de base I B na região ativa é chamada fator de amplificação de corrente e indicada, como já explicado em aulas anteriores, por β ou, ainda, por h FE : h = I / I. (1) FE C B Este parâmetro não é constante e varia com o potencial, corrente, e temperatura. Como regra geral, quanto menor o transistor maior o h FE. Nos transistores de potência de mais de 30A, valores típicos de h FE são tão pequenos quanto 10 a 20. Quando um transistor é usado como um amplificador, como em um servoamplificador linear de C.C., ele deve operar na região ativa. Entretanto, quando é usado como um dispositivo de chaveamento, por exemplo, em um servo-amplificador com modulação em largura de pulso (do inglês, Pulse-Width Modulation, PWM), os transistores devem operar na região de saturação, no estado ON, e na região de corte, no estado OFF. 9

CONHECIMENTOS ESPECÍFICOS TÉCNICO EM ELETRÔNICA

CONHECIMENTOS ESPECÍFICOS TÉCNICO EM ELETRÔNICA CONHECIMENTOS ESPECÍFICOS TÉCNICO EM ELETRÔNICA 26. Com relação aos materiais semicondutores, utilizados na fabricação de componentes eletrônicos, analise as afirmativas abaixo. I. Os materiais semicondutores

Leia mais

Diodos. TE214 Fundamentos da Eletrônica Engenharia Elétrica

Diodos. TE214 Fundamentos da Eletrônica Engenharia Elétrica Diodos TE214 Fundamentos da Eletrônica Engenharia Elétrica Sumário Circuitos Retificadores Circuitos Limitadores e Grampeadores Operação Física dos Diodos Circuitos Retificadores O diodo retificador converte

Leia mais

Diodo semicondutor. Índice. Comportamento em circuitos

Diodo semicondutor. Índice. Comportamento em circuitos semicondutor Origem: Wikipédia, a enciclopédia livre. (Redirecionado de ) [1][2] semicondutor é um dispositivo ou componente eletrônico composto de cristal semicondutor de silício ou germânio numa película

Leia mais

Prof. Rogério Eletrônica Geral 1

Prof. Rogério Eletrônica Geral 1 Prof. Rogério Eletrônica Geral 1 Apostila 2 Diodos 2 COMPONENTES SEMICONDUTORES 1-Diodos Um diodo semicondutor é uma estrutura P-N que, dentro de seus limites de tensão e de corrente, permite a passagem

Leia mais

CURSO DE TECNOLOGIA EM AUTOMAÇÃO DE PROCESSOS INDUSTRIAIS

CURSO DE TECNOLOGIA EM AUTOMAÇÃO DE PROCESSOS INDUSTRIAIS UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ COORDENAÇÃO DE ELETRÔNICA - COELE Apostila didática: CURSO DE TECNOLOGIA EM AUTOMAÇÃO DE PROCESSOS INDUSTRIAIS Apostila didática: ELETRÔNICA INDUSTRIAL, Me. Eng.

Leia mais

DIODO SEMICONDUTOR. Conceitos Básicos. Prof. Marcelo Wendling Ago/2011

DIODO SEMICONDUTOR. Conceitos Básicos. Prof. Marcelo Wendling Ago/2011 DIODO SEMICONDUTOR Prof. Marcelo Wendling Ago/2011 Conceitos Básicos O diodo semicondutor é um componente que pode comportar-se como condutor ou isolante elétrico, dependendo da forma como a tensão é aplicada

Leia mais

Instituto Educacional São João da Escócia Colégio Pelicano Curso Técnico de Eletrônica. FET - Transistor de Efeito de Campo

Instituto Educacional São João da Escócia Colégio Pelicano Curso Técnico de Eletrônica. FET - Transistor de Efeito de Campo 1 FET - Transistor de Efeito de Campo Introdução Uma importante classe de transistor são os dispositivos FET (Field Effect Transistor). Transistor de Efeito de Campo. Como nos Transistores de Junção Bipolar

Leia mais

Eletrônica de Potência II Capítulo 1. Prof. Cassiano Rech cassiano@ieee.org

Eletrônica de Potência II Capítulo 1. Prof. Cassiano Rech cassiano@ieee.org Eletrônica de Potência II Capítulo 1 cassiano@ieee.org 1 Componentes semicondutores em Eletrônica de Potência Diodo MOSFET IGBT GTO 2 Introdução Eletrônica de Potência é uma ciência aplicada que aborda

Leia mais

Transitores CMOS, história e tecnologia

Transitores CMOS, história e tecnologia Transitores CMOS, história e tecnologia Fernando Müller da Silva Gustavo Paulo Medeiros da Silva 6 de novembro de 2015 Resumo Este trabalho foi desenvolvido com intuito de compreender a tecnologia utilizada

Leia mais

CAPÍTULO 2 DIODO SEMICONDUTOR

CAPÍTULO 2 DIODO SEMICONDUTOR CAPÍTULO 2 DIODO SEMICONDUTO O diodo semicondutor é um dispositivo, ou componente eletrônico, composto de um cristal semicondutor de silício, ou germânio, em uma película cristalina cujas faces opostas

Leia mais

Lista I de Eletrônica Analógica

Lista I de Eletrônica Analógica Lista I de Eletrônica Analógica Prof. Gabriel Vinicios Silva Maganha (http://www.gvensino.com.br) Bons estudos! Cronograma de Estudos: 1. Os Semicondutores são materiais que possuem: ( A ) Nenhum elétron

Leia mais

Prof. Antonio Carlos Santos. Aula 7: Polarização de Transistores

Prof. Antonio Carlos Santos. Aula 7: Polarização de Transistores IF-UFRJ Elementos de Eletrônica Analógica Prof. Antonio Carlos Santos Mestrado Profissional em Ensino de Física Aula 7: Polarização de Transistores Este material foi baseado em livros e manuais existentes

Leia mais

CAPÍTULO 4 DISPOSITIVOS SEMICONDUTORES

CAPÍTULO 4 DISPOSITIVOS SEMICONDUTORES CAPÍTULO 4 DISPOSITIVOS SEMICONDUTORES INTRODUÇÃO Os materiais semicondutores são elementos cuja resistência situa-se entre a dos condutores e a dos isolantes. Dependendo de sua estrutura qualquer elemento

Leia mais

DIODOS. Professor João Luiz Cesarino Ferreira

DIODOS. Professor João Luiz Cesarino Ferreira DIODOS A união de um cristal tipo p e um cristal tipo n, obtém-se uma junção pn, que é um dispositivo de estado sólido simples: o diodo semicondutor de junção. Figura 1 Devido a repulsão mútua os elétrons

Leia mais

UNISANTA Universidade Santa Cecília Santos SP Disciplina: Eletrônica I Próf: João Inácio

UNISANTA Universidade Santa Cecília Santos SP Disciplina: Eletrônica I Próf: João Inácio Exercícios 1 Materiais Semicondutores e Junção PN 1- Em relação à teoria clássica que trata da estrutura da matéria (átomo- prótons e elétrons) descreva o que faz um material ser mal ou bom condutor de

Leia mais

INTRODUÇÃO AOS SEMICONDUTORES Extrato do capítulo 2 de (Malvino, 1986).

INTRODUÇÃO AOS SEMICONDUTORES Extrato do capítulo 2 de (Malvino, 1986). INTRODUÇÃO AOS SEMICONDUTORES Extrato do capítulo 2 de (Malvino, 1986). 2.1. TEORIA DO SEMICONDUTOR ESTRUTURA ATÔMICA Modelo de Bohr para o átomo (Figura 2.1 (a)) o Núcleo rodeado por elétrons em órbita.

Leia mais

Eletrônica Analógica

Eletrônica Analógica UNIVERSIDADE FEDERAL DO PARÁ FACULDADE DE ENGENHARIA DE COMPUTAÇÃO E TELECOMUNICAÇÕES Eletrônica Analógica Transistores de Efeito de Campo Professor Dr. Lamartine Vilar de Souza lvsouza@ufpa.br www.lvsouza.ufpa.br

Leia mais

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETROTÉCNICA ELETRÔNICA 1 - ET74C -- Profª Elisabete N Moraes SEMICONDUTOR

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETROTÉCNICA ELETRÔNICA 1 - ET74C -- Profª Elisabete N Moraes SEMICONDUTOR UNIVERSIDDE TECNOLÓGIC FEDERL DO PRNÁ DEPRTMENTO CDÊMICO DE ELETROTÉCNIC ELETRÔNIC 1 ET74C Profª Elisabete N Moraes UL 2 FORMÇÃO DO DIODO SEMICONDUTOR Em 21 de agosto de 2015. REVISÃO: OPERÇÃO SIMPLIFICD

Leia mais

1. Materiais Semicondutores

1. Materiais Semicondutores 1. Professor: Vlademir de Oliveira Disciplina: Eletrônica I Conteúdo Teoria Materiais semicondutores Dispositivos semicondutores: diodo, transistor bipolar (TBJ), transistor de efeito de campo (FET e MOSFET)

Leia mais

DIODO SEMICONDUTOR. íon negativo. elétron livre. buraco livre. região de depleção. tipo p. diodo

DIODO SEMICONDUTOR. íon negativo. elétron livre. buraco livre. região de depleção. tipo p. diodo DIODO SEMICONDUOR INRODUÇÃO Materiais semicondutores são a base de todos os dispositivos eletrônicos. Um semicondutor pode ter sua condutividade controlada por meio da adição de átomos de outros materiais,

Leia mais

23/5/2010. Circuitos Elétricos 2º Ano Engenharia da Computação SEMICONDUTORES

23/5/2010. Circuitos Elétricos 2º Ano Engenharia da Computação SEMICONDUTORES ESTUDO DO Os átomos de germânio e silício tem uma camada de valência com 4 elétrons. Quando os átomos de germânio (ou silício) agrupam-se entre si, formam uma estrutura cristalina, ou seja, são substâncias

Leia mais

É um dispositivo que permite modificar uma tensão alternada, aumentando-a ou diminuindo-a.

É um dispositivo que permite modificar uma tensão alternada, aumentando-a ou diminuindo-a. Prof. Dr. Sérgio Turano de Souza Transformador Um transformador é um dispositivo destinado a transmitir energia elétrica ou potência elétrica de um circuito a outro, induzindo tensões, correntes e/ou de

Leia mais

IFBA MOSFET. CELET Coordenação do Curso Técnico em Eletrônica Professor: Edvaldo Moraes Ruas, EE. Vitória da Conquista - 2009

IFBA MOSFET. CELET Coordenação do Curso Técnico em Eletrônica Professor: Edvaldo Moraes Ruas, EE. Vitória da Conquista - 2009 IFBA MOSFET CELET Coordenação do Curso Técnico em Eletrônica Professor: Edvaldo Moraes Ruas, EE Vitória da Conquista - 2009 MOSFET s - introdução Semicondutor FET de óxido metálico, ou Mosfet (Metal Oxide

Leia mais

Análise de Circuitos com Díodos

Análise de Circuitos com Díodos Teoria dos Circuitos e Fundamentos de Electrónica 1 Análise de Circuitos com Díodos Teresa Mendes de Almeida TeresaMAlmeida@ist.utl.pt DEEC Área Científica de Electrónica T.M.Almeida IST-DEEC- ACElectrónica

Leia mais

Slide 1. tensão campo elétrico, E, corrente densidade de corrente, J, resistência resisitividade.

Slide 1. tensão campo elétrico, E, corrente densidade de corrente, J, resistência resisitividade. Slide 1 Lei de Ohm Olhe mais uma vez a Lei de Ohm, V=IR, do ponto de vista dos materiais. Reescreva como uma lei que é válida para todos os pontos dentro de um material, portanto substituímos tensão campo

Leia mais

Faculdade de Engenharia Elétrica e de Computação FEEC Universidade Estadual de Campinas Unicamp EE531 LABORATÓRIO DE ELETRÔNICA BÁSICA I EXPERIÊNCIA 2

Faculdade de Engenharia Elétrica e de Computação FEEC Universidade Estadual de Campinas Unicamp EE531 LABORATÓRIO DE ELETRÔNICA BÁSICA I EXPERIÊNCIA 2 Faculdade de ngenharia létrica e de Computação FC Universidade stadual de Campinas Unicamp 531 LABORATÓRIO D LTRÔNICA BÁSICA I XPRIÊNCIA 2 TRANSISTOR BIPOLAR Prof. Lee Luan Ling 1 o SMSTR D 2010 1 Objetivo:

Leia mais

LABORATÓRIO DE DISPOSITIVOS ELETRÔNICOS Guia de Experimentos

LABORATÓRIO DE DISPOSITIVOS ELETRÔNICOS Guia de Experimentos UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA DEPARTAMENTO DE ENGENHARIA ELÉTRICA LABORATÓRIO DE DISPOSITIVOS ELETRÔNICOS Experimento 5 Transistor MOSFET LABORATÓRIO

Leia mais

Circuitos de Comando para MOSFETs e IGBTs de Potência

Circuitos de Comando para MOSFETs e IGBTs de Potência Universidade Federal do Ceará PET Engenharia Elétrica Fortaleza CE, Brasil, Abril, 2013 Universidade Federal do Ceará Departamento de Engenharia Elétrica PET Engenharia Elétrica UFC Circuitos de Comando

Leia mais

Trabalho. Eletrônica de potencia

Trabalho. Eletrônica de potencia [MSG1] Comentário: Centro Universo de Educação e Desenvolvimento Trabalho Eletrônica de potencia Aluno: Curso: Técnico em Automação e Controle Industrial Professor: Henrique 2/5/09 Centro Universo de Educação

Leia mais

Semicondutores. Prof. Marcelo Wendling 2009 Versão 1.0

Semicondutores. Prof. Marcelo Wendling 2009 Versão 1.0 UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO" CAMPUS DE GUARATINGUETÁ Colégio Técnico Industrial de Guaratinguetá Prof. Carlos Augusto Patrício Amorim Semicondutores Prof. Marcelo Wendling 2009

Leia mais

Dispositivos. Junção Metal-Metal V A > V B

Dispositivos. Junção Metal-Metal V A > V B Dispositivos Dispositivos Junção Metal-Metal M t l V A > V B Heterojunções Junção p-n Electrões livres Tipo n Tipo p Átomos doadores Átomos aceitadores Buracos livres Junção p-n Electrões livres Tipo n

Leia mais

Eletrônica Industrial Apostila sobre Modulação PWM página 1 de 6 INTRODUÇÃO

Eletrônica Industrial Apostila sobre Modulação PWM página 1 de 6 INTRODUÇÃO Eletrônica Industrial Apostila sobre Modulação PWM página 1 de 6 Curso Técnico em Eletrônica Eletrônica Industrial Apostila sobre Modulação PWM Prof. Ariovaldo Ghirardello INTRODUÇÃO Os controles de potência,

Leia mais

Há um conjunto de dispositivos electrónicos que são designados por díodos. Estes dispositivos têm 3 características fundamentais comuns:

Há um conjunto de dispositivos electrónicos que são designados por díodos. Estes dispositivos têm 3 características fundamentais comuns: Díodos Há um conjunto de dispositivos electrónicos que são designados por díodos. Estes dispositivos têm 3 características fundamentais comuns: Têm dois terminais (tal como uma resistência). A corrente

Leia mais

Antes de estudar a tecnologia de implementação do transistor um estudo rápido de uma junção;

Antes de estudar a tecnologia de implementação do transistor um estudo rápido de uma junção; Transistor O transistor é um elemento ativo e principal da eletrônica. Sendo um elemento ativo o transistor é utilizado ativamente na construção dos circuitos lineares e digitais. Os transistores podem

Leia mais

FEPI Centro Universitário de Itajubá Eletrônica Básica

FEPI Centro Universitário de Itajubá Eletrônica Básica FEPI Centro Universitário de Itajubá Eletrônica Básica Prof. Evaldo Renó Faria Cintra 1 Diodo Semicondutor Polarização Direta e Reversa Curva Característica Níveis de Resistência e Modelos Efeitos Capacitivos

Leia mais

Lista de Exercícios 1 Eletrônica Analógica

Lista de Exercícios 1 Eletrônica Analógica Lista de Exercícios 1 Eletrônica Analógica Prof. Gabriel Vinicios Silva Maganha www.gvensino.com.br 1) Quantos elétrons de valência tem um átomo de silício? a) 0 b) 1 c) 2 d) 4 e) 8 2) Marque qual ou quais

Leia mais

Transistores de Efeito de Campo (npn)

Transistores de Efeito de Campo (npn) Slide 1 FET porta dispositivo de 3 terminais corrente e - de canal da fonte para dreno controlada pelo campo elétrico gerado pelo porta impedância de entrada extremamente alta para base Transistores de

Leia mais

Polarização Reversa. Polarização Reversa. Polarização Reversa. Polarização Reversa. Polarização Reversa. Polarização Reversa

Polarização Reversa. Polarização Reversa. Polarização Reversa. Polarização Reversa. Polarização Reversa. Polarização Reversa Diodo semicondutor Diodo semicondutor Ao conjunto de materiais n e p com a camada de depleção formada damos o nome de diodo de junção ou diodo semicondutor. Símbolo: 2 Diodo Semicondutor O diodo pode apresentar

Leia mais

Curso Técnico de Eletrônica Eletrônica Linear II NA1 Transistores Bipolares Aluno: Revisão de conteúdo Data: 20/03/2010

Curso Técnico de Eletrônica Eletrônica Linear II NA1 Transistores Bipolares Aluno: Revisão de conteúdo Data: 20/03/2010 Curso Técnico de Eletrônica Eletrônica Linear II NA1 Transistores Bipolares Aluno: Revisão de conteúdo Data: 20/03/2010 TRANSISTORES BIPOLARES O transistor de junção bipolar é um dispositivo semicondutor

Leia mais

CONHECIMENTOS ESPECÍFICOS

CONHECIMENTOS ESPECÍFICOS CONHECIMENTOS ESPECÍFICOS O diodo de junção possui duas regiões de materiais semicondutores dos tipos N e P. Esse dispositivo é amplamente aplicado em circuitos chaveados, como, por exemplo, fontes de

Leia mais

Universidade Federal da Paraíba Centro de Ciências Exatas e da Natureza Departamento de Informática

Universidade Federal da Paraíba Centro de Ciências Exatas e da Natureza Departamento de Informática Universidade Federal da Paraíba Centro de Ciências Exatas e da Natureza Departamento de Informática Francisco Erberto de Sousa 11111971 Saulo Bezerra Alves - 11111958 Relatório: Capacitor, Resistor, Diodo

Leia mais

AVIÔNICOS II - ELETRÔNICA

AVIÔNICOS II - ELETRÔNICA CAPÍTULO 1 - CIRCUITOS REATIVOS AVIÔNICOS II - ELETRÔNICA SUMÁRIO Circuito Reativo em série... 1-1 Circuito RC em série... 1-5 Circuito RCL em série... 1-8 Ressonância em série... 1-10 Circuito RL em paralelo...

Leia mais

CENTRO TECNOLÓGICO ESTADUAL PAROBÉ CURSO DE ELETRÔNICA

CENTRO TECNOLÓGICO ESTADUAL PAROBÉ CURSO DE ELETRÔNICA CENTRO TECNOLÓGO ESTADUAL PAROBÉ CURSO DE ELETRÔNA LABORATÓRIO DE ELETRÔNA ANALÓGA I Prática: 6 Assunto: Transistor Bipolar 1 Objetivos: Testar as junções e identificar o tipo de um transistor com o multímetro.

Leia mais

Humberto Hickel de Carvalho - IFSP Cubatão 2015 1 TRANSÍSTOR DE EFEITO DE CAMPO DE JUNÇÃO JFET

Humberto Hickel de Carvalho - IFSP Cubatão 2015 1 TRANSÍSTOR DE EFEITO DE CAMPO DE JUNÇÃO JFET Humberto Hickel de Carvalho - IFSP Cubatão 2015 1 TRANSÍSTOR DE EFEITO DE CAMPO DE JUNÇÃO JFET O JFET pode ter seu funcionamento comparado ao do transístor bipolar de junção, TBJ. Enquanto no TBJ a corrente

Leia mais

ACIONAMENTOS ELETRÔNICOS (INVERSOR DE FREQUÊNCIA)

ACIONAMENTOS ELETRÔNICOS (INVERSOR DE FREQUÊNCIA) ACIONAMENTOS ELETRÔNICOS (INVERSOR DE FREQUÊNCIA) 1. Introdução 1.1 Inversor de Frequência A necessidade de aumento de produção e diminuição de custos faz surgir uma grande infinidade de equipamentos desenvolvidos

Leia mais

Disciplina: Eletrônica de Potência (ENGC48)

Disciplina: Eletrônica de Potência (ENGC48) Universidade Federal da Bahia Escola Politécnica Departamento de Engenharia Elétrica Disciplina: Eletrônica de Potência (ENGC48) Tema: Conversores CA-CC Monofásicos Controlados Prof.: Eduardo Simas eduardo.simas@ufba.br

Leia mais

Elétricos. Prof. Josemar dos Santos prof.josemar@gmail.com

Elétricos. Prof. Josemar dos Santos prof.josemar@gmail.com Controle de Motores Elétricos Prof. Josemar dos Santos prof.josemar@gmail.com Introdução Eletrônica de Potência Produtos de alta potência Controle de motores; Iluminação; Fontes de potência; Sistemas de

Leia mais

Introdução. Aplicações

Introdução. Aplicações Motor de Passo Introdução Os motores de passo preenchem um nicho único no mundo dos motores controlados. Estes motores são usualmente empregados em aplicações de medição e de controle. Aplicações Aplicações

Leia mais

7 -MATERIAIS SEMICONDUTORES

7 -MATERIAIS SEMICONDUTORES 7 -MATERIAIS SEMICONDUTORES 1 Isolantes, Semicondutores e Metais Isolante é um condutor de eletricidade muito pobre; Metal é um excelente condutor de eletricidade; Semicondutor possui condutividade entre

Leia mais

AULA LAB 01 LABORATÓRIO SEMICONDUTORES DE POTÊNCIA

AULA LAB 01 LABORATÓRIO SEMICONDUTORES DE POTÊNCIA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOIA DE SANTA CATARINA DEPARTAMENTO ACADÊMICO DE ELETRÔNICA CURSO TÉCNICO DE ELETRÔNICA Eletrônica de Potência AULA LAB 01 LABORATÓRIO SEMICONDUTORES DE POTÊNCIA

Leia mais

CONVERSORES E CONTROLADORES DE FASE. Circuitos de retificação monofásicos

CONVERSORES E CONTROLADORES DE FASE. Circuitos de retificação monofásicos CONVERSORES E CONTROLADORES DE FASE Um conversor é um equipamento utilizado para converter potência alternada em potência contínua. Num conversor simples, que usa somente diodos retificadores, a tensão

Leia mais

Eletrônica. Transistores. Página 1 de 27

Eletrônica. Transistores. Página 1 de 27 Eletrônica Transistores Página 1 de 27 Objetivos Após completar o estudo desta apostila o aluno deverá estar apto a Reconhecer a teoria do transistor Reconhecer os tipos básicos de transistores Conhecer

Leia mais

Projeto de Ensino. Ensino de Física: Placas Fotovoltaicas

Projeto de Ensino. Ensino de Física: Placas Fotovoltaicas UNICENTRO-CEDETEG Departamento de Física Projeto de Ensino Ensino de Física: Placas Fotovoltaicas Petiano: Allison Klosowski Tutor: Eduardo Vicentini Guarapuava 2011. SUMÁRIO I. INTRODUÇÃO E JUSTIFICATIVA...

Leia mais

Quando comparado com uma chave mecânica, uma chave eletrônica apresenta vantagens e desvantagens.

Quando comparado com uma chave mecânica, uma chave eletrônica apresenta vantagens e desvantagens. Chave eletrônica Introdução O transistor, em sua aplicação mais simples, é usado como uma chave eletrônica, ou seja, pode ser usado para acionar cargas elétricas. A principal diferença entre o transistor

Leia mais

ELETRÔNICA BÁSICA. Versão 1.0. Wagner da Silva Zanco 2006. http://www.wagnerzanco.com.br suporte@wagnerzanco.com.br

ELETRÔNICA BÁSICA. Versão 1.0. Wagner da Silva Zanco 2006. http://www.wagnerzanco.com.br suporte@wagnerzanco.com.br ELETRÔNICA BÁSICA Versão 1.0 Wagner da Silva Zanco 2006 http://www.wagnerzanco.com.br suporte@wagnerzanco.com.br Objetivo O objetivo desta apostila é servir como parte do material didático utilizado no

Leia mais

Tiristores. 1. Aspectos gerais 2. SCR 3. Curva do SCR 4. DIAC 5. TRIAC 6. Curva do TRIAC 7. Circuitos e aplicações 8. Referências. 1.

Tiristores. 1. Aspectos gerais 2. SCR 3. Curva do SCR 4. DIAC 5. TRIAC 6. Curva do TRIAC 7. Circuitos e aplicações 8. Referências. 1. Tiristores 1. Aspectos gerais 2. SCR 3. Curva do SCR 4. DIAC 5. TRIAC 6. Curva do TRIAC 7. Circuitos e aplicações 8. Referências 1. Aspectos Gerais Tiristores são dispositivos de estado sólido que fazem

Leia mais

SOLUÇÃO DE CIRCUITOS COM DIODO

SOLUÇÃO DE CIRCUITOS COM DIODO 08/0/04 UNVERAE ECNOLÓGCA FEERAL O PARANÁ EPARAMENO ACAÊMCO E ELEROÉCNCA ELERÔNCA - E74C -- Profª Elisabete N Moraes AULA 4 MOELO MAEMÁCO O OO EMCONUOR Em 8 de outubro de 04. OLUÇÃO E CRCUO COM OO. Análise

Leia mais

MOSFET. Fábio Makihara 710921. Gustavo de Carvalho Bertoli 610992. Luís Gustavo Fazzio Barbin 712418. Luiza Pio Costa da Silva 712001

MOSFET. Fábio Makihara 710921. Gustavo de Carvalho Bertoli 610992. Luís Gustavo Fazzio Barbin 712418. Luiza Pio Costa da Silva 712001 MOSFET MOSFET tipo depleção (MOSFET-D) Curvas do MOSFET-D Amplificadores com MOSFET-D MOSFET tipo intensificação (MOSFET-E) Curvas de Dreno Tensão Porta-Fonte máxima Fábio Makihara 710921 Gustavo de Carvalho

Leia mais

INTRODUÇÃO AO ESTUDO DOS MATERIAIS SEMICONDUTORES

INTRODUÇÃO AO ESTUDO DOS MATERIAIS SEMICONDUTORES 1 INTRODUÇÃO AO ESTUDO DOS MATERIAIS SEMICONDUTORES INTRODUÇÃO O material básico utilizado na construção de dispositivos eletrônicos semicondutores, não é um bom condutor, nem um bom isolante. Compare

Leia mais

Microeletrônica. Germano Maioli Penello. http://www.lee.eng.uerj.br/~germano/microeletronica%20_%202015-1.html

Microeletrônica. Germano Maioli Penello. http://www.lee.eng.uerj.br/~germano/microeletronica%20_%202015-1.html Microeletrônica Germano Maioli Penello http://www.lee.eng.uerj.br/~germano/microeletronica%20_%202015-1.html Sala 5145 (sala 17 do laboratorio de engenharia elétrica) 1 Pauta (14/04/2015) ÁQUILA ROSA FIGUEIREDO

Leia mais

Transistores de Alta Freqüência

Transistores de Alta Freqüência Transistores de Alta Freqüência Os transistores foram desenvolvidos logo após o final da Segunda Guerra Mundial e eram usados em produtos de consumo. Os primeiros se limitavam a aplicações de som e baixas

Leia mais

COORDENADORIA DE ELETROTÉCNICA ELETRÔNICA BÁSICA - LISTA DE EXERCÍCIOS DIODOS SEMICONDUTORES. II III IV Dopagem com impureza. II Lado da junção a) N

COORDENADORIA DE ELETROTÉCNICA ELETRÔNICA BÁSICA - LISTA DE EXERCÍCIOS DIODOS SEMICONDUTORES. II III IV Dopagem com impureza. II Lado da junção a) N COORDENADORIA DE ELETROTÉCNICA ELETRÔNICA BÁSICA - LISTA DE EXERCÍCIOS DIODOS SEMICONDUTORES 1. Associe as informações das colunas I, II, III e IV referentes às características do semicondutor I II III

Leia mais

ESTA PROVA É FORMADA POR 20 QUESTÕES EM 10 PÁGINAS. CONFIRA ANTES DE COMEÇAR E AVISE AO FISCAL SE NOTAR ALGUM ERRO.

ESTA PROVA É FORMADA POR 20 QUESTÕES EM 10 PÁGINAS. CONFIRA ANTES DE COMEÇAR E AVISE AO FISCAL SE NOTAR ALGUM ERRO. Nome: Assinatura: P2 de CTM 2012.2 Matrícula: Turma: ESTA PROVA É FORMADA POR 20 QUESTÕES EM 10 PÁGINAS. CONFIRA ANTES DE COMEÇAR E AVISE AO FISCAL SE NOTAR ALGUM ERRO. NÃO SERÃO ACEITAS RECLAMAÇÕES POSTERIORES..

Leia mais

fig. 1 - símbolo básico do diodo

fig. 1 - símbolo básico do diodo DIODOS São componentes que permitem a passagem da corrente elétrica em apenas um sentido. Produzidos à partir de semicondutores, materiais criados em laboratórios uma vez que não existem na natureza, que

Leia mais

MAF 1292. Eletricidade e Eletrônica

MAF 1292. Eletricidade e Eletrônica PONTIFÍCIA UNIERIDADE CATÓICA DE GOIÁ DEPARTAMENTO DE MATEMÁTICA E FÍICA Professor: Renato Medeiros MAF 1292 Eletricidade e Eletrônica NOTA DE AUA II Goiânia 2014 Diodos Retificadores Aqui trataremos dos

Leia mais

Circuitos Retificadores

Circuitos Retificadores Circuitos Retificadores 1- INTRODUÇÃO Os circuito retificadores, são circuitos elétricos utilizados em sua maioria para a conversão de tensões alternadas em contínuas, utilizando para isto no processo

Leia mais

Universidade Federal Fluminense UFF Escola de Engenharia TCE Curso de Engenharia de Telecomunicações TGT

Universidade Federal Fluminense UFF Escola de Engenharia TCE Curso de Engenharia de Telecomunicações TGT Universidade Federal Fluminense UFF Escola de Engenharia TCE Curso de Engenharia de Telecomunicações TGT Programa de Educação Tutorial PET Grupo PET-Tele Dicas PET-Tele Uma breve introdução à componentes

Leia mais

Detectores de Partículas. Thiago Tomei IFT-UNESP Março 2009

Detectores de Partículas. Thiago Tomei IFT-UNESP Março 2009 Detectores de Partículas Thiago Tomei IFT-UNESP Março 2009 Sumário Modelo geral de um detector. Medidas destrutivas e não-destrutivas. Exemplos de detectores. Tempo de vôo. Detectores a gás. Câmara de

Leia mais

Introdução à Eletrônica de Potência

Introdução à Eletrônica de Potência Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina Departamento Acadêmico de Eletrônica Eletrônica de Potência Introdução à Eletrônica de Potência Florianópolis, setembro de 2012. Prof.

Leia mais

Eletrônica Diodo 01 CIN-UPPE

Eletrônica Diodo 01 CIN-UPPE Eletrônica Diodo 01 CIN-UPPE Diodo A natureza de uma junção p-n é que a corrente elétrica será conduzida em apenas uma direção (direção direta) no sentido da seta e não na direção contrária (reversa).

Leia mais

O inglês John A. Fleming, em 16 de novembro de 1904, percebeu que ao se juntar um elemento P a um elemento N, teria a seguinte situação: o elemento P

O inglês John A. Fleming, em 16 de novembro de 1904, percebeu que ao se juntar um elemento P a um elemento N, teria a seguinte situação: o elemento P O inglês John A. Fleming, em 16 de novembro de 1904, percebeu que ao se juntar um elemento P a um elemento N, teria a seguinte situação: o elemento P tem excesso de lacunas; o elemento N tem excesso de

Leia mais

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ. Câmpus Ponta Grossa Coordenação do Curso Superior de Tecnologia em Automação Industrial

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ. Câmpus Ponta Grossa Coordenação do Curso Superior de Tecnologia em Automação Industrial UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Câmpus Ponta Grossa Coordenação do Curso Superior de Tecnologia em Automação Industrial Jhonathan Junio de Souza Motores de Passo Trabalho apresentado à disciplina

Leia mais

CAPÍTULO 14 DIODOS ESPECIAIS

CAPÍTULO 14 DIODOS ESPECIAIS CAPÍTULO 14 DIODOS ESPECIAIS THYRISTORES (SCR) O Thyristor é um comutador quase ideal, é retificador e amplificador ao mesmo tempo. Constitui-se um componente de escolha para a eletrônica de potência.

Leia mais

Experiência 06 Resistores e Propriedades dos Semicondutores

Experiência 06 Resistores e Propriedades dos Semicondutores Universidade Federal de Santa Catarina Departamento de Engenharia Elétrica Laboratório de Materiais Elétricos EEL 7051 Professor Clóvis Antônio Petry Experiência 06 Resistores e Propriedades dos Semicondutores

Leia mais

TRANSISTORES DE EFEITO DE CAMPO

TRANSISTORES DE EFEITO DE CAMPO Engenharia Elétrica Eletrônica Professor: Alvaro Cesar Otoni Lombardi Os Transistores Bipolares de Junção (TBJ ou BJT) São controlados pela variação da corrente de base (na maioria das aplicações) 1 Os

Leia mais

CHAVEAMENTO COM SCR S

CHAVEAMENTO COM SCR S ELE-59 Circuitos de Chaveamento Prof.: Alexis Fabrício Tinoco S. INSTITUTO TECNOLÓGICO DE AERONÁUTICA DIVISÃO DE ENGENHARIA ELETRÔNICA DEPARTAMENTO DE ELETRÔNICA APLICADA 1. INTRODUÇAO CHAVEAMENTO COM

Leia mais

LABORATÓRIO DE ELETRICIDADE ANALÓGICA LELA2

LABORATÓRIO DE ELETRICIDADE ANALÓGICA LELA2 MINISTÉRIO DA EDUCAÇÃO INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SÃO PAULO CAMPUS DE PRESIDENTE EPITÁCIO LABORATÓRIO DE ELETRICIDADE ANALÓGICA LELA2 CURSO: TÉCNICO EM AUTOMAÇÃO INDUSTRIAL

Leia mais

ENG04447 Eletrônica I

ENG04447 Eletrônica I ENG04447 Eletrônica Diodos 1 DSPOSTVOS ELETRÔNCOS ATVOS (amplificação) Dispositivos Eletrônicos Elementares Transistor de Junção Bipolar BJT Transistor de Efeito de Campo FET NPN PNP de Junção JFET de

Leia mais

Geek Brasil - http://www.geekbrasil.com.br 1

Geek Brasil - http://www.geekbrasil.com.br 1 ASPECTOS CONSTRUTIVOS DE TRANSISTORES TRANSISTORES DE JUNÇÃO POR LIGA Os primeiros transistores encontrados comercialmente, nos primórdios de 1950, foram feitos pelo processo de junção de liga de germânio.

Leia mais

Figura 1 - Diagrama de Bloco de um Inversor Típico

Figura 1 - Diagrama de Bloco de um Inversor Típico Guia de Aplicação de Partida Suave e Inversores CA Walter J Lukitsch PE Gary Woltersdorf John Streicher Allen-Bradley Company Milwaukee, WI Resumo: Normalmente, existem várias opções para partidas de motores.

Leia mais

PROPRIEDADES ELÉTRICAS DOS MATERIAIS. Vera L. Arantes

PROPRIEDADES ELÉTRICAS DOS MATERIAIS. Vera L. Arantes PROPRIEDADES ELÉTRICAS DOS MATERIAIS Vera L. Arantes Propriedades Elétricas Alguns materiais precisam ser altamente condutores. Ex.: fios para conexões elétricas. Ou precisam ser isolantes. Ex.: o encapsulamento

Leia mais

Os elementos de circuito que estudámos até agora foram elementos lineares. Ou seja, se duplicamos a ddp aos terminais de um

Os elementos de circuito que estudámos até agora foram elementos lineares. Ou seja, se duplicamos a ddp aos terminais de um O Díodo Os elementos de circuito que estudámos até agora foram elementos lineares. Ou seja, se duplicamos a ddp aos terminais de um componente, a intensidade da corrente eléctrica que o percorre também

Leia mais

Aplicações com OpAmp. 1) Amplificadores básicos. Amplificador Inversor

Aplicações com OpAmp. 1) Amplificadores básicos. Amplificador Inversor 225 Aplicações com OpAmp A quantidade de circuitos que podem ser implementados com opamps é ilimitada. Selecionamos aqueles circuitos mais comuns na prática e agrupamos por categorias. A A seguir passaremos

Leia mais

MANUAL. Leia cuidadosamente este manual antes de ligar o Driver. A Neoyama Automação se reserva no direito de fazer alterações sem aviso prévio.

MANUAL. Leia cuidadosamente este manual antes de ligar o Driver. A Neoyama Automação se reserva no direito de fazer alterações sem aviso prévio. 1 P/N: AKDMP5-1.7A DRIVER PARA MOTOR DE PASSO MANUAL ATENÇÃO Leia cuidadosamente este manual antes de ligar o Driver. A Neoyama Automação se reserva no direito de fazer alterações sem aviso prévio. 2 SUMÁRIO

Leia mais

Energia Fóton elétron volt (ev)

Energia Fóton elétron volt (ev) (1) Slide 1 Espectro eletromagnético O Espectro Eletromagnético Freqüência Hertz (Hz) Comprimento de Onda metros (m) Energia Fóton elétron volt (ev) Energia Fóton Joule (J) Raios gama Raios X Ultravioleta

Leia mais

UNIVERSIDADE FEDERAL DE SANTA MARIA - UFSM CENTRO DE TECNOLOGIA CT GRUPO DE ELETRÔNICA DE POTÊNCIA E CONTROLE - GEPOC SEPOC 2010

UNIVERSIDADE FEDERAL DE SANTA MARIA - UFSM CENTRO DE TECNOLOGIA CT GRUPO DE ELETRÔNICA DE POTÊNCIA E CONTROLE - GEPOC SEPOC 2010 UNIVERSIDADE FEDERAL DE SANTA MARIA - UFSM CENTRO DE TECNOLOGIA CT GRUPO DE ELETRÔNICA DE POTÊNCIA E CONTROLE - GEPOC SEPOC 2010 FILTRO ATIVO DE POTÊNCIA SÉRIE PARALELO APRESENTADOR: MÁRCIO STEFANELLO,

Leia mais

Sumário. Circuitos Retificadores Circuitos Limitadores e Grampeadores Operação Física dos Diodos. Diodos. Circuitos Retificadores

Sumário. Circuitos Retificadores Circuitos Limitadores e Grampeadores Operação Física dos Diodos. Diodos. Circuitos Retificadores Sumário Diodos Circuitos Retificadores Circuitos Limitadores e Grampeadores TE214 Fundamentos da Eletrônica Engenharia Elétrica Circuitos Retificadores Circuitos Retificadores: Meia Onda O diodo retificador

Leia mais

SEMICONDUTORES. Concentração de portadores de carga:

SEMICONDUTORES. Concentração de portadores de carga: Unidade 3 SEMICONDUTORES E g ~ 1 ev E F E = 0 Elétron pode saltar da banda de valência para a banda de condução por simples agitação térmica Concentração de portadores de carga: Para metais: elétrons de

Leia mais

Inversores de freqüência. Introdução

Inversores de freqüência. Introdução Inversores de freqüência Introdução Desde que os primeiros motores surgiram, os projetistas perceberam uma necessidade básica, controlar sua velocidade, várias técnicas foram utilizadas ao longo dos anos

Leia mais

9 Eletrônica: circuitos especiais

9 Eletrônica: circuitos especiais U UL L Eletrônica: circuitos especiais Um problema Um dos problemas com que se defrontava a eletrônica consistia no fato de que as válvulas, então empregadas nos sistemas, além de serem muito grandes,

Leia mais

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica. Módulo 4

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica. Módulo 4 Universidade Federal do Rio de Janeiro Princípios de Instrumentação Biomédica Módulo 4 Faraday Lenz Henry Weber Maxwell Oersted Conteúdo 4 - Capacitores e Indutores...1 4.1 - Capacitores...1 4.2 - Capacitor

Leia mais

Eletrônica Analógica e de Potência

Eletrônica Analógica e de Potência Eletrônica Analógica e de Potência Conversores CC-CC Prof.: Welbert Rodrigues Introdução Em certas aplicações é necessário transformar uma tensão contínua em outra com amplitude regulada; Em sistemas CA

Leia mais

DEPARTAMENTO DE ELETRO-ELETRÔNICA

DEPARTAMENTO DE ELETRO-ELETRÔNICA DEPARTAMENTO DE ELETRO-ELETRÔNICA ELETRÔNICA ELETRÔNICA 2 ÍNDICE 1 DIODO SEMICONDUTOR E RETIFICAÇÃO 4 1.1 FÍSICA DOS SEMICONDUTORES 4 A ESTRUTURA DO ÁTOMO 4 ESTUDO DO SEMICONDUTORES 4 1.2 DIODO 7 POLARIZAÇÃO

Leia mais

Lista de Exercícios de Eletrônica Analógica. Semicondutores, Diodos e Retificadores

Lista de Exercícios de Eletrônica Analógica. Semicondutores, Diodos e Retificadores Lista de Exercícios de Eletrônica Analógica Semicondutores, Diodos e Retificadores Questões sobre Semicondutores: 1) O que é um material semicondutor? Dê 2 exemplos. 2) O que é camada de valência? 3) O

Leia mais

I D I DSS. Figura 3.1 Curva de transcondutância do MOSFET e definição do ponto Q em polarização zero.

I D I DSS. Figura 3.1 Curva de transcondutância do MOSFET e definição do ponto Q em polarização zero. 59 EXPERIÊNCIA 3: O MOFET PROCEDIMENTO: MOFET DO TIPO DEPLEÇÃO O MOFET do tipo Depleção basicamente pode operar em ambos os modos: Depleção ou Intensificação. Portanto, todos os métodos de polarização

Leia mais

CONHECIMENTOS ESPECÍFICOS» CONTROLE E PROCESSOS INDUSTRIAIS (Perfil 03) «

CONHECIMENTOS ESPECÍFICOS» CONTROLE E PROCESSOS INDUSTRIAIS (Perfil 03) « CONHECIMENTOS ESPECÍFICOS» CONTROLE E PROCESSOS INDUSTRIAIS (Perfil 03) «21. Os valores de I e Vo para o circuito dado a seguir, considerando os diodos ideais, são, respectivamente: a) 7 ma e 6 V. b) 7

Leia mais

Eletrônica Aula 07 CIN-UPPE

Eletrônica Aula 07 CIN-UPPE Eletrônica Aula 07 CIN-UPPE Amplificador básico Amplificador básico É um circuito eletrônico, baseado em um componente ativo, como o transistor ou a válvula, que tem como função amplificar um sinal de

Leia mais

Par Diferencial com Transístores Bipolares

Par Diferencial com Transístores Bipolares Resumo Par Diferencial com Transístores Bipolares Operação para grandes sinais Resistência diferencial de Entrada e Ganho Equivalência entre Amplificador diferencial e Amplificador em Emissor Comum Ganho

Leia mais

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I EEL420. Módulo 2

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I EEL420. Módulo 2 Universidade Federal do Rio de Janeiro Circuitos Elétricos I EEL420 Módulo 2 Thévenin Norton Helmholtz Mayer Ohm Galvani Conteúdo 2 Elementos básicos de circuito e suas associações...1 2.1 Resistores lineares

Leia mais

Concurso Público para Cargos Técnico-Administrativos em Educação UNIFEI 13/06/2010

Concurso Público para Cargos Técnico-Administrativos em Educação UNIFEI 13/06/2010 Questão 21 Conhecimentos Específicos - Técnico em Eletrônica Calcule a tensão Vo no circuito ilustrado na figura ao lado. A. 1 V. B. 10 V. C. 5 V. D. 15 V. Questão 22 Conhecimentos Específicos - Técnico

Leia mais