Há um conjunto de dispositivos electrónicos que são designados por díodos. Estes dispositivos têm 3 características fundamentais comuns:

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Há um conjunto de dispositivos electrónicos que são designados por díodos. Estes dispositivos têm 3 características fundamentais comuns:"

Transcrição

1 Díodos Há um conjunto de dispositivos electrónicos que são designados por díodos. Estes dispositivos têm 3 características fundamentais comuns: Têm dois terminais (tal como uma resistência). A corrente que passa depende da tensão aos seus terminais. Não obedecem à lei de Ohm! Para entender o funcionamento de um díodo vamos ver as características de um tipo de material designado por semicondutor. No entanto, ainda antes disso, relembremos o que distingue um condutor de um isolador. No condutor os electrões de valência estão fracamente ligados ao átomo são normalmente átomos grandes com apenas um electrão na camada de valência. Este electrão por um lado está muito longe do núcleo e por outro lado vê o núcleo escudado pelos outros electrões mais internos. O efeito atractivo do núcelo relativamente a este electrão está muito diminuído, portanto. Se considerarmos uma barra de um metal qualquer ela é constituída por um número muito elevado de átomos em que os electrões, por serem fracamente ligados ao núcleo, têm grande facilidade de se deslocarem pelo que rapidamente reagem a uma diferença de potencial aplicada aos terminais da barra. Os isoladores são materiais em que os electrões da camada de valência estão rigidamente ligados aos átomos. As estruturas que estes átomos formam são estruturas em que os electrões se mantêm fortemente localizados e ligados aos átomos. Há um terceiro tipo de material cujo comportamento está entre os dois: é o semicondutor. Os semicondutores mais comuns são o germânio e o silício. O seu comportamento é atribuível à ligação química que formam em na estrutura que é uma ligação covalente em que cada átomo se liga a 4 átomos vizinhos. Neste tipo de ligações há partilha de electrões entre os átomos. Os electrões das camadas internas mantêm-se ligados a cada núcleo a que pertencem. Embora o tipo de estrutura seja igual à do diamante (isolador) a dimensão (distância interatómica) é, neste caso, diferente. Um cristal de silício, por exemplo, é diferente de um isolador porque a qualquer temperatura acima do zero absoluto há uma probabilidade finita de que um electrão da rede cristalina se liberte da sua posição fixa na rede deixando o que se designa por lacuna, ou seja um déficit de electrão. A lacuna, na medida em que pode ser preenchida por um electrão de um átomo vizinho, também pode contribuir para a corrente (contribui para o movimento de cargas, ou seja para a corrente).

2 Portanto, tanto electrões como lacunas contribuem para a corrente num semicondutor. No zero absoluto de temperatura estes materiais são isoladores e à temperatura ambiente a condutividade é baixa quando comparada com a dos condutores. Aumentando a temperatura a condutividade aumenta. Outra hipótese para aumentar a condutividade é introduzir impurezas na estrutura do material semicondutor fazendo o que se designa por semicondutor dopado. Estas impurezas, se forem inseridas de modo uniforme por todo o material e em quantidade controlada, vão modificar significativamente as características de condutividade do material. Por exemplo se inserirmos uma impureza com 5 electrões valência sobra um electrão dos quatro que são partilhados com o Si. Esse electrão fica livre pelo material podendo servir de transportador de carga. O semicondutor assim dopado designa-se por semicondutor de tipo n (negativa) e os átomos inseridos são dadores (de electrões). É claro que o material se mantém electricamente neutro visto que o número de electrões é igual ao número de protões no núcleo dos átomos de impureza, mas há excesso de electrões Se em vez de um átomo com 5 electrões valência usarmos átomos com 3 electrões valência haverá um lugar vago nas ligações covalente uma lacuna na estrutura. Esse material semicondutor dopado com uma impureza com 3 electrões valência (ao invés de 5) designa-se por material do tipo p e os transportadores de carga são as lacunas, ou seja as lacunas vão sendo preenchidas por electrões que assim geram uma corrente de sentido contrário à gerada no caso anterior. Embora o movimento seja realmente do

3 electrão pode considerar-se que a lacuna se moveu em sentido contrário ao do electrão. Estas impurezas designam-se por aceitadores. O material continua, obviamente e pela mesma razão descrita anteriormente, a ser electricamente neutro. Semi condutores de tipo-n e de tipo-p A resistividade dos semicondutores Todos os materiais, isoladores ou condutores têm uma resistividade, i.e. uma resistência à passagem da corrente. A resistividade é, portanto, complementar da condutividade: quanto maior a resistividade, menor a condutividade. A unidade de resistividade de um material é o ohm-m ou ohm-cm. Abaixo está uma tabela dos níveis de resistividade de alguns materiais. Teoria de bandas nos sólidos

4 Um modo de visualizar e explicar a diferença entre condutores, isoladores e semicondutores é examinar os níveis de energias disponíveis para os electrões nos materiais. Em vez de ter níveis discretos de energia (como nos átomos livres) supõe-se que os estados disponíveis de energia nos materiais formam bandas. Há duas bandas: a banda valência e a banda de condução, separadas por uma gap de energia cuja amplitude varia com a natureza do material. Para o processo de condução é fundamental saber em que banda estão os electrões. Nos isoladores os electrões estão na banda de valência e esta está separada da banda de condução por uma gap grande de energia. Nos condutores as duas bandas estão sobrepostas. Nos semicondutores a gap de energia é suficientemente pequena de tal modo que a própria agitação térmica permita aos electrões saltar de uma banda para a outra. Com esta gap pequena uma pequeníssima percentagem de material dopante pode aumentar drasticamente a condutividade do material. Um parâmetro importante para a teoria de bandas é o nível de Fermi, que estabelece o limite superior das energias disponíveis para os electrões a baixas temperaturas. A posição do nível de Fermi relativamente à banda de condução é o factor que determina as propriedades eléctricas de um material. Tanto o Ge como o Si, à temperatura ambiente, são fracos condutores, como já foi dito. No entanto, um cristal de Si é diferente de um isolador porque a qualquer temperatura acima do zero absoluto há uma probabilidade finita de um electrão da rede ser libertado da ligação em que participa e deixe, em seu lugar, uma lacuna. Há duas formas de aumentar a condutividade destes materiais: aumentando a temperatura. Deste modo os electrões partilhados ficam mais libertos, podendo mesmo passar a electrões livres. Bandas de energia nos semicondutores Para os semicondutores intrínsecos (não dopados), o nível de Fermi fica a meio caminho entre as bandas valência e de condução. Embora a 0 K não haja condução, a temperaturas superiores há um número finito (>0) de electrões que consegue atingir a banda de condução. Nos semicondutores dopados aparecem níveis suplementares de energia.

5 Bandas para semicondutores dopados A aplicação da teoria de bandas em semicondutores de tipo n e de tipo p mostra que as impurezas trazem níveis adicionais de energia. Nos materiais de tipo n há níveis de energia para os electrões perto do topo da gap de modo que os electrões podem facilmente passar para a banda de condução. Nos materiais de tipo p as lacunas extra na gap permitem a excitação de electrões para essas lacunas, deixando lacunas móveis na banda valência. Utilizações do semicondutor O semicondutor é um material fundamental na indústria electrónica. Os dispositivos com semicondutor são hoje utilizados em todo tipo de circuitos. Os dispositivos semicondutores mais comuns são o díodo, o transistor e os dispositivos fotossensíveis.

6 Diodo semicondutor É formado pela junção de material de tipo p e material de tipo n e tem como função básica permitir o fluxo de corrente eléctrica apenas num sentido. Transistor É formado pela inserção de um semicondutor tipo p entre dois semicondutores tipo n ou vice-versa. O material do meio é chamado base e os outros, emissor e colector. O transístor funciona basicamente como um amplificador de corrente se esta for alta (ligeiramente alta) ou como um interruptor de corrente se esta for próxima de zero. Dispositivos fotossensíveis Se dividem em Células fotocondutivas: fotoresistores, fotodiodos e fototransistores; e Células fotovoltaicas. As células foto condutivas funcionam da seguinte forma: Quando um fluxo luminoso incide sobre o material semicondutor, os fotões fornecem energia suficiente aos electrões para produzir a ruptura de ligações covalentes. Este processo gera a produção de pares electrão-lacuna, que provoca um aumento da condutividade do semicondutor. Esse fenómeno é conhecido como foto condutividade. Quanto às células foto voltaicas, conforme o nome indica, produzem uma tensão eléctrica quando submetidas à acção de um fluxo luminoso. Junção p-n Uma das utilizações mais comum dos semicondutores é a junção p-n. Quando materiais de tipo n e de tipo p são colocados em contacto a junção dos dois materiais comporta-se de modo diferente de cada um dos materiais em separado. Concretamente a corrente fluirá prontamente num sentido (polarização directa) mas não em sentido contrário (polarização inversa), criando um díodo. A não

7 reversibilidade do comportamento vem da natureza do processo de transporte de carga nos dois tipos de material. Na figura os círculos abertos representam as lacunas (provenientes do dopante de tipo p) que funcionam como transportadores de carga positiva. Os círculos fechados representam os electrões disponibilizados pelo dopante de tipo n. Perto da junção os electrões difundem-se e combinam-se com as lacunas, criando o que se designa por zona de depleção. O diagrama de energias da direita pretende indicar a condição de equilíbrio da junção p-n. Zona de depleção Quando os matérias de tipo n e de tipo p são postos em contacto, na junção p-n, alguns dos electrões livres da região n difundem-se através da junção e combinamse com as lacunas, formando iões negativos. Ao fazerem isto deixam iões positivos do outro lado (do lado da impureza dadora). A figura mostra os dois materiais antes e depois de postos em contacto. Analisemos os detalhes No lado do semiconductor de tipo p há lacunas devidas às impurezas aceitadoras (bolas brancas). No lado do semicondutor de tipo n há electrões extra (bolas pretas).

8 Quando os materiais são postos em contacto alguns dos electrões da região n difundem-se para o lado tipo p e combinam-se com as lacunas aí existentes O preenchimento da lacuna dá origem a um ião negativo e para trás (do lado tipo n) fica um ião positivo. Cria-se assim uma zona de carga espacial, que se designa por zona de depleção, que acabará por impedir a transferência de mais electrões a não ser que sejam criadas condições especiais para isso (ddp). Efeito da polarização nos electrões na zona de depleção Equilíbrio da junção A repulsão electrostática dos iões suspende a migração através da junção. Os electrões que atravessaram de um lado para o outro atingem o equilíbrio. Não pode haver mais transferências pela acção simultânea da repulsão devido aos iões negativos que se formaram na região p e da atracção dos iões positivos do lado n. Polarização inversa Uma tensão externa com a polaridade indicada na figura impede o fluxo de electrões através da junção. Para que haja condução os electrões do lado n devem deslocar-se para a junção e combinar-se com as lacunas do lado p. A polarização inversa afasta os electrões da junção, impedindo a condução.

9 Polarização directa. Uma tensão externa com o sentido indicado (directa) permite que os electrões vençam a barreira de Coulomb criada pela carga espacial na zona de depleção. Os electrões poderão então deslocar-se facilmente. Junção p-n polarizada directamente Polarizando directamente uma junção p-n atrairá as lacunas do lado p e os electrões do lado n para a junção. Na junção electrões e lacunas combinam-se mantendo uma corrente contínua Junção p-n polarizada inversamente A aplicação de uma tensão inversa à junção p-n gera uma corrente transitória à medida que tanto electrões como lacunas são afastados da junção. Quando a ddp formada pela zona de depleção (alargada) for igual à tensão aplicada a corrente pára (excepto uma pequena componente térmica).

10 A junção p-n consiste basicamente na zona de transição, entre uma região de material semicondutor cuja condutividade eléctrica é dominada por portadores de carga tipo-n (electrões) e uma região cuja condutividade é dominada por portadores de carga tipo-p (lacunas). A região de transição, também chamada de zona de depleção, é caracterizada pela existência de um forte campo elétrico E. Este campo é devido à existência de cargas elétricas fixas na rede cristalina, originadas pela depleção de portadores livres que, durante a formação da junção, se difundiram para o lado oposto. No equilíbrio, forma-se uma barreira de potencial, ev B, que impede a difusão continuada de portadores maioritários de um lado para o outro. Diodo de junção p-n A natureza da junção p-n é tal que conduz corrente em sentido directo mas não em sentido inverso. A representação gráfica da corrente em função da tensão aplicada designa-se por curva característica do díodo. É uma curva empírica, apresentada pelo fabricante e que indica o comportamento do dispositivo quando inserido num circuito. Linha de carga Considere-se o seguinte circuito:

11 Em que NLD um dispositivo não-linear (por exemplo um díodo) que tem uma curva característica conhecida. VD deve satisfazer simultaneamente a curva característica do díodo e a equação do circuito Pode-se fazer um gráfico simultâneo de ambas as curvas: polarização directa Polarização inversa Modelos dos díodos Normalmente diz-se que a corrente através de um díodo varia exponencialmente com a tensão aplicada. A forma da exponencial depende de vários parâmetros em especial da corrente de saturação.

12 Há dois problemas com este resultado: um é que a eq. é complicada e difícil de tratar, e o outro é que a eq. está normalmente errada. O facto é que a relação corrente /tensão depende dos detalhes de como o díodo foi construído (materiais, etc, etc). Para contornar este problema arranjaram-se 3 modelos dos quais, em cada caso, se escolhe o que melhor se adequar à situação. V d é a altura da barreira do díodo quando não há tensão aplicada. Assim, a energia que um electrão (ou lacuna) tem de ter para atravessar a barreira é ev d. O modelo 'square law' admite que a corrente, quando polarizado directamente, é proporcional ao quadrado da tensão aplicada. O modelo 'corner' admite que a corrente é zero para qq tensão inferior a V d mas aumenta quando aplicamos uma tensão superior a esta. O díodo é visto como um interruptor que está aberto quando aplicamos tensões baixas ou negativas mas que fecha quando a tensão aplicada é > ou = a V d. Ou seja é impossível ter uma tensão superior a esta aos terminais do díodo. Se aplicarmos uma tensão maior do que esta das duas uma: a fonte dá toda a corrente e a corrente através do díodo é essa ou a corrente é tão alta que queima o díodo. V d é a corner voltage. O modelo 'one way' limita-se a admitir que V d é tão baixo que é ~0. É uma simplificação um pouco drástica mas para a maior parte dos casos chega. I.e. o díodo é um interruptor que está aberto (corrente=0) quando a tensão tem um determinado sentido e fechado (passa toda a corrente) para a tensão em sentido inverso.

13 Efeito de Zener Se a tensão inversa aplicada a uma junção p-n fôr suficientemente elevada dá-se um ruptura (breakdown) na junção e passa a haver condução em sentido inverso. Os electrões valência que são libertados por acção do potencial aplicado podem ser acelerados o suficiente para libertarem (por colisão) outros electrões e o processo rapidamente se torna uma avalanche. Quando este processo está em curso, variações muito pequenas na tensão aplicada podem produzir alterações dramáticas na corrente, como mostra a figura. O processo de ruptura depende do campo aplicado ou seja da tensão aplicada e da espessura da zona de depleção, por isso há díodos de Zener que entram em ruptura a 4V ou a centenas de Volts. Díodo de Zener O díodo de Zener usa uma junção p-n polarizada inversamente e tira partido do efeito de Zener, ou seja da ruptura que mantém a tensão num valor aproximadamente constante e independente da corrente, designado por tensão de Zener. É um dispositivo útil em reguladores fornecendo uma tensão constante, etc. Aplicações específicas de díodos de Zener Regulador de Zener A tensão inversa constante do díodo de Zener torna-o uma componente importante para a estabilização da tensão de saída contra variações na tensão de

14 entrada ou variação da tensão de carga. A corrente através do Zener varia de modo a manter a tensão dentro dos limites da acção de Zener. Limitador de Zener Um díodo de zener pode limitar um lado de uma onda sinusoidal à tensão de Zener mantendo o outro lado da onda a ~zero. Com dois diodos Zener opostos pode limitar-se os dois lados à tensão de Zener. Aplicações de díodos Rectificadores

15 Rectificador de meia onda Rectificador de meia onda com filtro

Análise de Circuitos com Díodos

Análise de Circuitos com Díodos Teoria dos Circuitos e Fundamentos de Electrónica 1 Análise de Circuitos com Díodos Teresa Mendes de Almeida TeresaMAlmeida@ist.utl.pt DEEC Área Científica de Electrónica T.M.Almeida IST-DEEC- ACElectrónica

Leia mais

Prof. Rogério Eletrônica Geral 1

Prof. Rogério Eletrônica Geral 1 Prof. Rogério Eletrônica Geral 1 Apostila 2 Diodos 2 COMPONENTES SEMICONDUTORES 1-Diodos Um diodo semicondutor é uma estrutura P-N que, dentro de seus limites de tensão e de corrente, permite a passagem

Leia mais

Diodos. TE214 Fundamentos da Eletrônica Engenharia Elétrica

Diodos. TE214 Fundamentos da Eletrônica Engenharia Elétrica Diodos TE214 Fundamentos da Eletrônica Engenharia Elétrica Sumário Circuitos Retificadores Circuitos Limitadores e Grampeadores Operação Física dos Diodos Circuitos Retificadores O diodo retificador converte

Leia mais

Diodo semicondutor. Índice. Comportamento em circuitos

Diodo semicondutor. Índice. Comportamento em circuitos semicondutor Origem: Wikipédia, a enciclopédia livre. (Redirecionado de ) [1][2] semicondutor é um dispositivo ou componente eletrônico composto de cristal semicondutor de silício ou germânio numa película

Leia mais

Dispositivos. Junção Metal-Metal V A > V B

Dispositivos. Junção Metal-Metal V A > V B Dispositivos Dispositivos Junção Metal-Metal M t l V A > V B Heterojunções Junção p-n Electrões livres Tipo n Tipo p Átomos doadores Átomos aceitadores Buracos livres Junção p-n Electrões livres Tipo n

Leia mais

CAPÍTULO 4 DISPOSITIVOS SEMICONDUTORES

CAPÍTULO 4 DISPOSITIVOS SEMICONDUTORES CAPÍTULO 4 DISPOSITIVOS SEMICONDUTORES INTRODUÇÃO Os materiais semicondutores são elementos cuja resistência situa-se entre a dos condutores e a dos isolantes. Dependendo de sua estrutura qualquer elemento

Leia mais

DIODO SEMICONDUTOR. Conceitos Básicos. Prof. Marcelo Wendling Ago/2011

DIODO SEMICONDUTOR. Conceitos Básicos. Prof. Marcelo Wendling Ago/2011 DIODO SEMICONDUTOR Prof. Marcelo Wendling Ago/2011 Conceitos Básicos O diodo semicondutor é um componente que pode comportar-se como condutor ou isolante elétrico, dependendo da forma como a tensão é aplicada

Leia mais

INTRODUÇÃO AOS SEMICONDUTORES Extrato do capítulo 2 de (Malvino, 1986).

INTRODUÇÃO AOS SEMICONDUTORES Extrato do capítulo 2 de (Malvino, 1986). INTRODUÇÃO AOS SEMICONDUTORES Extrato do capítulo 2 de (Malvino, 1986). 2.1. TEORIA DO SEMICONDUTOR ESTRUTURA ATÔMICA Modelo de Bohr para o átomo (Figura 2.1 (a)) o Núcleo rodeado por elétrons em órbita.

Leia mais

DIODOS. Professor João Luiz Cesarino Ferreira

DIODOS. Professor João Luiz Cesarino Ferreira DIODOS A união de um cristal tipo p e um cristal tipo n, obtém-se uma junção pn, que é um dispositivo de estado sólido simples: o diodo semicondutor de junção. Figura 1 Devido a repulsão mútua os elétrons

Leia mais

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETROTÉCNICA ELETRÔNICA 1 - ET74C -- Profª Elisabete N Moraes SEMICONDUTOR

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ DEPARTAMENTO ACADÊMICO DE ELETROTÉCNICA ELETRÔNICA 1 - ET74C -- Profª Elisabete N Moraes SEMICONDUTOR UNIVERSIDDE TECNOLÓGIC FEDERL DO PRNÁ DEPRTMENTO CDÊMICO DE ELETROTÉCNIC ELETRÔNIC 1 ET74C Profª Elisabete N Moraes UL 2 FORMÇÃO DO DIODO SEMICONDUTOR Em 21 de agosto de 2015. REVISÃO: OPERÇÃO SIMPLIFICD

Leia mais

Universidade Federal da Paraíba Centro de Ciências Exatas e da Natureza Departamento de Informática

Universidade Federal da Paraíba Centro de Ciências Exatas e da Natureza Departamento de Informática Universidade Federal da Paraíba Centro de Ciências Exatas e da Natureza Departamento de Informática Francisco Erberto de Sousa 11111971 Saulo Bezerra Alves - 11111958 Relatório: Capacitor, Resistor, Diodo

Leia mais

O inglês John A. Fleming, em 16 de novembro de 1904, percebeu que ao se juntar um elemento P a um elemento N, teria a seguinte situação: o elemento P

O inglês John A. Fleming, em 16 de novembro de 1904, percebeu que ao se juntar um elemento P a um elemento N, teria a seguinte situação: o elemento P O inglês John A. Fleming, em 16 de novembro de 1904, percebeu que ao se juntar um elemento P a um elemento N, teria a seguinte situação: o elemento P tem excesso de lacunas; o elemento N tem excesso de

Leia mais

Sistemas eléctricos e magnéticos

Sistemas eléctricos e magnéticos Sistemas eléctricos e magnéticos A corrente eléctrica como forma de transferência de energia Prof. Luís Perna 2010/11 Geradores de corrente eléctrica Um gerador eléctrico é um dispositivo que converte

Leia mais

PROPRIEDADES ELÉTRICAS DOS MATERIAIS. Vera L. Arantes

PROPRIEDADES ELÉTRICAS DOS MATERIAIS. Vera L. Arantes PROPRIEDADES ELÉTRICAS DOS MATERIAIS Vera L. Arantes Propriedades Elétricas Alguns materiais precisam ser altamente condutores. Ex.: fios para conexões elétricas. Ou precisam ser isolantes. Ex.: o encapsulamento

Leia mais

1. Materiais Semicondutores

1. Materiais Semicondutores 1. Professor: Vlademir de Oliveira Disciplina: Eletrônica I Conteúdo Teoria Materiais semicondutores Dispositivos semicondutores: diodo, transistor bipolar (TBJ), transistor de efeito de campo (FET e MOSFET)

Leia mais

Lista I de Eletrônica Analógica

Lista I de Eletrônica Analógica Lista I de Eletrônica Analógica Prof. Gabriel Vinicios Silva Maganha (http://www.gvensino.com.br) Bons estudos! Cronograma de Estudos: 1. Os Semicondutores são materiais que possuem: ( A ) Nenhum elétron

Leia mais

UNISANTA Universidade Santa Cecília Santos SP Disciplina: Eletrônica I Próf: João Inácio

UNISANTA Universidade Santa Cecília Santos SP Disciplina: Eletrônica I Próf: João Inácio Exercícios 1 Materiais Semicondutores e Junção PN 1- Em relação à teoria clássica que trata da estrutura da matéria (átomo- prótons e elétrons) descreva o que faz um material ser mal ou bom condutor de

Leia mais

23/5/2010. Circuitos Elétricos 2º Ano Engenharia da Computação SEMICONDUTORES

23/5/2010. Circuitos Elétricos 2º Ano Engenharia da Computação SEMICONDUTORES ESTUDO DO Os átomos de germânio e silício tem uma camada de valência com 4 elétrons. Quando os átomos de germânio (ou silício) agrupam-se entre si, formam uma estrutura cristalina, ou seja, são substâncias

Leia mais

CONHECIMENTOS ESPECÍFICOS TÉCNICO EM ELETRÔNICA

CONHECIMENTOS ESPECÍFICOS TÉCNICO EM ELETRÔNICA CONHECIMENTOS ESPECÍFICOS TÉCNICO EM ELETRÔNICA 26. Com relação aos materiais semicondutores, utilizados na fabricação de componentes eletrônicos, analise as afirmativas abaixo. I. Os materiais semicondutores

Leia mais

DIODO SEMICONDUTOR. íon negativo. elétron livre. buraco livre. região de depleção. tipo p. diodo

DIODO SEMICONDUTOR. íon negativo. elétron livre. buraco livre. região de depleção. tipo p. diodo DIODO SEMICONDUOR INRODUÇÃO Materiais semicondutores são a base de todos os dispositivos eletrônicos. Um semicondutor pode ter sua condutividade controlada por meio da adição de átomos de outros materiais,

Leia mais

CAPÍTULO 2 DIODO SEMICONDUTOR

CAPÍTULO 2 DIODO SEMICONDUTOR CAPÍTULO 2 DIODO SEMICONDUTO O diodo semicondutor é um dispositivo, ou componente eletrônico, composto de um cristal semicondutor de silício, ou germânio, em uma película cristalina cujas faces opostas

Leia mais

Polarização Reversa. Polarização Reversa. Polarização Reversa. Polarização Reversa. Polarização Reversa. Polarização Reversa

Polarização Reversa. Polarização Reversa. Polarização Reversa. Polarização Reversa. Polarização Reversa. Polarização Reversa Diodo semicondutor Diodo semicondutor Ao conjunto de materiais n e p com a camada de depleção formada damos o nome de diodo de junção ou diodo semicondutor. Símbolo: 2 Diodo Semicondutor O diodo pode apresentar

Leia mais

DISPOSITIVOS A ESTADO SÓLIDO FUNCIONANDO COMO CHAVES ELETRÔNICAS. Impurezas em materiais semicondutores e as junções PN

DISPOSITIVOS A ESTADO SÓLIDO FUNCIONANDO COMO CHAVES ELETRÔNICAS. Impurezas em materiais semicondutores e as junções PN DISPOSITIVOS A ESTADO SÓLIDO FUNCIONANDO COMO CHAVES ELETRÔNICAS Os dispositivos a estado sólido podem ser usados como amplificadores ou como chaves. Na eletrônica de potência, eles são usados principalmente

Leia mais

Os elementos de circuito que estudámos até agora foram elementos lineares. Ou seja, se duplicamos a ddp aos terminais de um

Os elementos de circuito que estudámos até agora foram elementos lineares. Ou seja, se duplicamos a ddp aos terminais de um O Díodo Os elementos de circuito que estudámos até agora foram elementos lineares. Ou seja, se duplicamos a ddp aos terminais de um componente, a intensidade da corrente eléctrica que o percorre também

Leia mais

Instituto Educacional São João da Escócia Colégio Pelicano Curso Técnico de Eletrônica. FET - Transistor de Efeito de Campo

Instituto Educacional São João da Escócia Colégio Pelicano Curso Técnico de Eletrônica. FET - Transistor de Efeito de Campo 1 FET - Transistor de Efeito de Campo Introdução Uma importante classe de transistor são os dispositivos FET (Field Effect Transistor). Transistor de Efeito de Campo. Como nos Transistores de Junção Bipolar

Leia mais

ESTA PROVA É FORMADA POR 20 QUESTÕES EM 10 PÁGINAS. CONFIRA ANTES DE COMEÇAR E AVISE AO FISCAL SE NOTAR ALGUM ERRO.

ESTA PROVA É FORMADA POR 20 QUESTÕES EM 10 PÁGINAS. CONFIRA ANTES DE COMEÇAR E AVISE AO FISCAL SE NOTAR ALGUM ERRO. Nome: Assinatura: P2 de CTM 2012.2 Matrícula: Turma: ESTA PROVA É FORMADA POR 20 QUESTÕES EM 10 PÁGINAS. CONFIRA ANTES DE COMEÇAR E AVISE AO FISCAL SE NOTAR ALGUM ERRO. NÃO SERÃO ACEITAS RECLAMAÇÕES POSTERIORES..

Leia mais

Projeto de Ensino. Ensino de Física: Placas Fotovoltaicas

Projeto de Ensino. Ensino de Física: Placas Fotovoltaicas UNICENTRO-CEDETEG Departamento de Física Projeto de Ensino Ensino de Física: Placas Fotovoltaicas Petiano: Allison Klosowski Tutor: Eduardo Vicentini Guarapuava 2011. SUMÁRIO I. INTRODUÇÃO E JUSTIFICATIVA...

Leia mais

Microeletrônica. Germano Maioli Penello. http://www.lee.eng.uerj.br/~germano/microeletronica%20_%202015-1.html

Microeletrônica. Germano Maioli Penello. http://www.lee.eng.uerj.br/~germano/microeletronica%20_%202015-1.html Microeletrônica Germano Maioli Penello http://www.lee.eng.uerj.br/~germano/microeletronica%20_%202015-1.html Sala 5145 (sala 17 do laboratorio de engenharia elétrica) 1 Pauta (14/04/2015) ÁQUILA ROSA FIGUEIREDO

Leia mais

UNIVERSIDADE DA BEIRA INTERIOR Sistemas Lógicos - Elementos de Electricidade e Electrónica. Pedro Araújo

UNIVERSIDADE DA BEIRA INTERIOR Sistemas Lógicos - Elementos de Electricidade e Electrónica. Pedro Araújo UNIVERSIDADE DA BEIRA INTERIOR Sistemas Lógicos - Elementos de Electricidade e Electrónica Pedro Araújo ------------------------------------------------ PRELIMINAR 1 - Introdução A electricidade é um conjunto

Leia mais

SEMICONDUTORES. Concentração de portadores de carga:

SEMICONDUTORES. Concentração de portadores de carga: Unidade 3 SEMICONDUTORES E g ~ 1 ev E F E = 0 Elétron pode saltar da banda de valência para a banda de condução por simples agitação térmica Concentração de portadores de carga: Para metais: elétrons de

Leia mais

É um dispositivo que permite modificar uma tensão alternada, aumentando-a ou diminuindo-a.

É um dispositivo que permite modificar uma tensão alternada, aumentando-a ou diminuindo-a. Prof. Dr. Sérgio Turano de Souza Transformador Um transformador é um dispositivo destinado a transmitir energia elétrica ou potência elétrica de um circuito a outro, induzindo tensões, correntes e/ou de

Leia mais

Semicondutores. Prof. Marcelo Wendling 2009 Versão 1.0

Semicondutores. Prof. Marcelo Wendling 2009 Versão 1.0 UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO" CAMPUS DE GUARATINGUETÁ Colégio Técnico Industrial de Guaratinguetá Prof. Carlos Augusto Patrício Amorim Semicondutores Prof. Marcelo Wendling 2009

Leia mais

LEI DE OHM. Professor João Luiz Cesarino Ferreira. Conceitos fundamentais

LEI DE OHM. Professor João Luiz Cesarino Ferreira. Conceitos fundamentais LEI DE OHM Conceitos fundamentais Ao adquirir energia cinética suficiente, um elétron se transforma em um elétron livre e se desloca até colidir com um átomo. Com a colisão, ele perde parte ou toda energia

Leia mais

PROPRIEDADES ELÉTRICAS DOS MATERIAIS

PROPRIEDADES ELÉTRICAS DOS MATERIAIS UNIVERSIDADE FEDERAL DO ABC Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas (CECS) BC-1105: MATERIAIS E SUAS PROPRIEDADES PROPRIEDADES ELÉTRICAS DOS MATERIAIS INTRODUÇÃO Resistência elétrica

Leia mais

Eletricidade Aula 1. Profª Heloise Assis Fazzolari

Eletricidade Aula 1. Profª Heloise Assis Fazzolari Eletricidade Aula 1 Profª Heloise Assis Fazzolari História da Eletricidade Vídeo 2 A eletricidade estática foi descoberta em 600 A.C. com Tales de Mileto através de alguns materiais que eram atraídos entre

Leia mais

7 -MATERIAIS SEMICONDUTORES

7 -MATERIAIS SEMICONDUTORES 7 -MATERIAIS SEMICONDUTORES 1 Isolantes, Semicondutores e Metais Isolante é um condutor de eletricidade muito pobre; Metal é um excelente condutor de eletricidade; Semicondutor possui condutividade entre

Leia mais

Luis Filipe Baptista MEMM 2

Luis Filipe Baptista MEMM 2 INSTRUMENTAÇÃO E CONTROLO CAPÍTULO V Transdutores Optoelectrónicos 2012/2013 Índice do capítulo Introdução Transdutores ópticos Transdutores optoelectrónicos - Absolutos - Incrementais Aplicações industriais

Leia mais

Introdução ao Estudo da Corrente Eléctrica

Introdução ao Estudo da Corrente Eléctrica Introdução ao Estudo da Corrente Eléctrica Num metal os electrões de condução estão dissociados dos seus átomos de origem passando a ser partilhados por todos os iões positivos do sólido, e constituem

Leia mais

PROPRIEDADES MECÂNICAS, ELÉTRICAS, TÉRMICAS, ÓPTICAS E MAGNÉTICAS DOS MATERIAIS

PROPRIEDADES MECÂNICAS, ELÉTRICAS, TÉRMICAS, ÓPTICAS E MAGNÉTICAS DOS MATERIAIS PROPRIEDADES MECÂNICAS, ELÉTRICAS, TÉRMICAS, ÓPTICAS E MAGNÉTICAS DOS MATERIAIS Utilização dos metais - Metais puros: cobre para fiação zinco para revestimento de aço alumínio para utensílios domésticos

Leia mais

Transitores CMOS, história e tecnologia

Transitores CMOS, história e tecnologia Transitores CMOS, história e tecnologia Fernando Müller da Silva Gustavo Paulo Medeiros da Silva 6 de novembro de 2015 Resumo Este trabalho foi desenvolvido com intuito de compreender a tecnologia utilizada

Leia mais

FEPI Centro Universitário de Itajubá Eletrônica Básica

FEPI Centro Universitário de Itajubá Eletrônica Básica FEPI Centro Universitário de Itajubá Eletrônica Básica Prof. Evaldo Renó Faria Cintra 1 Diodo Semicondutor Polarização Direta e Reversa Curva Característica Níveis de Resistência e Modelos Efeitos Capacitivos

Leia mais

MATERIAIS SEMICONDUTORES. Prof.: Sheila Santisi Travessa

MATERIAIS SEMICONDUTORES. Prof.: Sheila Santisi Travessa MATERIAIS SEMICONDUTORES Prof.: Sheila Santisi Travessa Introdução De acordo com sua facilidade de conduzir energia os materiais são classificados em: Condutores Semicondutores Isolantes Introdução A corrente

Leia mais

Experiência 06 Resistores e Propriedades dos Semicondutores

Experiência 06 Resistores e Propriedades dos Semicondutores Universidade Federal de Santa Catarina Departamento de Engenharia Elétrica Laboratório de Materiais Elétricos EEL 7051 Professor Clóvis Antônio Petry Experiência 06 Resistores e Propriedades dos Semicondutores

Leia mais

FÍSICA 12 Marília Peres. A corrente eléctrica é um movimento orientado. só ocorre se houver diferença de potencial.

FÍSICA 12 Marília Peres. A corrente eléctrica é um movimento orientado. só ocorre se houver diferença de potencial. CIRCUITOS ELÉCTRICOS FÍSICA 12 1 CORRENTE ELÉCTRICA A corrente eléctrica é um movimento orientado de cargas eléctricas através de um condutor e só ocorre se houver diferença de potencial. O sentido convencional

Leia mais

MAF 1292. Eletricidade e Eletrônica

MAF 1292. Eletricidade e Eletrônica PONTIFÍCIA UNIERIDADE CATÓICA DE GOIÁ DEPARTAMENTO DE MATEMÁTICA E FÍICA Professor: Renato Medeiros MAF 1292 Eletricidade e Eletrônica NOTA DE AUA II Goiânia 2014 Diodos Retificadores Aqui trataremos dos

Leia mais

Condensadores (capacitores)

Condensadores (capacitores) es (capacitores) O condensador (capacitor) é um componente de circuito que armazena cargas eléctricas. O parâmetro capacidade eléctrica (C) relaciona a tensão aos terminais com a respectiva carga armazenada.

Leia mais

CENTRO TECNOLÓGICO ESTADUAL PAROBÉ CURSO DE ELETRÔNICA

CENTRO TECNOLÓGICO ESTADUAL PAROBÉ CURSO DE ELETRÔNICA CENTRO TECNOLÓGO ESTADUAL PAROBÉ CURSO DE ELETRÔNA LABORATÓRIO DE ELETRÔNA ANALÓGA I Prática: 6 Assunto: Transistor Bipolar 1 Objetivos: Testar as junções e identificar o tipo de um transistor com o multímetro.

Leia mais

Protótipos: Conversão Fotovoltaica de Energia Solar

Protótipos: Conversão Fotovoltaica de Energia Solar Protótipos: Conversão Fotovoltaica de Energia Solar Susana Viana LNEG Laboratório Nacional de Energia e Geologia Estrada do Paço do Lumiar, 1649-038 Lisboa, PORTUGAL susana.viana@lneg.pt 1 O Recurso Solar

Leia mais

Elétricos. Prof. Josemar dos Santos prof.josemar@gmail.com

Elétricos. Prof. Josemar dos Santos prof.josemar@gmail.com Controle de Motores Elétricos Diodo Retificador Prof. Josemar dos Santos prof.josemar@gmail.com Constituição Um diodo retificador é constituído por uma junção PN de material semicondutor (silício ou germânio)

Leia mais

SOLUÇÃO DE CIRCUITOS COM DIODO

SOLUÇÃO DE CIRCUITOS COM DIODO 08/0/04 UNVERAE ECNOLÓGCA FEERAL O PARANÁ EPARAMENO ACAÊMCO E ELEROÉCNCA ELERÔNCA - E74C -- Profª Elisabete N Moraes AULA 4 MOELO MAEMÁCO O OO EMCONUOR Em 8 de outubro de 04. OLUÇÃO E CRCUO COM OO. Análise

Leia mais

Teoria da Ligação Química em Metais e Semicondutores

Teoria da Ligação Química em Metais e Semicondutores Teoria da Ligação Química em Metais e Semicondutores Pode explicar Brilho Condutividade térmica t e eléctrica. Maleabilidade Estas propriedades estão relacionadas com a mobilidade electrónica Valentim

Leia mais

Slide 1. tensão campo elétrico, E, corrente densidade de corrente, J, resistência resisitividade.

Slide 1. tensão campo elétrico, E, corrente densidade de corrente, J, resistência resisitividade. Slide 1 Lei de Ohm Olhe mais uma vez a Lei de Ohm, V=IR, do ponto de vista dos materiais. Reescreva como uma lei que é válida para todos os pontos dentro de um material, portanto substituímos tensão campo

Leia mais

Circuitos Retificadores

Circuitos Retificadores Circuitos Retificadores 1- INTRODUÇÃO Os circuito retificadores, são circuitos elétricos utilizados em sua maioria para a conversão de tensões alternadas em contínuas, utilizando para isto no processo

Leia mais

INTRODUÇÃO AO ESTUDO DOS MATERIAIS SEMICONDUTORES

INTRODUÇÃO AO ESTUDO DOS MATERIAIS SEMICONDUTORES 1 INTRODUÇÃO AO ESTUDO DOS MATERIAIS SEMICONDUTORES INTRODUÇÃO O material básico utilizado na construção de dispositivos eletrônicos semicondutores, não é um bom condutor, nem um bom isolante. Compare

Leia mais

Universidade Federal Fluminense UFF Escola de Engenharia TCE Curso de Engenharia de Telecomunicações TGT

Universidade Federal Fluminense UFF Escola de Engenharia TCE Curso de Engenharia de Telecomunicações TGT Universidade Federal Fluminense UFF Escola de Engenharia TCE Curso de Engenharia de Telecomunicações TGT Programa de Educação Tutorial PET Grupo PET-Tele Dicas PET-Tele Uma breve introdução à componentes

Leia mais

ELETRÔNICA BÁSICA. Versão 1.0. Wagner da Silva Zanco 2006. http://www.wagnerzanco.com.br suporte@wagnerzanco.com.br

ELETRÔNICA BÁSICA. Versão 1.0. Wagner da Silva Zanco 2006. http://www.wagnerzanco.com.br suporte@wagnerzanco.com.br ELETRÔNICA BÁSICA Versão 1.0 Wagner da Silva Zanco 2006 http://www.wagnerzanco.com.br suporte@wagnerzanco.com.br Objetivo O objetivo desta apostila é servir como parte do material didático utilizado no

Leia mais

fig. 1 - símbolo básico do diodo

fig. 1 - símbolo básico do diodo DIODOS São componentes que permitem a passagem da corrente elétrica em apenas um sentido. Produzidos à partir de semicondutores, materiais criados em laboratórios uma vez que não existem na natureza, que

Leia mais

Eletrônica Diodo 01 CIN-UPPE

Eletrônica Diodo 01 CIN-UPPE Eletrônica Diodo 01 CIN-UPPE Diodo A natureza de uma junção p-n é que a corrente elétrica será conduzida em apenas uma direção (direção direta) no sentido da seta e não na direção contrária (reversa).

Leia mais

Introdução aos semicondutores

Introdução aos semicondutores Introdução aos semicondutores São discutidas as características físicas que permitem distinguir entre um isolador (vidro), um semicondutor (silício) e um bom condutor (metal). A corrente num metal é devida

Leia mais

Instituição Escola Técnica Sandra Silva. Direção Sandra Silva. Título do Trabalho Fonte de Alimentação. Áreas Eletrônica

Instituição Escola Técnica Sandra Silva. Direção Sandra Silva. Título do Trabalho Fonte de Alimentação. Áreas Eletrônica Instituição Escola Técnica Sandra Silva Direção Sandra Silva Título do Trabalho Fonte de Alimentação Áreas Eletrônica Coordenador Geral Carlos Augusto Gomes Neves Professores Orientadores Chrystian Pereira

Leia mais

IFBA MOSFET. CELET Coordenação do Curso Técnico em Eletrônica Professor: Edvaldo Moraes Ruas, EE. Vitória da Conquista - 2009

IFBA MOSFET. CELET Coordenação do Curso Técnico em Eletrônica Professor: Edvaldo Moraes Ruas, EE. Vitória da Conquista - 2009 IFBA MOSFET CELET Coordenação do Curso Técnico em Eletrônica Professor: Edvaldo Moraes Ruas, EE Vitória da Conquista - 2009 MOSFET s - introdução Semicondutor FET de óxido metálico, ou Mosfet (Metal Oxide

Leia mais

COMPÊNDIO ELECTRÓNICA ELEMENTAR

COMPÊNDIO ELECTRÓNICA ELEMENTAR S. R. MINISTÉRIO DA DEFESA NACIONAL FORÇA AÉREA PORTUGUESA CENTRO DE FORMAÇÃO MILITAR E TÉCNICA Curso de Formação de Praças - RC COMPÊNDIO ELECTRÓNICA ELEMENTAR EPR: NEL CCF 335-35 Março 2009 S. R. MINISTÉRIO

Leia mais

Ligações Químicas Ligação Iônica Ligação Metálica

Ligações Químicas Ligação Iônica Ligação Metálica Química Geral e Inorgânica QGI0001 Eng a. de Produção e Sistemas Prof a. Dr a. Carla Dalmolin Ligações Químicas Ligação Iônica Ligação Metálica Periodicidade O átomo é visto como uma esfera, onde só as

Leia mais

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I EEL420. Módulo 2

Universidade Federal do Rio de Janeiro. Circuitos Elétricos I EEL420. Módulo 2 Universidade Federal do Rio de Janeiro Circuitos Elétricos I EEL420 Módulo 2 Thévenin Norton Helmholtz Mayer Ohm Galvani Conteúdo 2 Elementos básicos de circuito e suas associações...1 2.1 Resistores lineares

Leia mais

Caracterização experimental de díodos a temperaturas criogénicas

Caracterização experimental de díodos a temperaturas criogénicas Carlos Miguel Gomes Carvalho Licenciado em Ciências da Engenharia Electrotécnica e de Computadores Caracterização experimental de díodos a temperaturas criogénicas Dissertação para obtenção do Grau de

Leia mais

FACULDADE DE CIÊNCIAS DA UNIVERSIDADE DO PORTO DEPARTAMENTO DE FÍSICA FORMAÇÃO CONTÍNUA 2009

FACULDADE DE CIÊNCIAS DA UNIVERSIDADE DO PORTO DEPARTAMENTO DE FÍSICA FORMAÇÃO CONTÍNUA 2009 FACULDADE DE CIÊNCIAS DA UNIVERSIDADE DO PORTO DEPARTAMENTO DE FÍSICA FORMAÇÃO CONTÍNUA 2009 Actividades de sala de aula com a calculadora gráfica e sensores, para o 3º ciclo do Ensino Básico e Ensino

Leia mais

DS100: O SINAL ELÉTRICO

DS100: O SINAL ELÉTRICO DS100: O SINAL ELÉTRICO Emmanuel M. Pereira I. Objetivo O propósito deste artigo é esclarecer aos clientes da Sikuro, usuários do eletroestimulador modelo DS100 (C ou CB), no que se refere ao tipo de onda

Leia mais

Apostila de Química Geral

Apostila de Química Geral Cursinho Vitoriano UNESP - Universidade Estadual Paulista "Júlio de Mesquita Filho" Câmpus de São José do Rio Preto Apostila de Química Geral Período noturno Ligações químicas interatômicas Vanessa R.

Leia mais

APOSTILA DO EXAME SOBRE RADIOAELETRICIDADE

APOSTILA DO EXAME SOBRE RADIOAELETRICIDADE APOSTILA DO EXAME SOBRE RADIOAELETRICIDADE 01)A força elétrica que provoca o movimento de cargas em um condutor é: A ( ) A condutância B ( ) A temperatura C ( ) O campo elétrico D ( ) A tensão elétrica

Leia mais

Materiais Elétricos Semicondutores

Materiais Elétricos Semicondutores Materiais Elétricos Semicondutores Este tutorial apresenta um estudo sobre os materiais elétricos semicondutores, focando na sua fabricação nas suas aplicações em nosso cotidiano. Sérgio Gonçalves da Silva

Leia mais

Circuitos de Corrente Contínua

Circuitos de Corrente Contínua Circuitos de Corrente Contínua Conceitos básicos de eletricidade Fundamentos de Eletrostática Potencial, Diferença de Potencial, Corrente Tipos de Materiais Circuito Elétrico Resistores 1 Circuitos de

Leia mais

CURSO DE TECNOLOGIA EM AUTOMAÇÃO DE PROCESSOS INDUSTRIAIS

CURSO DE TECNOLOGIA EM AUTOMAÇÃO DE PROCESSOS INDUSTRIAIS UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ COORDENAÇÃO DE ELETRÔNICA - COELE Apostila didática: CURSO DE TECNOLOGIA EM AUTOMAÇÃO DE PROCESSOS INDUSTRIAIS Apostila didática: ELETRÔNICA INDUSTRIAL, Me. Eng.

Leia mais

ENSINO SECUNDÁRIO CURSO PROFISSIONAL

ENSINO SECUNDÁRIO CURSO PROFISSIONAL ESCOLA: Escola Secundária dr. Solano de Abreu DISCIPLINA: Eletricidade e Eletrónica Módulo 1 ANO: 10º ANO 2014/2015 As grandezas mais importantes do circuito elétrico. A lei de OHM. A lei de JOULE. Os

Leia mais

Materiais Semicondutores

Materiais Semicondutores Materiais Semicondutores 1 + V - V R.I A I R.L A L Resistividade (W.cm) Material Classificação Resistividade ( ) Cobre Condutor 10-6 [W.cm] Mica Isolante 10 12 [W.cm] Silício (S i ) Semicondutor 50.10

Leia mais

Energia Fóton elétron volt (ev)

Energia Fóton elétron volt (ev) (1) Slide 1 Espectro eletromagnético O Espectro Eletromagnético Freqüência Hertz (Hz) Comprimento de Onda metros (m) Energia Fóton elétron volt (ev) Energia Fóton Joule (J) Raios gama Raios X Ultravioleta

Leia mais

Adaptado de Professora: Miwa Yoshida. www.colegionobel.com.br/2004quimica1oano/atomo.ppt

Adaptado de Professora: Miwa Yoshida. www.colegionobel.com.br/2004quimica1oano/atomo.ppt Adaptado de Professora: Miwa Yoshida www.colegionobel.com.br/2004quimica1oano/atomo.ppt Leucipo de Mileto ( 440 a.c.) & Demócrito (460 a.c. - 370 a.c. ) A ideia de dividirmos uma porção qualquer de matéria

Leia mais

Detectores de Partículas. Thiago Tomei IFT-UNESP Março 2009

Detectores de Partículas. Thiago Tomei IFT-UNESP Março 2009 Detectores de Partículas Thiago Tomei IFT-UNESP Março 2009 Sumário Modelo geral de um detector. Medidas destrutivas e não-destrutivas. Exemplos de detectores. Tempo de vôo. Detectores a gás. Câmara de

Leia mais

UNIDADE 3 - COORDENAÇÃO ATÔMICA

UNIDADE 3 - COORDENAÇÃO ATÔMICA A força de repulsão entre os elétrons de dois átomos, quando estão suficientemente próximos, é responsável, em conjunto com as forças de atração, pela posição de equilíbrio dos átomos na ligação química

Leia mais

Eletrônica Analógica

Eletrônica Analógica UNIVERSIDADE FEDERAL DO PARÁ FACULDADE DE ENGENHARIA DE COMPUTAÇÃO E TELECOMUNICAÇÕES Eletrônica Analógica Transistores de Efeito de Campo Professor Dr. Lamartine Vilar de Souza lvsouza@ufpa.br www.lvsouza.ufpa.br

Leia mais

Termistor. Termistor

Termistor. Termistor Termistor Aplicação à disciplina: EE 317 - Controle e Automação Industrial Este artigo descreve os conceitos básicos sobre termistores. 1 Conteúdo 1 Introdução:...3 2 Operação básica:...4 3 Equação de

Leia mais

Circuitos com Diodos. Eletrônica I Alexandre Almeida Eletrônica dos Semicondutores.

Circuitos com Diodos. Eletrônica I Alexandre Almeida Eletrônica dos Semicondutores. Circuitos com Diodos Eletrônica I Alexandre Almeida Eletrônica dos Semicondutores. O TRANSFORMADOR DE ENTRADA As companhias de energia elétrica no Brasil fornecem.umatensão senoidal monofásica de 127V

Leia mais

Corrente elétrica corrente elétrica.

Corrente elétrica corrente elétrica. Corrente elétrica Vimos que os elétrons se deslocam com facilidade em corpos condutores. O deslocamento dessas cargas elétricas é chamado de corrente elétrica. A corrente elétrica é responsável pelo funcionamento

Leia mais

FÍSICA NUCLEAR E PARTÍCULAS

FÍSICA NUCLEAR E PARTÍCULAS FÍSICA NUCLEAR E PARTÍCULAS Apêndice - O Tubo de Geiger - Müller 1 - Descrição sumária O tubo de Geiger é constituido essencialmente por dois eléctrodos, o cátodo e o ânodo, encerrados num recipiente de

Leia mais

Eletrodinâmica. Circuito Elétrico

Eletrodinâmica. Circuito Elétrico Eletrodinâmica Circuito Elétrico Para entendermos o funcionamento dos aparelhos elétricos, é necessário investigar as cargas elétricas em movimento ordenado, que percorrem os circuitos elétricos. Eletrodinâmica

Leia mais

Curso Técnico de Eletrônica Eletrônica Linear II NA1 Transistores Bipolares Aluno: Revisão de conteúdo Data: 20/03/2010

Curso Técnico de Eletrônica Eletrônica Linear II NA1 Transistores Bipolares Aluno: Revisão de conteúdo Data: 20/03/2010 Curso Técnico de Eletrônica Eletrônica Linear II NA1 Transistores Bipolares Aluno: Revisão de conteúdo Data: 20/03/2010 TRANSISTORES BIPOLARES O transistor de junção bipolar é um dispositivo semicondutor

Leia mais

PLANIFICAÇÃO MODULAR ANO LECTIVO 2012 / 2013

PLANIFICAÇÃO MODULAR ANO LECTIVO 2012 / 2013 CURSO/CICLO DE FORMAÇÃO: Técnico de Instalações Elétricas DISCIPLINA: Eletricidade / Eletrónica N.º TOTAL DE MÓDULOS: 8 PLANIFICAÇÃO MODULAR ANO LECTIVO 2012 / 2013 N.º 1 30 Corrente Contínua Identificar

Leia mais

Aula 4 Corrente Alternada e Corrente Contínua

Aula 4 Corrente Alternada e Corrente Contínua FUNDMENTOS DE ENGENHI ELÉTIC PONTIFÍCI UNIVESIDDE CTÓLIC DO IO GNDE DO SUL FCULDDE DE ENGENHI ula 4 Corrente lternada e Corrente Contínua Introdução Corrente lternada e Corrente Contínua Transformadores

Leia mais

Aula 19 Condução de Eletricidade nos Sólidos

Aula 19 Condução de Eletricidade nos Sólidos Aula 19 Condução de Eletricidade nos Sólidos Física 4 Ref. Halliday Volume4 Sumário Semicondutores; Semicondutores Dopados; O Diodo Retificador; Níveis de Energia em um Sólido Cristalino relembrando...

Leia mais

APOSTILA DE ELETRICIDADE BÁSICA

APOSTILA DE ELETRICIDADE BÁSICA MINISTÉRIO DA EDUCAÇÃO INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SÃO PAULO CAMPUS DE PRESIDENTE EPITÁCIO APOSTILA DE ELETRICIDADE BÁSICA Prof. Andryos da Silva Lemes Esta apostila é destinada

Leia mais

O que são controladores elétricos? Dispositivo Electronico que melhora a passagem de corrente electrica no circuito Home ou Empresarial.

O que são controladores elétricos? Dispositivo Electronico que melhora a passagem de corrente electrica no circuito Home ou Empresarial. O que são controladores elétricos? Dispositivo Electronico que melhora a passagem de corrente electrica no circuito Home ou Empresarial. Ligue o controlador Power Saver na primeira tomada mais próxima

Leia mais

CIRCUITOS DE CORRENTE CONTÍNUA

CIRCUITOS DE CORRENTE CONTÍNUA Departamento de Física da Faculdade de iências da Universidade de Lisboa Electromagnetismo 2007/08 IRUITOS DE ORRENTE ONTÍNU 1. Objectivo Verificar as leis fundamentais de conservação da energia e da carga

Leia mais

CHAVEAMENTO COM SCR S

CHAVEAMENTO COM SCR S ELE-59 Circuitos de Chaveamento Prof.: Alexis Fabrício Tinoco S. INSTITUTO TECNOLÓGICO DE AERONÁUTICA DIVISÃO DE ENGENHARIA ELETRÔNICA DEPARTAMENTO DE ELETRÔNICA APLICADA 1. INTRODUÇAO CHAVEAMENTO COM

Leia mais

Aula 5 Componentes e Equipamentos Eletrônicos

Aula 5 Componentes e Equipamentos Eletrônicos Aula 5 Componentes e Equipamentos Eletrônicos Introdução Componentes Eletrônicos Equipamentos Eletrônicos Utilizados no Laboratório Tarefas INTRODUÇÃO O nível de evolução tecnológica evidenciado nos dias

Leia mais

Conceitos Básicos para Semicondutores

Conceitos Básicos para Semicondutores Conceitos Básicos para Semicondutores Jacobus W. Swart O modelo do elétrons livre em metais explica várias propriedades dos metais, porém falha completamente na explicação das propriedades de isolantes

Leia mais

Cap. 4 - MOS 1. Gate Dreno. Fonte

Cap. 4 - MOS 1. Gate Dreno. Fonte Cap. 4 - MO 1 Fonte ate reno O princípio de funcionamento do transístor de efeito de campo (TEC ou FET, na designação anglo-saxónica) assenta no controlo de uma carga móvel associada a uma camada muito

Leia mais

9 Eletrônica: circuitos especiais

9 Eletrônica: circuitos especiais U UL L Eletrônica: circuitos especiais Um problema Um dos problemas com que se defrontava a eletrônica consistia no fato de que as válvulas, então empregadas nos sistemas, além de serem muito grandes,

Leia mais

Antes de estudar a tecnologia de implementação do transistor um estudo rápido de uma junção;

Antes de estudar a tecnologia de implementação do transistor um estudo rápido de uma junção; Transistor O transistor é um elemento ativo e principal da eletrônica. Sendo um elemento ativo o transistor é utilizado ativamente na construção dos circuitos lineares e digitais. Os transistores podem

Leia mais

Instrumentação Industrial e Medidas Eléctricas - IPT - DEE Carlos Ferreira

Instrumentação Industrial e Medidas Eléctricas - IPT - DEE Carlos Ferreira Sensores Amedição das grandezas físicas é uma necessidade. Para essa função são utilizados sensores estes convertem a grandeza a medir noutra. No caso da instrumentação a variável de saída é normalmente

Leia mais

ENG04447 Eletrônica I

ENG04447 Eletrônica I ENG04447 Eletrônica Diodos 1 DSPOSTVOS ELETRÔNCOS ATVOS (amplificação) Dispositivos Eletrônicos Elementares Transistor de Junção Bipolar BJT Transistor de Efeito de Campo FET NPN PNP de Junção JFET de

Leia mais

Eletrônica Básica. Os prótons estão sempre presentes no núcleo e têm carga elétrica positiva.

Eletrônica Básica. Os prótons estão sempre presentes no núcleo e têm carga elétrica positiva. Eletrônica Básica 1. Teoria Básica dos Semicondutores. 2. Diodo de Junção PN. 3. Complementos. 4. Diodos Especiais 5. Circuitos com Diodo. 6. Transistores. 1 Eletrônica Básica 1. Teoria Básica dos Semicondutores

Leia mais