Além de minimizar o número de objetos processados, problema de corte unidimensional

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Além de minimizar o número de objetos processados, problema de corte unidimensional"

Transcrição

1 imização do número de objetos processados e do setup no problema de corte unidimensional Márcia Ap. Gomes-Ruggiero, Antonio Carlos Moretti, Momoe Sakamori Depto de Matemática Aplicada, DMA, IMECC, UNICAMP, 8-89, Campinas, SP Introdução O objetivo neste trabalho é resolver o problema de minimização do número de objetos processados e o setup em um problema de corte unidimensional, baseando-se no método proposto em [8]. O problema de corte unidimensional consiste em cortar um objeto de largura W em itens de m diferentes larguras w i com demanda d i, i =,..., m. Dada A IR m n a matriz cujas colunas são os padrões de corte, este problema pode ser formulado como de minimização do número de objetos processados. j a ij j = d i, i =,..., m () j IN, j =,..., n Além de minimizar o número de objetos processados, queremos minimizar o setup, ou seja, minimizar o custo de cada padrão a ser utilizado. Chamamos este problema de Problema de Corte unidimensional para minimizar o número de Objetos Processados e o Setup (PCOPS): n n c j + c δ( j ) a ij j = d i, i =,..., m () j IN, j =,..., n onde c é o custo de cada objeto processado e c é o custo de setup e δ( j ) = {, se j =, caso contrário Heurísticas para geração de padrões iniciais Para a maioria dos problemas de corte, gerar todos os padrões de corte possíveis é computacionalmente inviável. Podemos construir uma solução inicial utilizando os padrões homogêneos. Um padrão de corte homogêneo é obtido etraíndo do objeto, um único item, o máimo número de vezes possível. Assim, para cada item, i =,..., m, o padrão homogêneo é dado por a i = (,..., a ii,..., ), com a ii = W e o wi número de objetos processados para atender a demanda é dado por i = d a ii. Haessler propôs em 97, [], a heurística SHP (Sequential Heuristic Procedure), que busca construir padrões de corte visando minimizar o desperdício e o setup. Cada padrão gerado procura atender aos seguintes critérios de aspiração: (i) W a i w i MAXT L i= (ii) MINR a i MAXR i= (iii) MINU onde MAXT L é a máima perda permitida com o padrão, NR = m i= dr i w i /W é a estimativa do número de objetos para satisfazer a demanda residual dr, NI = m i= dr i /NR é

2 o número médio de itens que devem ser obtidos no padrão, MINR = NI é o número mínimo de itens no padrão, MAXR é o número máimo de itens no padrão, MINU = αnr é o número mínimo de objetos processados com o padrão, α variando entre. e.9. Os parâmetros MAXR, α e MAXT L, que geralmente assume valores entre.6w e.w, são dados de entrada para a heurística. k= k= k= k= Modelo não linear para o PCOPS Martínez, [6] propôs uma suavização da função custo descontínua. Para k suficientemente grande, podemos aproimar a função objetivo do problema dado em () por n n k j f() = c j + c + k. Chamamos j de P k o seguinte problema: k= k= n n k j f() = c j + c + k j a ij j d i, i =,..., m () j, j =,..., n Observe que trabalhamos aqui as restrições de PCOPS transformadas em desigualdade. A Figura mostra o comportamento de f() quando os pesos de c e c são iguais a. Notase a característica da função em aproimar a função δ() quando k é grande. Neste caso, quando é maior que zero, o termo de setup é constante e igual a c. Modificando os parâmetros para c = e c =, observamos o comportamento da função f() pela Figura, onde o peso do setup é mais relevante. Geração de colunas Para o problema de programação linear, foi proposto por Gilmore e Gomory, [, ], um método de geração de colunas, que consiste em gerar uma nova coluna montando-se o seguinte problema da mochila: Figura : Comportamento de f() para c = e c = Ma Z = π i a i i= w i a i W i= a i IN, i =,..., m onde π IR m é o vetor dos multiplicadores (variáveis duais) da solução do problema (). Se Z >, então a coluna gerada a deve entrar na base, caso contrário não eiste outra coluna que melhore o valor da função objetivo do problema (). A fim de utilizar este método de geração de colunas para o problema não linear, Moretti e Salles Neto [8] apresentaram uma formulação linear para P k, chamado de Problema Linear Auiliar (PLA): j y j a ij j d i, i =,..., m y j = p

3 k= k= f() j + a ij λ i + µ j =, j =,..., n i= λ i, i =,..., m. 8 6 k= 8 6 k= 8 6 k= 8 6 k= λ i ( a ij j d i ) =, i =,..., m µ j j =, j =,..., n Suponha que as p primeiras componentes da solução de P k são não nulas. Assim, j =, j = p,..., n e µ j =, j =,..., p. Reescrevendo as condições KKT, temos: k j + ( + k + m a ij λ i =, j =,..., p j ) i= + a ij λ i + µ j =, j = p,..., n i= Figura : Comportamento de f() para c = e c = Ly j j j =,..., n y j j =,..., n j, j =,..., n onde p é o número de padrões distintos na solução de P k. Podemos reescrever PLA de uma forma mais simplificada, o chamado Problema Linear Auiliar (PLA): j a ij j d i, i =,..., m () j, j =,..., p Mostra-se que se IR n é solução do problema P k, com as p primeiras componentes não nulas e IR p é solução de PLA, então j = j Porém, quando ocorre o caso de infinitas soluções para o problema primal, nem sempre teremos j = j, j =,..., p. Escrevendo as condições KKT do problema P k temos: λ i, i =,..., m λ i ( a ij j d i ) =, i =,..., m Para PLA, as componentes da solução são estritamente maiores que zero, logo µ =. Podemos escrever as condições KKT, já simplificadas: + a ij λ i =, j =,..., p i= λ i, i =,..., m λ i ( a ij j d i ) =, i =,..., m Nota-se que as condições KKT de P k e de PLA são parecidas. A diferença está no termo do gradiente referente à parte não linear da função objetivo do P k. O gradiente da função objetivo de P k é dado por f() = c. + c k (+k ). k n (+k n) A Figura mostra o comportamento de k/ + k. Para k suficientemente grande,

4 observamos que a função assume valores positivos para valores de muito próimos de zero. Para o nosso problema, procuramos valores de inteiros, assim gostaríamos de ter valores de ou zero ou maior que. Dessa forma, os multiplicadores dos dois problemas seriam os mesmos para uma mesma solução. Com este argumento, utilizaremos os multiplicadores obtidos no problema não linear P k para montar o problema da mochila na geração de uma coluna nova. k=.. k=.. k=.. k=.. k=.. k=.. Figura : Comportamento de Arredondamento k +k Para o arredondamento da solução, utilizamos a heurística BRURED [9]. - Arredonda para cima todas as variáveis, j = j, j =,..., n. - Para cada k,..., n, se a ik ( k ) + a ij j d i,,j k i =,..., m, então k = k. 6 Método As principais etapas do algoritmo são as seguintes:. geração de solução inicial;. resolução de PCOPS;. geração de coluna;. arredondamento da solução por BRURED. Em relação ao método ANLCP, proposta por Moretti e Salles Neto, [8], as principais modificações realizadas no presente trabalho foram: na resolução de PCOPS, optamos por empregar o MINOS, [7] ao invés do BOX, []; para formular o problema da mochila, optamos por utilizar os multiplicadores obtidos na resolução do problema não linear P k ao invés de etrair os multiplicadores ótimos de PLA. Com esta opção, evitamos a resolução de um problema linear. Considerando que é necessário obter o ótimo global de P k, reescrevamos as etapas principais do algoritmo como:. Gerar uma solução inicial.. Montar e resolver o problema P k, para k =,,,,, para soluções iniciais diferentes utilizando MINOS.. Com os multiplicadores da solução de P k, montar e resolver o problema da mochila através de Branch-and-Bound. Se Z >, inserir a coluna gerada na matriz do PCOPS e voltar a (). Se Z ou a coluna gerada for a mesma que a gerada anteriormente, FIM.. Arredondar a solução por BRURED. Observamos que nesta implementação a estratégia para obtenção do ótimo global está baseada apenas em um procedimento onde geramos várias aproimações iniciais. Esta é uma etapa do algoritmo que está em estudo. No Método utilizamos c = e c =, priorizando a minimização do número de padrões. No passo (), para cada k resolvemos P k para soluções iniciais, sendo que uma delas é a melhor solução obtida para o problema com k anterior e as demais são aleatórias.

5 O Método é uma modificação do Método. Ao invés de resolver o problema P k para k crescendo de até, resolvemos diretamente apenas para k =. 7 Testes computacionais Foram realizados testes computacionais com os problemas de CUTGEN de Gau e Wascher, []. Nas tabelas a seguir, obj é a quantidade de objetos processados, setup é o número de padrões utilizados, vcg é o número de colunas geradas e vce é o número de colunas geradas e que entraram na solução. Padr. Homog. Método Colunas jcla m obj setup obj setup vcg vce Tabela : Resultados do Método com solução inicial homogênea SHP Método Colunas jcla m obj setup obj setup vcg vce Tabela : Resultados do Método com solução inicial por SHP Método Método jcla m obj setup obj setup Tabela : Comparação entre o Método e o Método com solução inicial por SHP Na Tabela, a solução inicial utilizada foi a homogênea. Começando-se com os padrões homogêneos, apesar de gerar colunas novas, não há melhora significativa na solução. Na Tabela, utilizou-se a solução inicial por SHP. Observa-se que em relação ao setup o método melhorou a solução. Entretanto, a geração de colunas não foi eficiente. A Tabela mostra os resultados obtidos com o Método e o Método, ambos com solução inicial por SHP. O Método mostrou-se melhor em relação ao setup que o Método. 8 Conclusões Apesar de não ser possível mostrar teoricamente que os multiplicadores da solução de P k são os mesmos que de PLA, na prática eles são bem próimos quando têm a mesma solução. Portanto, a utilização dos multiplicadores oriundos da solução de P k para a geração de colunas elimina a necessidade de se montar e resolver o PLA. A heurística SHP gera padrões de corte muito bons, entretanto é necessário um refinamento da solução. Para esta finalidade, o Método e o Método mostraram ser eficientes. A geração de colunas pode ser mais eficiente se for obtido o ótimo global do problema P k. Outro fato que devemos investigar melhor é como devemos aumentar o parâmetro k.

6 O trabalho está em andamento, com implementação de estratégias para obter ótimo global do problema P k. Referências [] Friedlander,A., Martínez, J. M. e Santos, S. A. A new trust region algorithm for bound constrained minimization, Appl. Math. and Optim., pp. -66, 99. [] Gau, T. e Wascher, G., CUTGEN: A Problem Generator for the Standard Onedimensional Cutting Stock Problem, European Journal of Operational Research, 8, pp. 7-79, 99. [] Gilmore, P. C. e Gomory, R. E., A Linear Programming Approach to the Cutting Stock Problem I, Operations Research, 9, pp , 96. [] Gilmore, P. C. e Gomory, R. E., A Linear Programming Approach to the Cutting Stock Problem II, Operations Research,, pp , 96. [] Haessler,R., Controlling Cutting Pattern Changes in One-Dimensional Trim Problems, Operations Research,, pp. 8-9, 97. [6] Martínez, J. M., imization of discontinuous cost functions by smoothing, Acta Applicandae Mathematical, 7, pp. -6,. [7] Murtagh, B. A. e Saunders, M. A., MI- NOS. USER S GUIDE (revised), Technical Report SOL 8-R, Department of Operations Research, Stanford University, Stanford, CA 9, USA, 99. Revised 99. [8] Salles Neto, L. L., Modelo não-linear para minimizar o número de objetos processados e o setup num problema de corte unidimensional, Tese de Doutorado, IMECC, UNICAMP, Campinas/SP,. [9] Wascher, G. e Gau, T., Heuristics for the Integer One-dimensional Cutting Stock Problem: a computational study, OR Spektrum, 8, pp.-, 996.

Uma Heurística para o Problema de Redução de Padrões de Corte

Uma Heurística para o Problema de Redução de Padrões de Corte Uma Heurística para o Problema de Redução de Padrões de Corte Marcelo Saraiva Limeira INPE/LAC e-mail: marcelo@lac.inpe.br Horacio Hideki Yanasse INPE/LAC e-mail: horacio@lac.inpe.br Resumo Propõe-se um

Leia mais

MINIMIZANDO O NÚMERO DE DIFERENTES PADRÕES DE CORTE - UMA ABORDAGEM DE CAMINHO MÍNIMO

MINIMIZANDO O NÚMERO DE DIFERENTES PADRÕES DE CORTE - UMA ABORDAGEM DE CAMINHO MÍNIMO A pesquisa Operacional e os Recursos Renováveis 4 a 7 de novembro de 2003, Natal-RN MINIMIZANDO O NÚMERO DE DIFERENTES PADRÕES DE CORTE - UMA ABORDAGEM DE CAMINHO MÍNIMO Maria Cristina N. Gramani Universidade

Leia mais

Instituto de Computação

Instituto de Computação Instituto de Computação Universidade Estadual de Campinas MO824 - Programação Inteira e Combinatória Geração de Colunas para o Problema de Corte e Empacotamento Bidimensional em Faixas Fabricio Olivetti

Leia mais

MODELO MATEMÁTICO E HEURÍSTICA PARA O PROBLEMA DE CORTE COM SOBRAS APROVEITÁVEIS E VENDA DE RETALHOS

MODELO MATEMÁTICO E HEURÍSTICA PARA O PROBLEMA DE CORTE COM SOBRAS APROVEITÁVEIS E VENDA DE RETALHOS MODELO MATEMÁTICO E HEURÍSTICA PARA O PROBLEMA DE CORTE COM SOBRAS APROVEITÁVEIS E VENDA DE RETALHOS Adriana Cherri Departamento de Matemática, Faculdade de Ciências, UNESP, Bauru Av. Eng. Luiz Edmundo

Leia mais

As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem:

As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem: 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia. Introdução O Cálculo Numérico

Leia mais

Aplicação do Algoritmo ε Restrito com uma Heurística de Arredondamento no Problema de Corte Unidimensional Inteiro Multiobjetivo

Aplicação do Algoritmo ε Restrito com uma Heurística de Arredondamento no Problema de Corte Unidimensional Inteiro Multiobjetivo Aplicação do Algoritmo ε Restrito com uma Heurística de Arredondamento no Problema de Corte Unidimensional Inteiro Multiobjetivo Angelo Aliano Filho IMECC - UNICAMP Rua Sérgio Buarque de Holanda, Campinas,

Leia mais

Aspectos Teóricos e Computacionais do Problema de Alocação de Berços em Portos Marítmos

Aspectos Teóricos e Computacionais do Problema de Alocação de Berços em Portos Marítmos Aspectos Teóricos e Computacionais do Problema de Alocação de Berços em Portos Marítmos Flávia Barbosa Universidade Estadual de Campinas (UNICAMP) flaflabarbosa0@gmail.com Antônio Carlos Moretti Universidade

Leia mais

UMA HEURÍSTICA GRASP PARA O PROBLEMA ESTENDIDO DE SEQUENCIAMENTO DE CARROS

UMA HEURÍSTICA GRASP PARA O PROBLEMA ESTENDIDO DE SEQUENCIAMENTO DE CARROS UMA HEURÍSTICA GRASP PARA O PROBLEMA ESTENDIDO DE SEQUENCIAMENTO DE CARROS Lucas Middeldorf Rizzo Universidade Federal de Minas Gerais Av. Antônio Carlos, 6627 - Pampulha - Belo Horizonte - MG CEP 31270-901

Leia mais

Detecção de Linhas Redundantes em Problemas de Programação Linear de Grande Porte

Detecção de Linhas Redundantes em Problemas de Programação Linear de Grande Porte Detecção de Linhas Redundantes em Problemas de Programação Linear de Grande Porte Aurelio R. L. de Oliveira, Daniele Costa Silva, Depto de Matemática Aplicada, IMECC, UNICAMP, 13083-859, Campinas, SP E-mail:

Leia mais

Heurísticas para o problema de corte com reaproveitamento das sobras de material

Heurísticas para o problema de corte com reaproveitamento das sobras de material Heurísticas para o problema de corte com reaproveitamento das sobras de material Adriana Cristina Cherri, Marcos Nereu Arenales Instituto de Ciências Matemáticas e de Computação, USP. 13560-970, São Carlos,

Leia mais

Estudaremos métodos numéricos para resolução de sistemas lineares com n equações e n incógnitas. Estes podem ser:

Estudaremos métodos numéricos para resolução de sistemas lineares com n equações e n incógnitas. Estes podem ser: 1 UNIVERSIDADE FEDERAL DE VIÇOSA Departamento de Matemática - CCE Cálculo Numérico - MAT 271 Prof.: Valéria Mattos da Rosa As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia

Leia mais

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 04. Prof. Dr. Marco Antonio Leonel Caetano

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 04. Prof. Dr. Marco Antonio Leonel Caetano MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação Aula 04 Prof. Dr. Marco Antonio Leonel Caetano Guia de Estudo para Aula 04 Aplicação de Produto Escalar - Interpretação do produto escalar

Leia mais

1. Método Simplex. Faculdade de Engenharia Eng. Celso Daniel Engenharia de Produção. Pesquisa Operacional II Profa. Dra. Lílian Kátia de Oliveira

1. Método Simplex. Faculdade de Engenharia Eng. Celso Daniel Engenharia de Produção. Pesquisa Operacional II Profa. Dra. Lílian Kátia de Oliveira Faculdade de Engenharia Eng. Celso Daniel Engenharia de Produção. Método Simple.. Solução eata para os modelos de Programação Linear O modelo de Programação Linear (PL) reduz um sistema real a um conjunto

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu 1 Programação Linear (PL) Aula 5: O Método Simplex. 2 Algoritmo. O que é um algoritmo? Qualquer procedimento iterativo e finito de solução é um algoritmo. Um algoritmo é um processo que se repete (itera)

Leia mais

a 1 x 1 +... + a n x n = b,

a 1 x 1 +... + a n x n = b, Sistemas Lineares Equações Lineares Vários problemas nas áreas científica, tecnológica e econômica são modelados por sistemas de equações lineares e requerem a solução destes no menor tempo possível Definição

Leia mais

Método Simplex - Variantes V 1.1, V.Lobo, EN / ISEGI, 2008

Método Simplex - Variantes V 1.1, V.Lobo, EN / ISEGI, 2008 Revisões Variantes sobre o método Simplex: Método do grande M Simplex básico Solução óptima multipla Em simplex: valores 0 na função custo Solução degenerada Em simplex: empates na variável a sair, variáveis

Leia mais

Variantes sobre o método Simplex: Método do grande M

Variantes sobre o método Simplex: Método do grande M Variantes sobre o método Simplex: Método do grande M Revisões Simplex básico Solução óptima multipla Em simplex: valores 0 na função custo Solução degenerada Em simplex: empates na variável a sair, variáveis

Leia mais

computador-cálculo numérico perfeita. As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem:

computador-cálculo numérico perfeita. As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem: 1 UNIVERSIDADE FEDERAL DE VIÇOSA Departamento de Matemática - CCE Cálculo Numérico - MAT 271 Prof.: Valéria Mattos da Rosa As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia

Leia mais

Pesquisa Operacional

Pesquisa Operacional Pesquisa Operacional Prof. José Luiz Resolver um problema de Programação Linear significa basicamente resolver sistemas de equações lineares; Esse procedimento, apesar de correto, é bastante trabalhoso,

Leia mais

Programação Não Linear Otimização Univariada E Multivariada Sem Restrições

Programação Não Linear Otimização Univariada E Multivariada Sem Restrições Programação Não Linear Otimização Univariada E Multivariada Sem Restrições A otimização é o processo de encontrar a melhor solução (ou solução ótima) para um prolema. Eiste um conjunto particular de prolemas

Leia mais

[a11 a12 a1n 4. SISTEMAS LINEARES 4.1. CONCEITO. Um sistema de equações lineares é um conjunto de equações do tipo

[a11 a12 a1n 4. SISTEMAS LINEARES 4.1. CONCEITO. Um sistema de equações lineares é um conjunto de equações do tipo 4. SISTEMAS LINEARES 4.1. CONCEITO Um sistema de equações lineares é um conjunto de equações do tipo a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 11 x 1 + a 12 x 2 +... + a 1n x n = b 2... a n1 x 1 + a

Leia mais

Faculdades Adamantinenses Integradas (FAI)

Faculdades Adamantinenses Integradas (FAI) Faculdades Adamantinenses Integradas (FAI) www.fai.com.br OLIVEIRA, Eliane Vendramini..Resolução do problema de carregamento de container através de uma heurística. Omnia Exatas, v.2, n.2, p.16-26, 2009.

Leia mais

Exercícios Teóricos Resolvidos

Exercícios Teóricos Resolvidos Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Exercícios Teóricos Resolvidos O propósito deste texto é tentar mostrar aos alunos várias maneiras de raciocinar

Leia mais

Análise do desempenho de variações de uma formulação linear para o. O problema de minimização do número máximo de pilhas abertas é um problema

Análise do desempenho de variações de uma formulação linear para o. O problema de minimização do número máximo de pilhas abertas é um problema Análise do desempenho de variações de uma formulação linear para o problema de minimização do número máximo de pilhas abertas Claudia Fink Instituto de Ciências Matemáticas e de Computação, USP, 13560-970,

Leia mais

RUÍDOS EM IMAGENS FILTRAGEM DE RUÍDOS. o Flutuações aleatórias ou imprecisões em dados de entrada, precisão numérica, arredondamentos etc...

RUÍDOS EM IMAGENS FILTRAGEM DE RUÍDOS. o Flutuações aleatórias ou imprecisões em dados de entrada, precisão numérica, arredondamentos etc... RUÍDOS EM IMAGENS FILTRAGEM DE RUÍDOS RUÍDOS EM IMAGENS Em Visão Computacional, ruído se refere a qualquer entidade em imagens, dados ou resultados intermediários, que não são interessantes para os propósitos

Leia mais

Pesquisa Operacional

Pesquisa Operacional Pesquisa Operacional Tópicos em Programação Linear e Inteira Prof. Dr.Ricardo Ribeiro dos Santos ricr.santos@gmail.com Universidade Católica Dom Bosco - UCDB Engenharia de Computação Roteiro Introdução

Leia mais

APLICAÇÃO DE MÉTODOS HEURÍSTICOS EM PROBLEMA DE ROTEIRIZAÇÃO DE VEICULOS

APLICAÇÃO DE MÉTODOS HEURÍSTICOS EM PROBLEMA DE ROTEIRIZAÇÃO DE VEICULOS APLICAÇÃO DE MÉTODOS HEURÍSTICOS EM PROBLEMA DE ROTEIRIZAÇÃO DE VEICULOS Bianca G. Giordani (UTFPR/MD ) biancaggiordani@hotmail.com Lucas Augusto Bau (UTFPR/MD ) lucas_bau_5@hotmail.com A busca pela minimização

Leia mais

Um algoritmo exato para o problema de corte a 3 dimensões

Um algoritmo exato para o problema de corte a 3 dimensões Um algoritmo exato para o problema de corte a 3 dimensões Exactalgorithmsfor unconstrainedthree-dimensional cutting problems: a comparative study Mhand Hifi João Rebelo Introdução 1 palete -(U_3DC) V 1

Leia mais

UM SISTEMA DE OTIMIZAÇÃO APLICADO AO DESDOBRO DE MADEIRA

UM SISTEMA DE OTIMIZAÇÃO APLICADO AO DESDOBRO DE MADEIRA UM SISTEMA DE OTIMIZAÇÃO APLICADO AO DESDOBRO DE MADEIRA Rosilei de Souza Nova PPGMNE/UFPR Centro Politécnico - Curitiba, PR ms_rsnova@hotmail.com Arinei Carlos Lindbec da Silva PPGMNE/UFPR Curitiba, PR

Leia mais

PP 301 Engenharia de Reservatórios I 11/05/2011

PP 301 Engenharia de Reservatórios I 11/05/2011 PP 301 Engenharia de Reservatórios I 11/05/2011 As informações abaixo têm como objetivo auxiliar o aluno quanto à organização dos tópicos principais abordados em sala e não excluem a necessidade de estudo

Leia mais

Investigação Operacional- 2009/10 - Programas Lineares 3 PROGRAMAS LINEARES

Investigação Operacional- 2009/10 - Programas Lineares 3 PROGRAMAS LINEARES Investigação Operacional- 2009/10 - Programas Lineares 3 PROGRAMAS LINEARES Formulação A programação linear lida com problemas nos quais uma função objectivo linear deve ser optimizada (maximizada ou minimizada)

Leia mais

Sua interface é semelhante a de um processador de textos do tipo WYSIWYG, ou seja, What you see is what you get (o que você vê é o que você faz).

Sua interface é semelhante a de um processador de textos do tipo WYSIWYG, ou seja, What you see is what you get (o que você vê é o que você faz). Mathcad COMANDOS BÁSICOS O software Mathcad é um ambiente de trabalho baseado em Álgebra Computacional, dirigido a profissionais técnicos, educadores e estudantes. Permite a escrita de epressões matemáticas

Leia mais

Resolução da Lista 2 - Modelos determinísticos

Resolução da Lista 2 - Modelos determinísticos EA044 - Planejamento e Análise de Sistemas de Produção Resolução da Lista 2 - Modelos determinísticos Exercício 1 a) x ij são as variáveis de decisão apropriadas para o problemas pois devemos indicar quantos

Leia mais

O Método de Pontos Interiores Aplicado ao Problema do Despacho Hidrotérmico

O Método de Pontos Interiores Aplicado ao Problema do Despacho Hidrotérmico O Método de Pontos Interiores Aplicado ao Problema do Despacho Hidrotérmico Mariana Kleina, Luiz Carlos Matioli, Programa de Pós Graduação em Métodos Numéricos em Engenharia, UFPR Departamento de Matemática

Leia mais

UMA HEURÍSTICA PARA O PROBLEMA DE MINIMIZAÇÃO DE LARGURA DE BANDA EM MATRIZES

UMA HEURÍSTICA PARA O PROBLEMA DE MINIMIZAÇÃO DE LARGURA DE BANDA EM MATRIZES UMA HEURÍSTICA PARA O PROBLEMA DE MINIMIZAÇÃO DE LARGURA DE BANDA EM MATRIZES Marco Antonio Moreira de Carvalho mamc@ita.br Nenina Marcia Pereira Junqueira nenina@resenet.com.br Nei Yoshihiro Soma soma@ita.br

Leia mais

O PROBLEMA DE CORTE DE PLACAS DEFEITUOSAS

O PROBLEMA DE CORTE DE PLACAS DEFEITUOSAS versão impressa ISSN 0101-7438 / versão online ISSN 1678-5142 O PROBLEMA DE CORTE DE PLACAS DEFEITUOSAS Andréa Carla Gonçalves Vianna Departamento de Computação Faculdade de Ciências Universidade Estadual

Leia mais

A otimização é o processo de

A otimização é o processo de A otimização é o processo de encontrar a melhor solução (ou solução ótima) para um problema. Eiste um conjunto particular de problemas nos quais é decisivo a aplicação de um procedimento de otimização.

Leia mais

Algoritmos para os Problemas da Mochila e do Corte de Estoque Tridimensional Guilhotinado

Algoritmos para os Problemas da Mochila e do Corte de Estoque Tridimensional Guilhotinado Algoritmos para os Problemas da Mochila e do Corte de Estoque Tridimensional Guilhotinado Thiago A. de Queiroz, Flávio K. Miyazawa, Instituto de Computação, IC, UNICAMP, 13084-971, Campinas, SP e-mail:

Leia mais

Programação Inteira Conteúdos da Seção Programação Inteira Problema Relaxado Solução Gráfica Solução por Enumeração Algoritmo de Branch-And-Bound

Programação Inteira Conteúdos da Seção Programação Inteira Problema Relaxado Solução Gráfica Solução por Enumeração Algoritmo de Branch-And-Bound Programação Inteira Conteúdos da Seção Programação Inteira Problema Relaado Solução Gráfica Solução por Enumeração Algoritmo de Branch-And-Bound Solução Ecel Solução no Lindo Caso LCL Tecnologia S.A. Variáveis

Leia mais

O Problema Bin Packing Tridimensional em Contêineres: Usando Interação com o Usuário

O Problema Bin Packing Tridimensional em Contêineres: Usando Interação com o Usuário O Problema Bin Packing Tridimensional em Contêineres: Usando Interação com o Usuário Carlos Heitor Pereira Liberalino Universidade do Estado do Rio Grande do Norte - Depto de Informática 59600-900, Mossoró,

Leia mais

Muitas aplicações modernas podem ser modeladas como tarefas divisíveis.

Muitas aplicações modernas podem ser modeladas como tarefas divisíveis. 1 Introdução O grande aumento de performance das redes de computadores, combinado com a proliferação de computadores de baixo custo e alto desempenho, trouxe à tona ambientes de meta-computação, ou grids[15,

Leia mais

PROBLEMA DE TRANSPORTE: MODELO E MÉTODO DE SOLUÇÃO

PROBLEMA DE TRANSPORTE: MODELO E MÉTODO DE SOLUÇÃO PROBLEMA DE TRANSPORTE: MODELO E MÉTODO DE SOLUÇÃO Luciano Pereira Magalhães - 8º - noite lpmag@hotmail.com Orientador: Prof Gustavo Campos Menezes Banca Examinadora: Prof Reinaldo Sá Fortes, Prof Eduardo

Leia mais

Notas de aula número 1: Otimização *

Notas de aula número 1: Otimização * UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL UFRGS DEPARTAMENTO DE ECONOMIA CURSO DE CIÊNCIAS ECONÔMICAS DISCIPLINA: TEORIA MICROECONÔMICA II Primeiro Semestre/2001 Professor: Sabino da Silva Porto Júnior

Leia mais

DEFINIÇÃO DE PARÂMETROS NA UTILIZAÇÃO DE METAHEURÍSTICAS PARA A PROGRAMAÇÃO DE HORÁRIOS ESCOLARES

DEFINIÇÃO DE PARÂMETROS NA UTILIZAÇÃO DE METAHEURÍSTICAS PARA A PROGRAMAÇÃO DE HORÁRIOS ESCOLARES DEFINIÇÃO DE PARÂMETROS NA UTILIZAÇÃO DE METAHEURÍSTICAS PARA A PROGRAMAÇÃO DE HORÁRIOS ESCOLARES José Carlos dos Santos Ferreira 1 e Jean Eduardo Glazar 2 1 Aluno do Curso de Ciência da Computação 2 Professor

Leia mais

OTIMIZAÇÃO VETORIAL. Formulação do Problema

OTIMIZAÇÃO VETORIAL. Formulação do Problema OTIMIZAÇÃO VETORIAL Formulação do Problema Otimização Multiobjetivo (também chamada otimização multicritério ou otimização vetorial) pode ser definida como o problema de encontrar: um vetor de variáveis

Leia mais

O Método Simplex para

O Método Simplex para O Método Simplex para Programação Linear Formas de Programas Lineares O problema de Programação Matemática consiste na determinação do valor de n variáveis x 1, x 2,, x n que tornam mínimo ou máximo o

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu 1 Programação Não Linear Aula 25: Programação Não-Linear - Funções de Uma única variável Mínimo; Mínimo Global; Mínimo Local; Optimização Irrestrita; Condições Óptimas; Método da Bissecção; Método de Newton.

Leia mais

Otimização Aplicada à Engenharia de Processos

Otimização Aplicada à Engenharia de Processos Otimização Aplicada à Engenharia de Processos Aula 1: Introdução Felipe Campelo http://www.cpdee.ufmg.br/~fcampelo Programa de Pós-Graduação em Engenharia Elétrica Belo Horizonte Março de 2013 Antes de

Leia mais

aplicada a problemas de poluição do ar

aplicada a problemas de poluição do ar Biomatemática 17 (2007), 21 34 ISSN 1679-365X Uma Publicação do Grupo de Biomatemática IMECC UNICAMP Programação matemática fuzzy aplicada a problemas de poluição do ar Luiza A. Pinto Cantão 1, Depto.

Leia mais

ESTRATÉGIAS DE RESOLUÇÃO DE PROBLEMAS DE PESQUISA OPERACIONAL

ESTRATÉGIAS DE RESOLUÇÃO DE PROBLEMAS DE PESQUISA OPERACIONAL ESTRATÉGIAS DE RESOLUÇÃO DE PROBLEMAS DE PESQUISA OPERACIONAL André Luis Trevisan Universidade Tecnológica Federal do Paraná andrelt@utfpr.edu.br Magna Natalia Marin Pires Universidade Estadual de Londrina

Leia mais

Resolução de sistemas lineares

Resolução de sistemas lineares Resolução de sistemas lineares J M Martínez A Friedlander 1 Alguns exemplos Comecemos mostrando alguns exemplos de sistemas lineares: 3x + 2y = 5 x 2y = 1 (1) 045x 1 2x 2 + 6x 3 x 4 = 10 x 2 x 5 = 0 (2)

Leia mais

O Problema de Corte de Estoque com Data de Entrega

O Problema de Corte de Estoque com Data de Entrega O Problema de Corte de Estoque com Data de Entrega Elisama de Araujo Silva Oliveira Instituto de Matemática, Estatística e Computação Científica (IMECC), Universidade Estadual de Campinas (UNICAMP) Rua

Leia mais

(b) (1,0 ponto) Reciprocamente, mostre que, se um número x R possui representação infinita em toda base β, então x é irracional.

(b) (1,0 ponto) Reciprocamente, mostre que, se um número x R possui representação infinita em toda base β, então x é irracional. Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional MA11 Números e Funções Reais Avaliação 3 - GABARITO 06 de julho de 013 1. (1,5 pontos) Determine se as afirmações

Leia mais

Um modelo matemático de programação linear inteira para a alocação de horários na Escola Estadual Effie Rolfs

Um modelo matemático de programação linear inteira para a alocação de horários na Escola Estadual Effie Rolfs Um modelo matemático de programação linear inteira para a alocação de horários na Escola Estadual Effie Rolfs Mateus Tartaglia (UFV) mateus.tartaglia@ufv.br Lana Mara Rodrigues dos Santos (UFV) lanamara@ufv.br

Leia mais

MLP (Multi Layer Perceptron)

MLP (Multi Layer Perceptron) MLP (Multi Layer Perceptron) André Tavares da Silva andre.silva@udesc.br Roteiro Rede neural com mais de uma camada Codificação de entradas e saídas Decorar x generalizar Perceptron Multi-Camada (MLP -

Leia mais

Capítulo 7 Medidas de dispersão

Capítulo 7 Medidas de dispersão Capítulo 7 Medidas de dispersão Introdução Para a compreensão deste capítulo, é necessário que você tenha entendido os conceitos apresentados nos capítulos 4 (ponto médio, classes e frequência) e 6 (média).

Leia mais

Análise de Arredondamento em Ponto Flutuante

Análise de Arredondamento em Ponto Flutuante Capítulo 2 Análise de Arredondamento em Ponto Flutuante 2.1 Introdução Neste capítulo, chamamos atenção para o fato de que o conjunto dos números representáveis em qualquer máquina é finito, e portanto

Leia mais

Técnicas para Programação Inteira e Aplicações em Problemas de Roteamento de Veículos 14

Técnicas para Programação Inteira e Aplicações em Problemas de Roteamento de Veículos 14 1 Introdução O termo "roteamento de veículos" está relacionado a um grande conjunto de problemas de fundamental importância para a área de logística de transportes, em especial no que diz respeito ao uso

Leia mais

Organizaçãoe Recuperaçãode Informação GSI521. Prof. Dr. Rodrigo Sanches Miani FACOM/UFU

Organizaçãoe Recuperaçãode Informação GSI521. Prof. Dr. Rodrigo Sanches Miani FACOM/UFU Organizaçãoe Recuperaçãode Informação GSI521 Prof. Dr. Rodrigo Sanches Miani FACOM/UFU Aula anterior Organização e Recuperação de Informação(GSI521) Modelo vetorial- Definição Para o modelo vetorial, o

Leia mais

Inteligência Computacional Aplicada a Engenharia de Software

Inteligência Computacional Aplicada a Engenharia de Software Inteligência Computacional Aplicada a Engenharia de Software Estudo de caso III Prof. Ricardo de Sousa Britto rbritto@ufpi.edu.br Introdução Em alguns ambientes industriais, pode ser necessário priorizar

Leia mais

11. Problemas de Otimização

11. Problemas de Otimização 11. Problemas de Otimização Nesta seção veremos vários eemplos de problemas cujas soluções eigem a determinação de valores máimos e/ou mínimos absolutos das funções que os representam. São chamados de

Leia mais

Resolução de Problemas Com Procura. Capítulo 3

Resolução de Problemas Com Procura. Capítulo 3 Resolução de Problemas Com Procura Capítulo 3 Sumário Agentes que resolvem problemas Tipos de problemas Formulação de problemas Exemplos de problemas Algoritmos de procura básicos Eliminação de estados

Leia mais

CTC-17 Inteligência Artificial Problemas de Busca. Prof. Paulo André Castro pauloac@ita.br

CTC-17 Inteligência Artificial Problemas de Busca. Prof. Paulo André Castro pauloac@ita.br CTC-17 Inteligência Artificial Problemas de Busca Prof. Paulo André Castro pauloac@ita.br www.comp.ita.br/~pauloac Sala 110, IEC-ITA Sumário Agentes que buscam soluções para problemas: Exemplo Tipos de

Leia mais

CURSO ONLINE RACIOCÍNIO LÓGICO

CURSO ONLINE RACIOCÍNIO LÓGICO AULA QUINZE: Matrizes & Determinantes (Parte II) Olá, amigos! Pedimos desculpas por não ter sido possível apresentarmos esta aula na semana passada. Motivos de força maior nos impediram de fazê-lo, mas

Leia mais

Otimização por Descida de Gradiente

Otimização por Descida de Gradiente Universidade Federal do Espírito Santo Centro de Ciências Agrárias CCA UFES Departamento de Computação Otimização por Descida de Gradiente Redes Neurais Artificiais Site: http://jeiks.net E-mail: jacsonrcsilva@gmail.com

Leia mais

PESQUISA OPERACIONAL: UMA ABORDAGEM À PROGRAMAÇÃO LINEAR. Rodolfo Cavalcante Pinheiro 1,3 Cleber Giugioli Carrasco 2,3 *

PESQUISA OPERACIONAL: UMA ABORDAGEM À PROGRAMAÇÃO LINEAR. Rodolfo Cavalcante Pinheiro 1,3 Cleber Giugioli Carrasco 2,3 * PESQUISA OPERACIONAL: UMA ABORDAGEM À PROGRAMAÇÃO LINEAR 1 Graduando Rodolfo Cavalcante Pinheiro 1,3 Cleber Giugioli Carrasco 2,3 * 2 Pesquisador - Orientador 3 Curso de Matemática, Unidade Universitária

Leia mais

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel. Matemática Essencial Equações do Primeiro grau Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.br/matessencial/ Resumo: Notas de

Leia mais

Uma Heurística Gulosa para o Problema de Bin Packing Bidimensional

Uma Heurística Gulosa para o Problema de Bin Packing Bidimensional Uma Heurística Gulosa para o Problema de Bin Packing Bidimensional Leandro Dias Costa, Luiz da Silva Rosa e Marcelo Lisboa Rocha Departamento de Ciência da Computação Fundação UNIRG Alameda Madrid Nº 545,

Leia mais

FACULDADE CAMPO LIMPO PAULISTA MESTRADO EM CIÊNCIA DA COMPUTAÇÃO. Projeto e Análise de Algoritmos II Lista de Exercícios 2

FACULDADE CAMPO LIMPO PAULISTA MESTRADO EM CIÊNCIA DA COMPUTAÇÃO. Projeto e Análise de Algoritmos II Lista de Exercícios 2 FACULDADE CAMPO LIMPO PAULISTA MESTRADO EM CIÊNCIA DA COMPUTAÇÃO Projeto e Análise de Algoritmos II Lista de Exercícios 2 Prof. Osvaldo. 1. Desenvolva algoritmos para as operações abaixo e calcule a complexidade

Leia mais

CAPÍTULO 9 RISCO E INCERTEZA

CAPÍTULO 9 RISCO E INCERTEZA CAPÍTULO 9 9 RISCO E INCERTEZA 9.1 Conceito de Risco Um fator que pode complicar bastante a solução de um problema de pesquisa operacional é a incerteza. Grande parte das decisões são tomadas baseando-se

Leia mais

SEMINÁRIO DO GRUPO DE PESQUISA MATEMÁTICA APLICADA E COMPUTACIONAL DO PÓLO UNIVERSITÁRIO DO SUL FLUMINENSE

SEMINÁRIO DO GRUPO DE PESQUISA MATEMÁTICA APLICADA E COMPUTACIONAL DO PÓLO UNIVERSITÁRIO DO SUL FLUMINENSE SEMINÁRIO DO GRUPO DE PESQUISA MATEMÁTICA APLICADA E COMPUTACIONAL DO PÓLO UNIVERSITÁRIO DO SUL FLUMINENSE Um problema de um milhão de dólares Luiz Leduíno de Salles Neto 25/07/2006 Grupo consultivo de

Leia mais

Encontrando a Linha Divisória: Detecção de Bordas

Encontrando a Linha Divisória: Detecção de Bordas CAPÍTULO 1 Encontrando a Linha Divisória: Detecção de Bordas Contribuíram: Daniela Marta Seara, Geovani Cássia da Silva Espezim Elizandro Encontrar Bordas também é Segmentar A visão computacional envolve

Leia mais

4 Avaliação Experimental

4 Avaliação Experimental 4 Avaliação Experimental Este capítulo apresenta uma avaliação experimental dos métodos e técnicas aplicados neste trabalho. Base para esta avaliação foi o protótipo descrito no capítulo anterior. Dentre

Leia mais

O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2

O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2 3.2 O Espaço Nulo de A: Resolvendo Ax = 0 11 O ESPAÇO NULO DE A: RESOLVENDO AX = 0 3.2 Esta seção trata do espaço de soluções para Ax = 0. A matriz A pode ser quadrada ou retangular. Uma solução imediata

Leia mais

HEURÍSTICAS RELAX-AND-FIX PARA O PROBLEMA DE DIMENSIONAMENTO DE LOTES COM JANELAS DE TEMPO DE PRODUÇÃO

HEURÍSTICAS RELAX-AND-FIX PARA O PROBLEMA DE DIMENSIONAMENTO DE LOTES COM JANELAS DE TEMPO DE PRODUÇÃO HEURÍSTICAS RELAX-AND-FIX PARA O PROBLEMA DE DIMENSIONAMENTO DE LOTES COM JANELAS DE TEMPO DE PRODUÇÃO Lívia Chierice Corrêa Moraes Maristela Oliveira Santos Universidade de São Paulo - Instituto de Ciências

Leia mais

Mercados de Publicidade

Mercados de Publicidade Mercados de Publicidade em Busca Web Redes Sociais e Econômicas Prof. André Vignatti O Princípio da VCG para um Mercado de Emparelhamento Geral Vamos generalizar o exemplo para obtermos um método genérico

Leia mais

Estudando Matrizes e Determinantes utilizando o Software Winmat

Estudando Matrizes e Determinantes utilizando o Software Winmat DIRETORIA DE PESQUISA E PÓS-GRADUAÇÃO/GERÊNCIA DE PESQUISA PROJETO: TECNOLOGIAS DE INFORMAÇÃO E COMUNICAÇÃO NO PROCESSO DE ENSINO E APRENDIZAGEM DE MATEMÁTICA Estudando Matries e Determinantes utiliando

Leia mais

Notas sobre a Fórmula de Taylor e o estudo de extremos

Notas sobre a Fórmula de Taylor e o estudo de extremos Notas sobre a Fórmula de Taylor e o estudo de etremos O Teorema de Taylor estabelece que sob certas condições) uma função pode ser aproimada na proimidade de algum ponto dado) por um polinómio, de modo

Leia mais

Pesquisa Operacional Programação em Redes

Pesquisa Operacional Programação em Redes Pesquisa Operacional Programação em Redes Profa. Alessandra Martins Coelho outubro/2013 Modelagem em redes: Facilitar a visualização e a compreensão das características do sistema Problema de programação

Leia mais

Programação Inteira. Advertência

Programação Inteira. Advertência Departamento de Informática Programação Inteira Métodos Quantitativos LEI 2006/2007 Advertência Autores João Moura Pires (jmp@di.fct.unl.pt) Susana Nascimento (snt@di.fct.unl.pt) Este material pode ser

Leia mais

Universidade Federal do Rio de Janeiro - IM/DCC & NCE

Universidade Federal do Rio de Janeiro - IM/DCC & NCE Universidade Federal do Rio de Janeiro - IM/DCC & NCE Processamento de Imagens Tratamento da Imagem - Filtros Antonio G. Thomé thome@nce.ufrj.br Sala AEP/033 Sumário 2 Conceito de de Filtragem Filtros

Leia mais

Análise de Regressão. Tópicos Avançados em Avaliação de Desempenho. Cleber Moura Edson Samuel Jr

Análise de Regressão. Tópicos Avançados em Avaliação de Desempenho. Cleber Moura Edson Samuel Jr Análise de Regressão Tópicos Avançados em Avaliação de Desempenho Cleber Moura Edson Samuel Jr Agenda Introdução Passos para Realização da Análise Modelos para Análise de Regressão Regressão Linear Simples

Leia mais

INTRODUÇÃO AO ASSUNTO PESQUISA OPERACIONAL. O que é Pesquisa Operacional?

INTRODUÇÃO AO ASSUNTO PESQUISA OPERACIONAL. O que é Pesquisa Operacional? INTRODUÇÃO AO ASSUNTO PESQUISA OPERACIONAL O que é Pesquisa Operacional? Denomina-se Management Sciences (Ciência de Negócios) a área de estudos que utiliza computadores, estatística e matemática para

Leia mais

Filtragem Espacial. (Processamento Digital de Imagens) 1 / 41

Filtragem Espacial. (Processamento Digital de Imagens) 1 / 41 Filtragem Espacial (Processamento Digital de Imagens) 1 / 41 Filtragem Espacial Filtragem espacial é uma das principais ferramentas usadas em uma grande variedade de aplicações; A palavra filtro foi emprestada

Leia mais

Ana Paula Faccio e Socorro Rangel

Ana Paula Faccio e Socorro Rangel Bol. Soc. Paran. Mat. (3s.) v. 27 1 (2009): 41 57. c SPM ISSN-2175-1188 on line ISSN-00378712 in press SPM: www.spm.uem.br/spm doi:10.5269/bspm.v27i1.9067 Geração de padrões de corte n-grupos para a indústria

Leia mais

Erros. Número Aproximado. Erros Absolutos erelativos. Erro Absoluto

Erros. Número Aproximado. Erros Absolutos erelativos. Erro Absoluto Erros Nenhum resultado obtido através de cálculos eletrônicos ou métodos numéricos tem valor se não tivermos conhecimento e controle sobre os possíveis erros envolvidos no processo. A análise dos resultados

Leia mais

Introdução. Palavras-chave: Design Virtual, Vestuário, Encaixe de Modelagens.

Introdução. Palavras-chave: Design Virtual, Vestuário, Encaixe de Modelagens. Design do Vestuário: metodologia e software de encaixe de modelagens no tecido Garment Design: methodology and software for fitting patterns along the fabric ALVES, Andressa Schneider Mestranda do Programa

Leia mais

PROF. DR. JACQUES FACON

PROF. DR. JACQUES FACON PUCPR- Pontifícia Universidade Católica Do Paraná PPGIA- Programa de Pós-Graduação Em Informática Aplicada PROF. DR. JACQUES FACON LIMIARIZAÇÃO DUPLA DE ISTVÁN CSEKE PROJETO DE UMA RÁPIDA SEGMENTAÇÃO PARA

Leia mais

INSTITUTO TECNOLÓGICO

INSTITUTO TECNOLÓGICO PAC - PROGRAMA DE APRIMORAMENTO DE CONTEÚDOS. ATIVIDADES DE NIVELAMENTO BÁSICO. DISCIPLINAS: MATEMÁTICA & ESTATÍSTICA. PROFº.: PROF. DR. AUSTER RUZANTE 1ª SEMANA DE ATIVIDADES DOS CURSOS DE TECNOLOGIA

Leia mais

XLVI Pesquisa Operacional na Gestão da Segurança Pública

XLVI Pesquisa Operacional na Gestão da Segurança Pública etembro de 014 UMA ANÁLIE DA INICIALIZAÇÃO DO PARÂMERO DE PENALIDADE EM UMA FUNÇÃO LAGRANGIANA AUMENADA E O FLUXO DE POÊNCIA ÓIMO Adilson Preto de Godoi Programa de Pós-Graduação em Engenharia Elétrica

Leia mais

Resolução do Problema de Roteamento de Veículos com Frota Heterogênea via GRASP e Busca Tabu.

Resolução do Problema de Roteamento de Veículos com Frota Heterogênea via GRASP e Busca Tabu. Resolução do Problema de Roteamento de Veículos com Frota Heterogênea via GRASP e Busca Tabu. Camila Leles de Rezende, Denis P. Pinheiro, Rodrigo G. Ribeiro camilalelesproj@yahoo.com.br, denisppinheiro@yahoo.com.br,

Leia mais

Guia do professor. Ministério da Ciência e Tecnologia. Ministério da Educação. Secretaria de Educação a Distância.

Guia do professor. Ministério da Ciência e Tecnologia. Ministério da Educação. Secretaria de Educação a Distância. números e funções Guia do professor Objetivos da unidade 1. Analisar representação gráfica de dados estatísticos; 2. Familiarizar o aluno com gráfico de Box Plot e análise estatística bivariada; 3. Utilizar

Leia mais

Aula 03 Custos de um algoritmo e funções de complexidade

Aula 03 Custos de um algoritmo e funções de complexidade BC1424 Algoritmos e Estruturas de Dados I Aula 03 Custos de um algoritmo e funções de complexidade Prof. Jesús P. Mena-Chalco jesus.mena@ufabc.edu.br 1Q-2015 1 Custo de um algoritmo e funções de complexidade

Leia mais

Auxílio à distribuição geográca de recursos utilizando mineração de dados e aprendizado de máquina. M. G. Oliveira

Auxílio à distribuição geográca de recursos utilizando mineração de dados e aprendizado de máquina. M. G. Oliveira Auxílio à distribuição geográca de recursos utilizando mineração de dados e aprendizado de máquina M. G. Oliveira Technical Report - RT-INF_001-11 - Relatório Técnico June - 2011 - Junho The contents of

Leia mais

AULAS 04 E 05 Estatísticas Descritivas

AULAS 04 E 05 Estatísticas Descritivas 1 AULAS 04 E 05 Estatísticas Descritivas Ernesto F. L. Amaral 19 e 28 de agosto de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:

Leia mais

INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA MATEMÁTICA APLICADA

INSTITUTO POLITÉCNICO DE SETÚBAL ESCOLA SUPERIOR DE TECNOLOGIA DEPARTAMENTO DE MATEMÁTICA MATEMÁTICA APLICADA INSTITUTO POLITÉCNICO DE SETÚBL ESCOL SUPERIOR DE TECNOLOGI DEPRTMENTO DE MTEMÁTIC MTEMÁTIC PLICD TESTE B CURSOS: EII e EIG / Data: 7 de Janeiro de Duração: : às 7: Instruções:. Leia atentamente o teste/eame

Leia mais

UTILIZAÇÃO DE PLANILHA ELETRÔNICA NA RESOLUÇÃO DE PROBLEMAS DE PLANEJAMENTO E PROGRAMAÇÃO DA PRODUÇÃO

UTILIZAÇÃO DE PLANILHA ELETRÔNICA NA RESOLUÇÃO DE PROBLEMAS DE PLANEJAMENTO E PROGRAMAÇÃO DA PRODUÇÃO Anais do XXXIV COBENGE. Passo Fundo: Ed. Universidade de Passo Fundo, Setembro de 2006. ISBN 85-755-37-4 UTILIZAÇÃO DE PLANILHA ELETRÔNICA NA RESOLUÇÃO DE PROBLEMAS DE PLANEJAMENTO E PROGRAMAÇÃO DA PRODUÇÃO

Leia mais

CI202 - Métodos Numéricos

CI202 - Métodos Numéricos CI202 - Métodos Numéricos Lista de Exercícios 2 Zeros de Funções Obs.: as funções sen(x) e cos(x) devem ser calculadas em radianos. 1. Em geral, os métodos numéricos para encontrar zeros de funções possuem

Leia mais

Linear Solver Program - Manual do Usuário

Linear Solver Program - Manual do Usuário Linear Solver Program - Manual do Usuário Versão 1.11.0 Traduzido por: Angelo de Oliveira (angelo@unir.br/mrxyztplk@gmail.com) 1 Introdução Linear Program Solver (LiPS) é um pacote de otimização projetado

Leia mais

Programação Inteira. Fernando Nogueira Programação Inteira 1

Programação Inteira. Fernando Nogueira Programação Inteira 1 Programação Inteira Fernando Nogueira Programação Inteira A Programação Inteira pode ser entendida como uma caso específico da Programação Linear, onde as variáveis devem ser inteiras (ou ao menos, parte

Leia mais