MATEMÁTICA A - 11o Ano

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "MATEMÁTICA A - 11o Ano"

Transcrição

1 MATEMÁTICA A - 11o Ano Funções racionais Eercícios de eames e testes intermédios 1. Na igura ao lado, está representada, num reerencial o.n., parte da hipérbole que é o gráico de uma unção intersecta o eio no ponto de ab- gráico da unção cissa 1 As retas de equações = 1 e = 2 são as assíntotas do gráico da unção Qual é o conjunto solução da condição () 0? (A) ], 2[ ] 2,0] (B) ], 1] ]0, + [ (C) ],0] ]1, + [ (D) ], 1] ]1, + [ 2. Seja a unção, de domínio R, deinida por se 1 () = se > Resolva analiticamente, em ]1, + [, a condição () < 1 2 Apresente o conjunto solução usando a notação de intervalos de números reais. Teste Intermédio 11 o ano Considere, para cada número real k, a unção g, de domínio R, deinida por g() = k + 2 Determine o valor de k para o qual se tem ( g ) ( 3) = Determine o contradomínio da unção Para resolver este item, recorra à calculadora gráica. Na sua resposta, deve: reproduzir, num reerencial, o gráico da unção que visualizar na calculadora (sugere-se a utilização da janela em que [ 5,5], [ 15,10]; nesse reerencial: - assinale o ponto do gráico de abcissa 1 e indique a sua ordenada - represente as assíntotas do gráico de - assinale o ponto do gráico correspondente ao máimo relativo da unção apresentar o contradomínio da unção, usando a notação de intervalos de números reais. Teste Intermédio 11 o ano Página 1 de 6

2 3. Considere a unção, de domínio R \ { 1}, deinida por () = Considere a unção g deinida por g() = ( + a) + k, com a R e k R Sabe-se que as retas de equações = 2 e = 2 são assíntotas do gráico de g Quais são os valores de a e de k? (A) a = 1 e k = 2 (B) a = 1 e k = 2 (C) a = 1 e k = 2 (D) a = 1 e k = 2 Teste Intermédio 11 o ano Na igura seguinte, está representada, num reerencial o.n., parte da hipérbole que é o gráico de uma unção, de domínio R \ {2} 4.1. Responda aos dois itens seguintes sem apresentar cálculos Qual é o valor de k para o qual a equação () = k é impossível? Qual é o limite de () quando tende para +? 4.2. Admita agora que a unção é deinida pela epressão () = Resolva analiticamente a condição () Apresente o conjunto solução usando a notação de intervalos de números reais Seja g a unção, de domínio R, deinida por g() = 3 A equação ( g ) () = tem eatamente duas soluções. Determine, recorrendo à calculadora gráica, essas soluções. Apresente as soluções arredondadas às centésimas. Na sua resposta, deve: reproduzir, num reerencial, o gráico da unção ou os gráicos das unções que tiver necessidade de visualizar, devidamente identiicado(s); assinalar os pontos relevantes para responder à questão colocada. Teste Intermédio 11 o ano Na igura ao lado, está representada, num reerencial o.n., parte da hipérbole que é o gráico de uma unção As retas de equações = 2 e = 1 são as assíntotas do gráico da unção Para um certo número real k, a unção g, deinida por g() = ()+k, não tem zeros. Qual é o valor de k? 1 2 (A) 1 (B) 1 (C) 2 (D) 2 Teste Intermédio 11 o ano Página 2 de 6

3 6. Na igura seguinte, está representada, num reerencial o.n., parte da hipérbole que é o gráico de uma unção gráico da unção intersecta o eio no ponto de abcissa 1 As retas de equações = 1 e = 2 são as assíntotas do gráico da unção 6.1. Responda aos dois itens seguintes sem eetuar cálculos, ou seja, recorrendo apenas à leitura do gráico Indique o contradomínio da unção Apresente, usando a notação de intervalos de números reais, o conjunto solução da condição () Deina, por uma epressão analítica, a unção Teste Intermédio 11 o ano Seja h a unção, de domínio R, deinida por h() = + 1 Seja g a unção, de domínio R \ {0} deinida por g() = 1 Para um certo número real a, tem-se ( g h ) (a) = 1 9 (o símbolo designa a composição de unções) Qual é o valor de a? (A) 7 (B) 8 (C) 9 (D) 10 Teste Intermédio 11 o ano Considere: a unção, de domínio R, deinida por () = a unção g, de domínio R \ { 1}, deinida por g() = Seja P o ponto de interseção das assintotas do gráico da unção g Para um certo número real k, o ponto P pertence ao gráico da unção h, de domínio R, deinida por h() = () + k Determine, utilizando métodos eclusivamente analíticos, o valor de k Teste Intermédio 11 o ano Página 3 de 6

4 9. Num certo ecossistema habitam as espécies animais A e B. Admita que, t anos após o início do ano 2009, o número de animais, em milhares, da espécie A é dado aproimadamente por A(t) = 11t + 6, (t 0) t + 1 e que o número de animais, em milhares, da espécie B é dado aproimadamente por B(t) = t + 9, (t 0) t + 3 Resolva os dois itens seguintes, usando eclusivamente métodos analíticos Desde o início do ano 2009 até ao início do ano 2010, morreram 500 animais da espécie A. Determine quantos animais dessa espécie nasceram nesse intervalo de tempo Na igura ao lado, estão representadas graicamente as unções a e b Tal como estes gráicos sugerem, a dierença entre o número de animais da espécie A e o número de animais da espécie B vai aumentando, com o decorrer do tempo, e tende para um certo valor. a Determine esse valor, recorrendo às assimptotas horizontais dos gráicos das unções e cujas equações deve apresentar. b Teste Intermédio 11 o ano Considere: a unção, de domínio R \ {0}, deinida por () = a unção g, de domínio R, deinida por () = Determine, usando eclusivamente métodos analíticos, o conjunto dos números reais que são soluções da inequação () 5 Apresente a sua resposta utilizando a notação de intervalos de números reais A equação () = g() tem eatamente duas soluções, sendo uma delas positiva e a outra negativa. Determine a solução positiva, utilizando as capacidades gráicas da sua calculadora. Apresente essa solução arredondada às centésimas. Apresente o(s) gráico(s) visualizado(s) na calculadora e assinale o ponto relevante para a resolução do problema. Teste Intermédio 11 o ano Página 4 de 6

5 11. Considere a unção, de domínio R \ { 2}, deinida por () = Sem recorrer à calculadora, resolva os itens seguintes: Determine o conjunto dos números reais que são soluções da inequação () 3 Apresente a sua resposta utilizando a notação de intervalos de números reais Na igura ao lado estão representados, em reerencial o.n. : parte do gráico da unção as retas r e s assíntotas do gráico de o quadrilátero [ABCD] C D A e B são os pontos de intersecção do gráico da unção com os eios coordenados. A C é o ponto de interseção das retas r e s. B D é o ponto de interseção da reta r com o eio. Determine a área do quadrilátero [ABCD] Teste Intermédio 11 o ano Na igura está representada, em reerencial o.n., parte do gráico de uma unção, bem como as duas assíntotas deste gráico. Tal como a igura sugere, a origem do reerencial pertence ao gráico de uma das assíntotas é paralela ao eio a outra assíntota é paralela ao eio e intersecta o eio no ponto de abcissa 2 Admita ainda que: a assíntota do gráico de é paralela ao eio das abcissas tem equação = 3 é deinida por uma epressão do tipo () = a + b c onde a, b e c designam números reais. Indique os valores de a e de c e determine o valor de b 2 Teste Intermédio 11 o ano Para um certo valor de a e para um certo valor de b, a epressão () = a + 1, deine a unção cujo gráico está parcialmente b representado na igura ao lado. Qual das airmações seguintes é verdadeira? (A) a > 0 b > 0 (B) a > 0 b < 0 (C) a < 0 b > 0 (D) a < 0 b < 0 Teste Intermédio 11 o ano Página 5 de 6

6 14. Considere a unção, de domínio R \ {1}, deinida por () = Sem recorrer à calculadora, determine o conjunto dos números reais tais que () 1 Apresente a resposta inal na orma de intervalo (ou união de intervalos) gráico da unção tem duas assimptotas. Escreva as suas equações. 15. Considere a unção, de domínio R \ {3}, deinida por () = 2 3 Em cada uma das opções seguintes estão escritas duas equações. Em qual das opções as duas equações deinem as assíntotas do gráico de? (A) = 2 e = 1 (B) = 2 e = 2 (C) = 3 e = 1 (D) = 3 e = 2 Teste Intermédio 11 o ano Sabe-se que: Eame 2005, Ép. especial (cód. 435) o nível de álcool no sangue de uma pessoa, uma hora depois de ter tomado uma bebida alcoólica, é, numa certa unidade, igual ao quociente entre o peso do álcool ingerido (em gramas) e 70% do peso dessa pessoa (em quilogramas). num decilitro de um certo tipo de vinho eistem 5 gramas de álcool. Qual das epressões seguintes dá o nível de álcool no sangue de uma pessoa, em unção do seu peso (em quilogramas), uma hora depois de essa pessoa ter bebido dois decilitros desse vinho? (A) (B) 10 0,7 (C) 2 70 (D) 2 0,7 Eame 2004, 2 a ase (cód. 435) 17. coeiciente de ampliação A de uma certa lupa é dado, em unção da distância d (em decímetros) da lupa ao objeto, por A(d) = 5 5 d Indique a que distância do objeto tem de estar a lupa para que o coeiciente de ampliação seja igual a 5. (A) 2 dm (B) 4 dm (C) 6 dm (D) 8 dm Eame 2000, 2 a ase (cód. 435) Página 6 de 6

MATEMÁTICA (11º ano) Exercícios de Exames e Testes Intermédios Funções racionais

MATEMÁTICA (11º ano) Exercícios de Exames e Testes Intermédios Funções racionais MATEMÁTICA (11º ano) Exercícios de Exames e Testes Intermédios Funções racionais 1 Na figura ao lado, está representada, num referencial o.n., parte da hipérbole que é o gráfico de uma função As retas

Leia mais

11º ano Funções racionais

11º ano Funções racionais 11º ano Funções racionais 2.1.1 2.1.2 Apresente, usando a notação de intervalos de números reais, o conjunto solução da condição 2.2 Defina, por uma expressão analítica, a função Teste Intermédio 11º ano

Leia mais

MATEMÁTICA A - 11o Ano. Propostas de resolução

MATEMÁTICA A - 11o Ano. Propostas de resolução MATEMÁTICA A - o Ano Funções racionais Propostas de resolução Eercícios de eames e testes intermédios. Como o conjunto solução da condição f 0 é o conjunto das abcissas dos pontos do gráfico da função

Leia mais

Exercícios de exames e provas oficiais

Exercícios de exames e provas oficiais Eercícios de eames e provas oiciais. Considere as unções e g, de domínio,0, deinidas por ln e g Recorrendo a processos eclusivamente analíticos, estude a unção quanto à eistência de do seu gráico e, caso

Leia mais

MATEMÁTICA A - 12o Ano Funções - 2 a Derivada (concavidades e pontos de inflexão)

MATEMÁTICA A - 12o Ano Funções - 2 a Derivada (concavidades e pontos de inflexão) MATEMÁTICA A - 12o Ano Funções - 2 a Derivada (concavidades e pontos de inleão) Eercícios de eames e testes intermédios 1. Na igura ao lado, está representada, num reerencial o.n., parte do gráico de uma

Leia mais

Exercícios de exames e provas oficiais

Exercícios de exames e provas oficiais Eercícios de eames e provas oiciais. Seja a unção, de domínio 0 e., deinida por Recorrendo a métodos analíticos, sem utilizar a calculadora, estude a unção quanto à eistência de assíntota horizontal. matemática

Leia mais

Teste Intermédio de Matemática A Matemática A Entrelinha 1,5 (Versão única igual à Versão 1) 11.º Ano de Escolaridade

Teste Intermédio de Matemática A Matemática A Entrelinha 1,5 (Versão única igual à Versão 1) 11.º Ano de Escolaridade Teste Intermédio de Matemática A Entrelinha 1,5 Teste Intermédio Matemática A Entrelinha 1,5 (Versão única igual à Versão 1) Duração do Teste: 90 minutos 06.03.2013 11.º Ano de Escolaridade Decreto-Lei

Leia mais

Exercícios de exames e provas oficiais

Exercícios de exames e provas oficiais Eercícios de eames e provas oiciais. Considere a unção, de domínio, deinida por ln. Utilizando eclusivamente métodos analíticos, estude a unção quanto à eistência de do seu gráico paralelas aos eios coordenados.

Leia mais

MATEMÁTICA A - 12o Ano Funções - 2 a Derivada (concavidades e pontos de inflexão)

MATEMÁTICA A - 12o Ano Funções - 2 a Derivada (concavidades e pontos de inflexão) MATEMÁTICA A - 12o Ano Funções - 2 a Derivada (concavidades e pontos de inleão) Eercícios de eames e testes intermédios 1. Na igura ao lado, está representada, num reerencial o.n., parte do gráico de uma

Leia mais

AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Ficha de Trabalho de Funções nº 4 Matemática - 11º Ano Exercícios dos Testes Intermédios de 2006 a 2014

AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Ficha de Trabalho de Funções nº 4 Matemática - 11º Ano Exercícios dos Testes Intermédios de 2006 a 2014 AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Ficha de Trabalho de Funções nº 4 Matemática - 11º Ano Exercícios dos Testes Intermédios de 2006 a 2014 1 2 Maio 2006 3 maio 2008 maio 2006 4 5 maio 2006 6 maio 2006

Leia mais

Matemática A. Versão 2. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A.

Matemática A. Versão 2. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A. Teste Intermédio de Matemática A Versão 2 Teste Intermédio Matemática A Versão 2 Duração do Teste: 90 minutos 06.03.2013 11.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de março Na sua olha de

Leia mais

Utilize apenas caneta ou esferográfica, de tinta azul ou preta.

Utilize apenas caneta ou esferográfica, de tinta azul ou preta. Teste Intermédio Matemática A Versão 2 Duração do Teste: 90 minutos 11.0.2014 11.º Ano de Escolaridade Indique de orma legível a versão do teste. Utilize apenas caneta ou eserográica, de tinta azul ou

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 3

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 3 FICHA de AVALIAÇÃO de MATEMÁTICA A 6º Teste 0º Ano de escolaridade Versão Nome: Nº Turma: Proessor: José Tinoco 05/06/07 É permitido o uso de calculadora gráica Apresente o seu raciocínio de orma clara,

Leia mais

MATEMÁTICA A - 12o Ano Funções - Assintotas

MATEMÁTICA A - 12o Ano Funções - Assintotas MATEMÁTICA A - 12o Ano Funções - Assintotas Eercícios de eames e testes intermédios 1. Seja f a função, de domínio R + 0, definida por f() = 2 e 1 Estude a função f quanto à eistência de assintota horizontal,

Leia mais

Utilize apenas caneta ou esferográfica, de tinta azul ou preta.

Utilize apenas caneta ou esferográfica, de tinta azul ou preta. Teste Intermédio Matemática A Versão 1 Duração do Teste: 90 minutos 11.0.014 11.º Ano de Escolaridade Indique de orma legível a versão do teste. Utilize apenas caneta ou eserográica, de tinta azul ou preta.

Leia mais

MATEMÁTICA A - 11o Ano Funções - Derivada (extremos, monotonia e retas tangentes)

MATEMÁTICA A - 11o Ano Funções - Derivada (extremos, monotonia e retas tangentes) MATEMÁTICA A - o Ano Funções - Derivada (etremos, monotonia e retas tangentes) Eercícios de eames e testes intermédios. De uma função f, de domínio R, com derivada finita em todos os pontos do seu domínio,

Leia mais

Matemática A. Teste Intermédio de Matemática A. Versão 2. Teste Intermédio. Versão 2. Duração do Teste: 90 minutos º Ano de Escolaridade

Matemática A. Teste Intermédio de Matemática A. Versão 2. Teste Intermédio. Versão 2. Duração do Teste: 90 minutos º Ano de Escolaridade Teste Intermédio de Matemática A Versão 2 Teste Intermédio Matemática A Versão 2 Duração do Teste: 90 minutos 6.05.2010 11.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março Na sua folha de

Leia mais

TEMA 4 FUNÇÕES FICHAS DE TRABALHO 11.º ANO COMPILAÇÃO TEMA 4 FUNÇÕES. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess

TEMA 4 FUNÇÕES FICHAS DE TRABALHO 11.º ANO COMPILAÇÃO TEMA 4 FUNÇÕES. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess FICHAS DE TRABALHO 11.º ANO COMPILAÇÃO TEMA 4 FUNÇÕES Site: http://www.mathsuccess.pt Facebook: https://www.acebook.com/mathsuccess TEMA 4 FUNÇÕES 016 017 Matemática A 11.º Ano Fichas de Trabalho Compilação

Leia mais

FICHA DE TRABALHO N.º 8 MATEMÁTICA A - 10.º ANO FUNÇÕES REAIS DE VARIÁVEL REAL

FICHA DE TRABALHO N.º 8 MATEMÁTICA A - 10.º ANO FUNÇÕES REAIS DE VARIÁVEL REAL Função Inversa e Função Composta; Generalidades; Monotonia, Etremos e Concavidades FICHA DE TRABALH N.º 8 MATEMÁTICA A - 0.º AN FUNÇÕES REAIS DE VARIÁVEL REAL FUNÇÃ CMPSTA E FUNÇÃ INVERSA; GENERALIDADES;

Leia mais

Exercícios de 11.º ano nos Testes Intermédios (e em exames nacionais) CÁLCULO DIFERENCIAL I

Exercícios de 11.º ano nos Testes Intermédios (e em exames nacionais) CÁLCULO DIFERENCIAL I Escola Secundária de Francisco Franco Exercícios de.º ano nos Testes Intermédios (e em exames nacionais) CÁLCULO DIFERENCIAL I. Na figura estão representados: um quadrado [ABCD] uma semi-recta CD.. Qual

Leia mais

AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Ficha de Trabalho nº5 - Funções - 12º ano Exames 2006 a 2010

AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Ficha de Trabalho nº5 - Funções - 12º ano Exames 2006 a 2010 AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Ficha de Trabalho nº5 - Funções - 1º ano Eames 006 a 010 sin ln 1 Considere a função g, definida no intervalo 1,7 por g( ) Recorrendo às capacidades gráficas da calculadora,

Leia mais

MATEMÁTICA A - 12o Ano Funções - Exponenciais e logaritmos

MATEMÁTICA A - 12o Ano Funções - Exponenciais e logaritmos MATEMÁTICA A - 12o Ano Funções - Eponenciais e logaritmos Resolução gráfica de equações e problemas Eercícios de eames e testes intermédios 1. Seja g a função, de domínio R, definida por 1 2 1 e 1 se

Leia mais

MATEMÁTICA A - 12o Ano Funções - Exponenciais e logaritmos

MATEMÁTICA A - 12o Ano Funções - Exponenciais e logaritmos MATEMÁTICA A - 12o Ano Funções - Eponenciais e logaritmos Resolução gráfica de equações e problemas Eercícios de eames e testes intermédios 1. Seja f a função, de domínio R + 0, definida por f() = 2 e

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 3

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 3 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ano Versão Nome: N.º Turma: Apresente o seu raciocínio de orma clara, indicando todos os cálculos que tiver de eetuar e todas as justiicações necessárias. Quando, para

Leia mais

Sinal de Determina o conjunto dos números reais tais que: ; 3.1.2

Sinal de Determina o conjunto dos números reais tais que: ; 3.1.2 11º Ano Matemática A ESCOLA SECUNDÁRIA JÚLIO DANTAS Ano lectivo 2011/2012 Ficha de Trabalho Funções Racionais 1 De duas funções polinomiais e, sabe-se que: A função tem apenas dois zeros: o 1 e o 2; A

Leia mais

Previsão 1 1ª fase. Na sua folha de respostas, indique de forma legível a versão do teste.

Previsão 1 1ª fase. Na sua folha de respostas, indique de forma legível a versão do teste. revisão Eame Nacional de Matemática A 01 revisão 1 1ª ase Matemática A revisão 1 Duração do teste: 90 minutos 4.06.01 1.º Ano de Escolaridade Na sua olha de respostas, indique de orma legível a versão

Leia mais

Exercícios de exames e provas oficiais

Exercícios de exames e provas oficiais Eercícios de eames e provas oficiais 1. Considere as funções f e g, de domínio,0, definidas por ln 1 e g f f Recorrendo a processos eclusivamente analíticos, mostre que a condição pelo menos, uma solução

Leia mais

MATEMÁTICA A - 12o Ano Funções - Exponenciais e logaritmos. Propostas de resolução

MATEMÁTICA A - 12o Ano Funções - Exponenciais e logaritmos. Propostas de resolução MTEMÁTIC - 1o no Funções - Eponenciais e loaritmos Resolução ráica de equações e problemas Propostas de resolução Eercícios de eames e testes intermédios 1. Como o ponto é o ponto de abcissa neativa (

Leia mais

MATEMÁTICA A - 12o Ano Funções - Exponenciais e logaritmos. Propostas de resolução

MATEMÁTICA A - 12o Ano Funções - Exponenciais e logaritmos. Propostas de resolução MTEMÁTIC - o no Funções - Eponenciais e loaritmos Resolução ráica de equações e problemas Propostas de resolução Eercícios de eames e testes intermédios. Como os coeicientes de releão, R, e o de absorção

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ano Versão Nome: N.º Turma: Apresente o seu raciocínio de orma clara, indicando todos os cálculos que tiver de eetuar e todas as justiicações necessárias. Quando, para

Leia mais

Exercícios de exames e provas oficiais

Exercícios de exames e provas oficiais mata Eercícios de eames e provas oficiais. Seja a um número real. Seja a função f, de domínio f e. aln, definida por Considere, num referencial o.n. Oy, o ponto P,8. Sabe-se que o ponto P pertence ao gráfico

Leia mais

MATEMÁTICA - 3o ciclo

MATEMÁTICA - 3o ciclo MTEMÁTI - 3o ciclo Função quadrática (9 o ano) Eercícios de provas nacionais e testes intermédios 1. Na iura ao lado, estão representados, em reerencial cartesiano, a unção quadrática e o triânulo [].

Leia mais

Exercícios de exames e provas oficiais

Exercícios de exames e provas oficiais mata Eercícios de eames e provas oficiais. Seja g uma função, de domínio,e, definida por g ln e. Considere a sucessão estritamente crescente de termo geral Qual é o valor de lim g? n n n n (A) (B) e (C)

Leia mais

(Teste intermédio e exames Nacionais 2012)

(Teste intermédio e exames Nacionais 2012) Mais eercícios de 1.º ano: www.prof000.pt/users/roliveira0/ano1.htm (Teste intermédio e eames Nacionais 01) 79. Relativamente à Figura Resolva os itens seguintes, recorrendo a métodos, sabe-se que: eclusivamente

Leia mais

TEMA 2 FUNÇÕES FICHAS DE TRABALHO 12.º ANO COMPILAÇÃO TEMA 2 FUNÇÕES. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess

TEMA 2 FUNÇÕES FICHAS DE TRABALHO 12.º ANO COMPILAÇÃO TEMA 2 FUNÇÕES. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess FICHAS DE TRABALHO.º ANO COMPILAÇÃO TEMA FUNÇÕES Site: http://www.mathsuccess.pt Facebook: https://www.facebook.com/mathsuccess TEMA FUNÇÕES 06 07 Matemática A.º Ano Fichas de Trabalho Compilação Tema

Leia mais

Teste Intermédio Matemática A. 11.º Ano de Escolaridade. Resolução (Versão 2) RESOLUÇÃO GRUPO I. cosx. Duração do Teste: 90 minutos

Teste Intermédio Matemática A. 11.º Ano de Escolaridade. Resolução (Versão 2) RESOLUÇÃO GRUPO I. cosx. Duração do Teste: 90 minutos Teste Intermédio Matemática A Resolução (Versão ) Duração do Teste: 90 minutos.0.0.º Ano de Escolaridade RESOLUÇÃO GRUPO I. Resposta (B) O valor máimo da unção ojetivo de um prolema de programação linear

Leia mais

Proposta de teste de avaliação

Proposta de teste de avaliação Proposta de teste de avaliação Matemática A. O ANO DE ESCOLARIDADE Duração: 90 minutos Data: Grupo Na resposta aos itens deste grupo, selecione a opção correta. Escreva, na sua folha de respostas, o número

Leia mais

Matemática A. Versão 1. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A.

Matemática A. Versão 1. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A. Teste Intermédio de Matemática A Versão 1 Teste Intermédio Matemática A Versão 1 Duração do Teste: 90 minutos 16.03.01 10.º Ano de Escolaridade Decreto-Lei n.º 74/004, de 6 de março Na sua folha de respostas,

Leia mais

Exercícios de exames e provas oficiais

Exercícios de exames e provas oficiais mata Eercícios de eames e provas oficiais. Seja a um número real superior a. ln Qual é o valor de 4 log 5 a a (A)? 4 ln 0e (B) ln 5e (C) ln 5e (D) ln 0e matemática A º ano, eame 65, época especial, 07.

Leia mais

Matemática A. Versão 1. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A.

Matemática A. Versão 1. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A. Teste Intermédio de Matemática A Versão Teste Intermédio Matemática A Versão Duração do Teste: 90 minutos 24.05.20.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março Na sua folha de respostas,

Leia mais

Proposta de teste de avaliação

Proposta de teste de avaliação Proposta de teste de avaliação Matemática A 0. AN DE ESCLARIDADE Duração: 90 minutos Data: Grupo I Na resposta aos itens deste rupo, selecione a opção correta. Escreva, na sua olha de respostas, o número

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 5

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 5 FICHA de AVALIAÇÃO de MATEMÁTICA A 6.º Teste.º Ano de escolaridade Versão 5 Nome: N.º Turma: Professor: José Tinoco 5/6/7 É permitido o uso de calculadora gráfica Apresente o seu raciocínio de forma clara,

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 6

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano de escolaridade Versão 6 FICHA de AVALIAÇÃO de MATEMÁTICA A 6.º Teste 0.º Ano de escolaridade Versão 6 Nome: N.º Turma: Professor: José Tinoco 05/06/07 É permitido o uso de calculadora gráfica Apresente o seu raciocínio de forma

Leia mais

Matemática A. Versão 1. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A.

Matemática A. Versão 1. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A. Teste Intermédio de Matemática Versão Teste Intermédio Matemática Versão Duração do Teste: 90 minutos 09.0.0.º no de Escolaridade Decreto-Lei n.º 74/004, de 6 de março Na sua folha de respostas, indique

Leia mais

BANCO DE QUESTÕES MATEMÁTICA A 12. O ANO

BANCO DE QUESTÕES MATEMÁTICA A 12. O ANO BANCO DE QUESTÕES MATEMÁTICA A. O ANO DOMÍNIO: Funções reais de variável real. Seja g a função, de domínio,, representada graficamente na figura ao lado, e seja u a sucessão definida por. n Qual é o valor

Leia mais

MATEMÁTICA A - 12o Ano Funções - 1 a Derivada (extremos, monotonia e retas tangentes)

MATEMÁTICA A - 12o Ano Funções - 1 a Derivada (extremos, monotonia e retas tangentes) MATEMÁTICA A - 1o Ano Funções - 1 a Derivada (etremos, monotonia e retas tangentes) Eercícios de eames e testes intermédios 1. Seja f uma função de domínio R Sabe-se que f () = 6 (f designa a derivada

Leia mais

1. Considere a representação gráfica da função f. Determine: 1.1. A variação de f em 2, A variação de f em 0,6.

1. Considere a representação gráfica da função f. Determine: 1.1. A variação de f em 2, A variação de f em 0,6. mata Considere a representação gráica da unção Determine: A variação de em,4 A variação de em 0,6 tmv 0,6 4 Indique um intervalo do domínio onde a taa média de variação é A igura representa um reservatório

Leia mais

Ficha de trabalho nº 17

Ficha de trabalho nº 17 Ficha de trabalho nº 7 ºano Matemática A Continuidade, teorema de Bolzano e assíntotas ª Parte k e se 0 Seja g ( ) O valor de k para o qual é possível aplicar o teorema de se 0 Bolzano à função g, no intervalo,

Leia mais

FUNÇÕES E GRÁFICOS. FUNÇÕES POLINOMIAIS. FUNÇÃO MÓDULO

FUNÇÕES E GRÁFICOS. FUNÇÕES POLINOMIAIS. FUNÇÃO MÓDULO http://www.prof000.pt/users/roliveira0/ano10.htm Escola Secundária de Francisco Franco Matemática A 10.º ano FUNÇÕES E GRÁFICS. FUNÇÕES PLINMIAIS. FUNÇÃ MÓDUL Alguns eercícios saídos em eames, provas globais

Leia mais

MATEMÁTICA A - 12o Ano Funções - Teorema de Bolzano

MATEMÁTICA A - 12o Ano Funções - Teorema de Bolzano MATEMÁTICA A - 12o Ano Funções - Teorema de Bolzano Exercícios de exames e testes intermédios 1. Seja g uma função contínua, de domínio R, tal que: para todo o número real x, (g g)(x) = x para um certo

Leia mais

MATEMÁTICA A - 12o Ano

MATEMÁTICA A - 12o Ano MATEMÁTICA A - 1o Ano Funções - Resolução gráfica de problemas e equações Eercícios de eames e testes intermédios 1. Considere a função f, de domínio ]0, π[ definida por f() = ln + cos 1 Sabe-se que: A

Leia mais

Itens para resolver (CONTINUAÇÃO)

Itens para resolver (CONTINUAÇÃO) PREPARAR EXAME NACINAL Itens para resolver (CNTINUAÇÃ) e. Seja g a função, de domínio IR\{}, definida por g(). Sem usar a calculadora, determine, se eistirem, as equações das assíntotas do gráfico de g.

Leia mais

(Exames Nacionais 2005)

(Exames Nacionais 2005) (Eames Nacionais 005) 47. Considere a função f, de domínio, definida por f() = cos. Qual das epressões seguintes dá a derivada de f, no ponto? (A) lim cos 1 (B) lim cos (C) lim cos (D) 0 lim cos 0 (1ªfase)

Leia mais

MATEMÁTICA A - 12o Ano Funções - Limites e Continuidade

MATEMÁTICA A - 12o Ano Funções - Limites e Continuidade MATEMÁTICA A - 2o Ano Funções - Limites e Continuidade Eercícios de eames e testes intermédios. Considere as sucessões convergentes (a n ) e (b n ), de termos gerais a n = ( + ) 3n e b n = ln ( 2e n) n

Leia mais

= +. Qual pode ser o conjunto dos zeros da

= +. Qual pode ser o conjunto dos zeros da Escola Secundária Dr. Ânelo Auusto da Silva º Ano Matemática (Questões de Eames e Provas Globais) CÁLCULO DIFERENCIAL I. Na iura está parte da representação ráica da unção, de domínio \{0}. Qual das iuras

Leia mais

3.º TESTE DE MATEMÁTICA A 10.º 6

3.º TESTE DE MATEMÁTICA A 10.º 6 https://sites.oole.com/view/roliveira/inicio/ano10a www.esranco.edu.pt (2018/2019) 3.º TESTE DE MATEMÁTICA A 10.º 6 2.º Período 15/02/19 Duração: 90 minutos Nome: N.º: Classiicação:, proessor: Na resposta

Leia mais

MATEMÁTICA A - 12o Ano

MATEMÁTICA A - 12o Ano MATEMÁTICA A - 1o Ano Funções - Resolução gráfica de problemas e equações Eercícios de eames e testes intermédios 1. Seja f a função, de domínio ] π, + [, definida por + sen se π cos < 0 f() = ln se >

Leia mais

5. Composição de funções

5. Composição de funções Tema Deinições. Dierentes tipos de unções. perações com unções. Sucessões. Composição de unções Dadas duas unções, e, a composta de com escreve-se + lê-se: após ou composta de com e é deinida por: + =

Leia mais

MATEMÁTICA - 3o ciclo Proporcionalidade inversa (9 o ano)

MATEMÁTICA - 3o ciclo Proporcionalidade inversa (9 o ano) MATEMÁTICA - o ciclo Proporcionalidade inversa (9 o ano) Eercícios de provas nacionais e testes intermédios. Seja uma unção de proporcionalidade inversa. Sabe-se que () = 9 Em qual das opções se apresenta

Leia mais

MATEMÁTICA - 3o ciclo Proporcionalidade inversa (9 o ano)

MATEMÁTICA - 3o ciclo Proporcionalidade inversa (9 o ano) MATEMÁTICA - o ciclo Proporcionalidade inversa (9 o ano) Eercícios de provas nacionais e testes intermédios. Na igura ao lado, está representado, em reerencial cartesiano, o gráico de uma unção de proporcionalidade

Leia mais

Matemática A. Versão 2. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A.

Matemática A. Versão 2. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A. Teste Intermédio de Matemática A Versão Teste Intermédio Matemática A Versão Duração do Teste: 90 minutos 8.0.03.º Ano de Escolaridade Decreto-Lei n.º 74/004, de 6 de março????????????? Na sua folha de

Leia mais

FICHA DE TRABALHO DE MATEMÁTICA 10.º ANO - FUNÇÕES

FICHA DE TRABALHO DE MATEMÁTICA 10.º ANO - FUNÇÕES FICHA DE TRABALHO DE MATEMÁTICA 10.º ANO - FUNÇÕES 1. Em IR qual das condições seguintes é equivalente à inequação x! < 4? (A) x < 2 (B) x < 4 (C) x < 2 (D) x < 4 Teste intermédio 2008 2. Considere, em

Leia mais

MATEMÁTICA A - 12o Ano Funções - 1 a Derivada (extremos, monotonia e retas tangentes)

MATEMÁTICA A - 12o Ano Funções - 1 a Derivada (extremos, monotonia e retas tangentes) MATEMÁTICA A - 1o Ano Funções - 1 a Derivada (etremos, monotonia e retas tangentes) Eercícios de eames e testes intermédios 1. De uma função f, de domínio R, com derivada finita em todos os pontos do seu

Leia mais

Proposta de teste de avaliação 2 Matemática 9

Proposta de teste de avaliação 2 Matemática 9 Proposta de teste de avaliação Matemática 9 Nome da Escola Ano letivo 0-0 Matemática 9.º ano Nome do Aluno Turma N.º Data Professor - - 0 Na resolução dos itens da parte A, podes utilizar a calculadora.

Leia mais

MATEMÁTICA A - 12o Ano

MATEMÁTICA A - 12o Ano MATEMÁTICA A - 12o Ano Funções - Resolução gráfica de problemas e equações Eercícios de eames e testes intermédios 1. Seja f a função, de domínio R, definida por 2 + 1 + e se 0 f() = 3 + ln se > 0 Na figura

Leia mais

Teste Intermédio Matemática A. Versão 1. Teste Intermédio Matemática A. Versão 1. Duração do Teste: 90 minutos º Ano de Escolaridade

Teste Intermédio Matemática A. Versão 1. Teste Intermédio Matemática A. Versão 1. Duração do Teste: 90 minutos º Ano de Escolaridade Teste Intermédio Matemática A Versão 1 Teste Intermédio Matemática A Versão 1 Duração do Teste: 90 minutos 6.05.2008 11.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março Na sua folha de respostas,

Leia mais

( x) = +. Qual dos seguintes. x = (B) o contradomínio é ],2] f é uma função par

( x) = +. Qual dos seguintes. x = (B) o contradomínio é ],2] f é uma função par Ficha de Trabalho n.º 7 página 5. Indique quantos são os pontos comuns aos gráficos das funções f e g definidas por f ( x) = x e g( x) = x (A) 0 (B) 1 (C) (D) 3 6. Pretende-se desenhar um retângulo com

Leia mais

MATEMÁTICA A - 11o Ano Geometria -Trigonometria

MATEMÁTICA A - 11o Ano Geometria -Trigonometria MTEMÁTI - 11o no Geometria -Trigonometria Eercícios de eames e testes intermédios 1. Na figura ao lado, está representada uma circunferência de centro no ponto e raio 1 os diâmetros [ e [ são perpendiculares;

Leia mais

TESTE INTERMÉDIO 11.º ANO

TESTE INTERMÉDIO 11.º ANO TESTE INTERMÉDIO 11.º ANO NOME: N.º: TURMA: ANO LETIVO: / DATA: / / CLASSIFICAÇÃO: PROFESSOR(A): ENC. EDUCAÇÃO: DURAÇÃO DO TESTE: 90 MINUTOS GRUPO I Os cinco itens deste grupo são de escolha múltipla.

Leia mais

Exercícios de exames e provas oficiais

Exercícios de exames e provas oficiais Exercícios de exames e provas oficiais 1. Na figura, está representada, num referencial ortogonal xoy, parte do gráfico da função g, segunda derivada de uma função g. Em qual das opções seguintes pode

Leia mais

Exercícios de Revisão de Conceitos Fundamentais

Exercícios de Revisão de Conceitos Fundamentais Eercícios de Revisão de Conceitos Fundamentais. Números.. Números inteiros e números raccionários. Operações com números raccionários. Percentagens. ) Escreva as seguintes racções impróprias na orma de

Leia mais

Proposta de teste de avaliação

Proposta de teste de avaliação Proposta de teste de avaliação Matemática A. O ANO DE ESCOLARIDADE Duração: 90 minutos Data: Grupo Na resposta aos itens deste grupo, selecione a opção correta. Escreva, na sua folha de respostas, o número

Leia mais

Grupo I. Na resposta a cada um dos itens deste grupo, selecione a única opção correta. (C) (D) 11 20

Grupo I. Na resposta a cada um dos itens deste grupo, selecione a única opção correta. (C) (D) 11 20 Eames Nacionais eame nacional do ensino secundário Decreto Lei n. 7/00, de 6 de março Prova Escrita de Matemática A. Ano de Escolaridade Prova 6/.ª Fase Duração da Prova: 0 minutos. Tolerância: 0 minutos

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 2o Ano 207-2 a Fase Proposta de resolução GRUPO I. Temos que os algarismos pares, ficando juntos podem ocupar 4 grupos de duas posições adjacentes e trocando entre si, podem

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 2o Ano 207-2 a Fase Proposta de resolução GRUPO I. Temos que os algarismos pares, ficando juntos podem ocupar 4 grupos de duas posições adjacentes e trocando entre si, podem

Leia mais

cotg ( α ) corresponde ao valor da abcissa do

cotg ( α ) corresponde ao valor da abcissa do Capítulo II: Funções Reais de Variável Real 59 Função co-tangente Seja α um ângulo representado no círculo trigonométrico. ( α ) corresponde ao valor da abcissa do ponto que resulta de projectar o lado

Leia mais

Matemática A. Teste Intermédio Matemática A. Versão 1. Teste Intermédio. Versão 1. Duração do Teste: 90 minutos º Ano de Escolaridade

Matemática A. Teste Intermédio Matemática A. Versão 1. Teste Intermédio. Versão 1. Duração do Teste: 90 minutos º Ano de Escolaridade Teste Intermédio Matemática A Versão 1 Teste Intermédio Matemática A Versão 1 Duração do Teste: 90 minutos 6.05.2008 11.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março Na sua folha de respostas,

Leia mais

MATEMÁTICA A - 12o Ano Funções - 2 a Derivada (concavidades e pontos de inflexão) Propostas de resolução

MATEMÁTICA A - 12o Ano Funções - 2 a Derivada (concavidades e pontos de inflexão) Propostas de resolução MATEMÁTICA A - 1o Ano Funções - a Derivada concavidades e pontos de infleão) Propostas de resolução Eercícios de eames e testes intermédios 1. Por observação do gráfico de f, podemos observar o sentido

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições Exercícios de exames e testes intermédios 1. Em C, conjunto dos números complexos, considere: z 1 = 1 i ] π [, com θ 2e iθ 12,π 4 w = z 1

Leia mais

Nas respostas aos itens de resposta aberta, apresente todos os cálculos que tiver de efetuar e todas as justificações

Nas respostas aos itens de resposta aberta, apresente todos os cálculos que tiver de efetuar e todas as justificações PREPARAR EXAME O NACIONAL NACIONAL PROVA-MODELO Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva na folha de respostas o número do item e a letra que identifica a opção escolhida.

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 4

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 4 FICHA de AVALIAÇÃO de MATEMÁTICA A º Ano Versão 4 Nome: Nº Turma: Apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efetuar e todas as justificações necessárias Quando,

Leia mais

Exercícios de exames e provas oficiais

Exercícios de exames e provas oficiais Exercícios de exames e provas oficiais. Na figura, está representada, num referencial o.n. xoy, parte do gráfico de uma função f, polinomial do terceiro grau. Tal como a figura sugere, a função f tem um

Leia mais

EXAME NACIONAL DO ENSINO SECUNDÁRIO ª FASE

EXAME NACIONAL DO ENSINO SECUNDÁRIO ª FASE EXAME NACIONAL DO ENSINO SECUNDÁRIO 011 1.ª FASE DISCIPLINA: MATEMÁTICA A _ PROVA 65 Grupo II Item 1.1 O examinando efectua a divisão inteira de z z 16z 16 por z z1 e obtém z 16. Resolve a equação z 16

Leia mais

ESCOLA SECUNDÁRIA DA RAMADA. Teste de Matemática A. Grupo I

ESCOLA SECUNDÁRIA DA RAMADA. Teste de Matemática A. Grupo I ESCOLA SECUNDÁRIA DA RAMADA Teste de Matemática A 30 de maio de 2017 12º A Versão 1 Grupo I As cinco questões deste grupo são de escolha múltipla. Para cada uma delas, são indicadas quatro alternativas,

Leia mais

, respetivamente. Sabe-se que uma das funções é par e a outra não é par nem ímpar. Identifique cada uma delas f x x e

, respetivamente. Sabe-se que uma das funções é par e a outra não é par nem ímpar. Identifique cada uma delas f x x e mata O gráfico de uma função é, na maioria das vezes bastante útil para visualizar propriedades da função. Assim, de forma a podermos representar com rigor uma função, devemos fazer um estudo pormenorizado

Leia mais

ESCOLA SECUNDÁRIA DE CASQUILHOS

ESCOLA SECUNDÁRIA DE CASQUILHOS ESCOLA SECUNDÁRIA DE CASQUILHOS 12º Ano Turma A - C.C.H. de Ciências e Tecnologias - Teste de Avaliação de Matemática A V1 Duração: 90 min 08 Março 2010 Prof.: GRUPO I Os cinco itens deste grupo são de

Leia mais

e bx lim 1. Considere a função, de domínio, definida por Considere a sucessão de termo geral. Determine lim f ( u ).

e bx lim 1. Considere a função, de domínio, definida por Considere a sucessão de termo geral. Determine lim f ( u ). TESTE DE AVALIAÇÃO DE MATEMÁTICA 1º ANO Nome: Nº Turma Data:.../.../... O teste é constituído por dois grupos, I e II. O grupo I inclui questões de escolha múltipla. O grupo II inclui questões de resposta

Leia mais

AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Ficha de Trabalho nº3 - Trigonometria - 12º ano Exames

AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Ficha de Trabalho nº3 - Trigonometria - 12º ano Exames AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Ficha de Trabalho nº3 - Trigonometria - 1º ano Exames 006-010 sin x ln x g( Recorrendo às x capacidades gráficas da calculadora, visualize o gráfico da função g e reproduza-o

Leia mais

Agrupamento de Escolas de Alcácer do Sal MATEMÁTICA - 9o Ano

Agrupamento de Escolas de Alcácer do Sal MATEMÁTICA - 9o Ano Arupamento de Escolas de Alcácer do Sal MATEMÁTICA - 9o Ano Teste de Avaliação 9 o E 17/05/2017 Parte I - 25 minutos - É permitido o uso de calculadora Na resposta aos itens de escolha múltipla, seleciona

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A ESCOLA SECUNDÁRIA COM º CICLO D. DINIS º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema III Trigonometria e Números Compleos TPC nº. Seja f = + ln (entregar até 7/0/009).. Determine f ( ), usando a definição

Leia mais

FUNÇÕES DE VÁRIAS VARIÁVEIS

FUNÇÕES DE VÁRIAS VARIÁVEIS FUNÇÕES DE VÁRIAS VARIÁVEIS Introdução Considere os seguintes enunciados: O volume V de um cilindro é dado por V r h onde r é o raio e h é a altura. Um circuito tem cinco resistores. A corrente deste circuito

Leia mais

) a sucessão de termo geral

) a sucessão de termo geral 43. Na figura está desenhada parte da representação R \. gráfica de uma função f, cujo domínio é { } As rectas de equações =, y = 1 e y = 0 são assímptotas do gráfico de f. Seja ( n ) a sucessão de termo

Leia mais

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II. TPC nº 9 (entregar em )

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema II Introdução ao Cálculo Diferencial II. TPC nº 9 (entregar em ) Escola Secundária com º ciclo D. Dinis º Ano de Matemática A Tema II Introdução ao álculo Diferencial II TP nº 9 (entregar em 09-0-0) Grupo I. Uma caixa A contém duas bolas verdes e uma bola amarela. Outra

Leia mais

Teste Intermédio de Matemática B

Teste Intermédio de Matemática B Ano letivo: 01-013 Teste Intermédio de Matemática B 11º Ano de Escolaridade Duração do teste: 90 minutos 4 de Maio de 013 Curso Tecnológico de Gestão e Dinamização Desportiva Curso Tecnológico de Química

Leia mais

Exercícios de exames e provas oficiais

Exercícios de exames e provas oficiais Exercícios de exames e provas oficiais 1. Na figura abaixo, está representada, num referencial o.n. xoy, parte do gráfico de uma função polinomial f. Em qual das opções seguintes pode estar representada

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições MATEMÁTICA A - 1o Ano N o s Complexos - Conjuntos e condições Exercícios de exames e testes intermédios 1. Na figura ao lado, está representado, no plano complexo, um quadrado cujo centro coincide com

Leia mais

Matemática A. Versão 1 RESOLUÇÃO GRUPO I. Teste Intermédio de Matemática A. Versão 1. Teste Intermédio. Duração do Teste: 90 minutos

Matemática A. Versão 1 RESOLUÇÃO GRUPO I. Teste Intermédio de Matemática A. Versão 1. Teste Intermédio. Duração do Teste: 90 minutos Teste Intermédio de Matemática A Versão Teste Intermédio Matemática A Versão Duração do Teste: 90 minutos 06.05.0 0.º Ano de Escolaridade Decreto-Lei n.º 74/004, de 6 de Março RESLUÇÃ GRUP I. Resposta

Leia mais