PROCESSOS ESTOCÁSTICOS. O resultado de muitas experiências aleatórias é função do tempo ou de uma (ou mais) coordenada espacial.

Tamanho: px
Começar a partir da página:

Download "PROCESSOS ESTOCÁSTICOS. O resultado de muitas experiências aleatórias é função do tempo ou de uma (ou mais) coordenada espacial."

Transcrição

1 37 PROCESSOS ESTOCÁSTICOS O resultado de muitas experiências aleatórias é função do tempo ou de uma (ou mais) coordenada espacial. Ex: i) O valor da temperatura média diária ou semanal numa cidade. O acontecimento aleatório é a escolha de uma cidade e para cada cidade ficará definido um conjunto de variáveis aleatórias para cada dia ou semana do ano. ii) O valor instantâneo da tensão nos terminais de uma resistência. O acontecimento aleatório é o início da medição e para cada instante de medição ficará definida uma variável aleatória. iii) O número de clientes numa fila de espera. O acontecimento aleatório é também o início da medição e para cada instante de medição ficará definida uma variável aleatória.

2 38 iv) O valor da luminância num ponto de uma imagem. O acontecimento aleatório é a escolha da imagem e para cada ponto definido por um par de coordenadas fica definida uma variável aleatória. Vêmos assim nestes exemplos, que ao resultado de uma experiência aleatória fica associado um valor aleatório que varia com uma variável temporal ou espacial. Iremos então introduzir o conceito de processo aleatório, que nos vai permitir analisar situações do tipo das que foram anteriormente apresentadas. Definição: Seja S um espaço de amostragem e I um qualquer subconjunto de R. Se para qualquer t I e ζ S se definir a variável aleatória ( ζ,t ) ao conjunto { ( ζ,t ):t I } chama-se um processo aleatório. Se a variável real t for uma variável temporal, o processo aleatório designa-se como processo estocástico.

3 Um processo estocástico é pois um conjunto de variáveis aleatórias indexadas a uma variável temporal pertencente a um dado subconjunto real. 39 S ξ ξ (t,ξ ) (t,ξ ) ξ 3 (t,ξ 3 ) t t t 3 t 4 Se a variável temporal for contínua (pertencente a um conjunto compacto), o processo estocástico é contínuo; se for discreta (pertencente a um conjunto numerável), o processo estocástico é discreto.

4 Para cada valor ζ i S, o conjunto de valores { ( ζ i,t ):t I } chama-se realização do processo ou função amostra do processo. 40 Exemplo : ( ζ,t ) = ζ sen ( πt ), t [ 0, [ e ζ ~ U(,) (t) = sen(πt) (t) = -0.*sen(πt) (t) = 0,4*sen(πt)

5 4 Exemplo : ( ζ,t ) = sen ( πt + ζ ), t [ 0, [ e ζ ~ U( 0, π) (t) = sen(*π*t +,5) (t) = sen(*π*t + 0,4) (t) = sen(*π*t) Temos na figura acima três realizações do processo para ξ = 0, 0.4 e.5 e para t < 3.

6 Exemplo 3: Seja [ 0, ] ζ o resultado de uma experiência aleatória e sejam b, b, os dígitos da representação binária de ζ, ou seja: 4 ζ = i = b i i, b i { 0,} e defina-se o processo aleatório ( ζ,n ) = b, n ℵ B n Temos a seguir três realizações deste processo para ξ = 0.35, 0.4 e 0.65 e n 0. 0, ξ = 0.35

7 43 0, ξ = 0.4 0,5 ξ = ξ = 0.65 Exercício: Obter f (t)( x) para os exemplos e.

8 CARACTERIZAÇÃO DE PROCESSOS ESTOCÁSTICOS 44 Uma vez que um processo estocástico é um conjunto de variáveis aleatórias, a sua caracterização faz-se especificando as diferentes variáveis aleatórias que o constituem e o seu comportamento conjunto. Seja t, t,, t instantes em que se definem as variáveis,,,. O processo estocástico fica caracterizado se se conhecerem todas as funções de distribuição conjunta F ( )... x,x,..., x para qualquer e para qualquer escolha dos instantes t, t,, t. Se o processo for discreto então será caracterizado por todas as funções de probabilidade conjunta: p ( ) = = =... x,x,...,x P x,..., x

9 para qualquer e para qualquer escolha dos instantes t, t,, t. 45 Se o processo for contínuo então será caracterizado por todas as funções densidade de probabilidade conjunta: f... ( x,x,..., x ) para qualquer e para qualquer escolha dos instantes t, t,, t. Esta forma de definir o processo estocástico é designada por caracterização estatística completa de ordem e de um modo geral não é fácil construir e especificar todas as funções anteriormente referidas. Ex: Consideremos a figura da página 39, fazendo: t = t e (t ) = a função de distribuição acumulada é definida como: F ( x,t ) = P( ( t ) x )

10 e temos assim a função distribuição de ª ordem do processo (t). Para a função de distribuição de ª ordem de (t) vem: F ( x, x ; t,t ) = P( ( t ) x ; ( t ) x ) notação equivalente a : F ( x, x ) = P( x ; x ) 46 em que (t ) = e (t ) = A função de distribuição de ordem de (t) é então definida por: F ( x, x,, x ; t,t,, t ) = ( ( t ) x ; ( t ) x ; ;( t ) ) = P x Daqui resulta que as funções densidade de probabilidade conjunta de ª ordem, ª ordem e ordem são respectivamente:

11 47 ( x,t ) f = d F ( x,t ) d x f ( x, x ; t,t ) = F ( x, x ; t,t ) x x f ( x, x,,x ; t,t,, t ) = = F ( x, x,, x ; t,t,,t ) x x x Situações particulares: i) Se para qualquer e qualquer escolha dos instantes de amostragem t < t < < t as variáveis ( t ) ( t ),, ( t ) ( t ) forem independentes o processo será de incrementos independentes. Ex: processo de Poisson e processo de Wiener

12 48 ii) Se o futuro do processo, dado o presente, é independente do passado, isto é, se para qualquer e qualquer escolha dos instantes de amostragem t < t < < t e qualquer x,x,..., x, f ( = x ) = ( ) x ( t ) = x,...,( t) t = f [ x ] ( ) x ( t ) t = ou: P [ ( t ) x ( t ) = x,...,( t ) = x ] = = = P [ ( t ) = x ( t ) x ] = e o processo será de Marov. Ex: processo random wal e processo de Wiener

13 49 MÉDIA, AUTOCORRELAÇÃO E AUTOCOVARIÂNCIA Uma vez que um processo estocástico é um conjunto de variáveis aleatórias, pode definirse para cada uma das suas variáveis ou para cada par das suas variáveis os seguintes conjuntos de parâmetros: Média: m ( t) = E[ ( t) ] = + x( t) f( t) ( x( t) ) dx( t) Nota: seja (t ) =, então: + ( ) = ( ) = ( ) = ( ) E m E t x f x ;t dx t Autocorrelação: momento conjunto de ( t ) e ( ) R = + t [ ]= ( t,t ) E ( t ) ( t ) + x = ( t ) x( t ) f ( ) ( )( x( t ),x( t )) dx( t ) dx( ) t t t

14 Autocovariância: momento central conjunto de ( ) e ( ) t t 50 C ( t,t ) = E[ ( ( t ) m ( t ))( ( t ) m ( t ))] ou de forma equivalente: C ( t,t ) = R ( t,t ) m ( t ) m ( t ) pode ainda definir-se: Variância de ( t) : Var [ ] C ( t,t) ( ( t) ) = E ( ( t) m ( t) ) = Coeficiente de correlação de ( t) : ρ (,t ) t = C C ( t, t ) ( t, t ) C ( t, t )

15 Nota: A média, a autocorrelação e a autocovariância isoladas ou em conjunto apenas caracterizam parcialmente o processo estocástico. Uma classe importante de processos é o dos processos Gausseanos. Um processo aleatório diz-se gausseano se todas as variáveis que o constituem forem conjuntamente gausseanas para qualquer número e escolha dos instantes de amostragem. Uma vez que o comportamento conjunto de variáveis gausseanas fica completamente definido pela média e matriz de covariância, um processo estocástico gausseano fica totalmente definido pela média e pela autocovariância. 5 Se se pretender estudar o comportamento conjunto de dois processos estocásticos tem de se recorrer ainda às seguintes definições:

16 5 Independência de ( t) e ( t) Y : Os processos aleatórios ( t) e ( t) Y são independentes se os vectores de variável ' ' t,..., Y t,...,y e ( ( ) ( ) aleatória ( ( ) ( )) t t j forem independentes para qualquer escolha de e j e qualquer escolha dos instantes t, t,, t e t, t,, t j. Correlação cruzada de ( t) e ( t) Y Y : ( t,t ) E[ ( t ) Y( t )] R = se para todos os t e t, R Y ( t,t ) 0 ( t) e Y ( t) são ortogonais. = então Covariância cruzada de ( t) e ( t) Y : C Y ( t,t ) = E[ ( ( t ) m ( t ))( Y( t ) m ( t ))] Y se para todos os t e t, C Y ( t,t ) 0 ( t) e Y ( t) são não correlacionados. = então

17 53 PROCESSOS INDEPENDENTES E IDENTICAMENTE DISTRIBUIDOS Um processo será do tipo IID se as variáveis que o constituem forem IID. Neste caso as funções de distribuição conjunta serão:... ( x,x,...,x ) F ( x ) F ( x )...F ( x ) F = Assim se o processo for discreto teremos:... ( x,x,...,x ) p ( x ) p ( x )...p ( x ) p = e se for contínuo:... ( x,x,...,x ) f ( x ) f ( x )...f ( x ) f =

18 54 ESTACIONARIEDADE é estacionário (ou estritamente estacionário Strict-Sense Stationary (S.S.S)) se as suas propriedades estatísticas são invariantes a qualquer translação da origem dos tempos. Isto significa Um processo estocástico ( t) que os processos ( t) e ( t c) + têm as mesmas estatísticas qualquer que seja c. A definição de estacionariedade significa que a função de distribuição conjunta obedece a: F ( ) ( )... ( ) ( ) = t t t x,x,..., x = F ( + ) ( + ) ( x,...,x ) t c... t c para qualquer translação temporal c, qualquer e qualquer escolha dos instantes t < t < <t. Então, para um processo estacionário de ª ordem temos que: ( ) ( ) f x,t f x,t + c, c

19 Se, em particular, c = - t, temos que: ( x,t) f ( x) f = ( ) isto é, f ( x,t) é independente de t. Daqui resulta que: + [ ( t) ] = xf ( x) dx = µ cons tante E x = ( ) De modo análogo, para um processo estacionário de ª ordem vem que: ( x,x,t,t ) f( x,x,t + c,t + c), τ f 55 então, para c = - t : f ( x,x,t,t ) f ( x,x,t t ) ( ) isto é, a função densidade de probabilidade de ª ordem depende apenas da diferença t -t = τ. Neste caso a função de autocorrelação R ( t,t ) E[ ( t ) ( t )] = = Só depende de τ = t -t e portanto, + = + x ( x,x, τ = t t ) dx xf dx [ ( t ) ( t + τ) ] = ( τ) = R E ( )

20 Nota: As equações ( ) e ( ) são uma consequência de considerarmos o processo estocástico como um processo estacionário (em sentido estrito) de ª e ª ordem respectivamente. Por outro lado, as condições a verificar para classificar desse modo o processo estocástico ( equações ( ) e ( )) são de um modo geral, difíceis de verificar. Por esta razão, definimos uma nova condição de estacionariedade, menos exigente, que se designa por estacionariedade em sentido lato (Wide-Sense Stationarity (W.S.S)), isto é, o processo estocástico (t) diz-se estacionário em sentido lato se: i) [ ( t) ] = µ E (a média for conatante); ii) [ ( t ) ( t )] R ( t t ) = ( τ) E = R (a função de autocorrelação depender apenas da diferença entre t e t ). 56 Estacionário de ª ordem Estacionário em sentido lato

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Luis Henrique Assumpção Lolis 26 de maio de 2014 Luis Henrique Assumpção Lolis Processos Estocásticos 1 Conteúdo 1 Introdução 2 Definição 3 Especificando um processo aleatório 4

Leia mais

Anexo 1 - Revisões de Teoria das Probabilidades e Processos Estocásticos

Anexo 1 - Revisões de Teoria das Probabilidades e Processos Estocásticos 1 Anexo 1 - Revisões de Teoria das Probabilidades e Processos Estocásticos Documento auxiliar à disciplina de Modelação, Identificação e Controlo Digital Alexandre Bernardino 003/005 IST-Secção de Sistemas

Leia mais

Anexo 1 - Revisões de Teoria das Probabilidades e Processos Estocásticos

Anexo 1 - Revisões de Teoria das Probabilidades e Processos Estocásticos 1 Anexo 1 - Revisões de Teoria das Probabilidades e Processos Estocásticos Documento auxiliar à disciplina de Modelação, Identificação e Controlo Digital Alexandre Bernardino IST-Secção de Sistemas e Controlo

Leia mais

Módulo IV: Processos Aleatórios Estacionários, Cicloestaionaridade e Análise de Continuidade de Processos Aleatórios

Módulo IV: Processos Aleatórios Estacionários, Cicloestaionaridade e Análise de Continuidade de Processos Aleatórios Módulo IV: Processos Aleatórios Estacionários, Cicloestaionaridade e Análise de Continuidade de Processos Aleatórios Wamberto J. L. Queiroz Universidade Federal de Campina Grande-UFCG Departamento de Engenharia

Leia mais

Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 02 / Processos Aleatórios

Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 02 / Processos Aleatórios Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 02 / Processos Aleatórios Prof. Eduardo Simas (eduardo.simas@ufba.br) Programa de Pós-Graduação em Engenharia Elétrica/PPGEE Universidade

Leia mais

Processos aleatórios - características

Processos aleatórios - características Capítulo 6 Processos aleatórios - características temporais 6.1 O conceito de processo aleatório Um processo aleatório ou estocástico é um espaço de amostras em que cada elemento é associado a uma função

Leia mais

PROCESSOS ESTOCÁSTICOS

PROCESSOS ESTOCÁSTICOS PROCESSOS ESTOCÁSTICOS Definições, Principais Tipos, Aplicações em Confiabilidade de Sistemas e Sinais CLARKE, A. B., DISNEY, R. L. Probabilidade e Processos Estocásticos, Rio de Janeiro: Livros Técnicos

Leia mais

PRE29006 LISTA DE EXERCÍCIOS #

PRE29006 LISTA DE EXERCÍCIOS # INSTITUTO FEDERAL DE SANTA CATARINA CAMPUS SÃO JOSÉ COORDENADORIA DE ÁREA DE TELECOMUNICAÇÕES ENGENHARIA DE TELECOMUNICAÇÕES PRE9006 LISTA DE EXERCÍCIOS #3 06. Exercícios. [, Exercício 7.] Seja A uma variável

Leia mais

Módulo II: Cálculo dos Momentos de um Processo Estocástico, Processo de Bernoulli, Processo Random Walk

Módulo II: Cálculo dos Momentos de um Processo Estocástico, Processo de Bernoulli, Processo Random Walk Módulo II: Cálculo dos Momentos de um Processo Estocástico, Processo de Bernoulli, Processo Random Walk Wamberto J. L. Queiroz Universidade Federal de Campina Grande-UFCG Departamento de Engenharia Elétrica

Leia mais

A estacionariedade prova-se de maneira semel- hante.

A estacionariedade prova-se de maneira semel- hante. Se por outro lado (U 1, U 2,...) é IID então mostremos que X n U 1 + + U n tem incrementos independentes e estacionários. De facto, dados n > m temos que X n X m U m+1 + + U n. Tome-se quaisquer n 1

Leia mais

Modelos para Séries Temporais Aula 1. Morettin e Toloi, 2006, Capítulo 2 Morettin, 2011, Capítulo 2 Bueno, 2011, Capítulo 2

Modelos para Séries Temporais Aula 1. Morettin e Toloi, 2006, Capítulo 2 Morettin, 2011, Capítulo 2 Bueno, 2011, Capítulo 2 Modelos para Séries Temporais Aula 1 Morettin e Toloi, 2006, Capítulo 2 Morettin, 2011, Capítulo 2 Bueno, 2011, Capítulo 2 Modelos para Séries Temporais Os modelos utilizados para descrever séries temporais

Leia mais

Resumo. Parte 7 Processos Estocásticos. Ramiro Brito Willmersdorf

Resumo. Parte 7 Processos Estocásticos. Ramiro Brito Willmersdorf Parte 7 Processos Estocásticos Ramiro Brito Willmersdorf ramiro@willmersdorf.net Departamento de Engenharia Mecânica Universidade Federal de Pernambuco 2011.2 Resumo 1 Processos Estocásticos 2 Classicação

Leia mais

TE802 Processos Estocásticos em Engenharia. Processo Aleatório. TE802 Processos Aleatórios. Evelio M. G. Fernández. 18 de outubro de 2017

TE802 Processos Estocásticos em Engenharia. Processo Aleatório. TE802 Processos Aleatórios. Evelio M. G. Fernández. 18 de outubro de 2017 TE802 Processos Estocásticos em Engenharia Processos Aleatórios 18 de outubro de 2017 Processo Aleatório Processo Aleatório (ou Estocástico), X(t): Função aleatória do tempo para modelar formas de onda

Leia mais

Introdução aos Proc. Estocásticos - ENG 430

Introdução aos Proc. Estocásticos - ENG 430 Introdução aos Proc. Estocásticos - ENG 430 Fabrício Simões IFBA 16 de novembro de 2015 Fabrício Simões (IFBA) Introdução aos Proc. Estocásticos - ENG 430 16 de novembro de 2015 1 / 35 Fabrício Simões

Leia mais

Processamento de Sinal e Imagem Engenharia Electrotécnica e de Computadores

Processamento de Sinal e Imagem Engenharia Electrotécnica e de Computadores António M. Gonçalves Pinheiro Departamento de Física Covilhã - Portugal pinheiro@ubi.pt Processos Estocásticos - Sinais que variam aleatoriamente no tempo. são regidos por processos estocásticos. 2 1 1

Leia mais

TE802 Processos Estocásticos em Engenharia

TE802 Processos Estocásticos em Engenharia TE802 Processos Estocásticos em Engenharia Vetores Aleatórios 10 de setembro de 2017 Modelos Probabiĺısticos para N Variáveis Aleatórias F X1,...,X n (x 1,...,x n) = P[X 1 x 1,..., X n x n] (x 1,...,x

Leia mais

Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte II

Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte II Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte II 13 de Dezembro de 2013 Exercício 1. Descreva o espaço de probabilidade associado às seguintes experiências aleatórias: 1. Uma moeda

Leia mais

Análise e Previsão de Séries Temporais Aula 1: Introdução às séries temporais. Eraylson Galdino

Análise e Previsão de Séries Temporais Aula 1: Introdução às séries temporais. Eraylson Galdino Análise e Previsão de Séries Temporais Aula 1: Introdução às séries temporais egs@cin.ufpe.br Agenda Séries Temporais: Definições Exemplos Modelos simples com média zero: Ruído I.I.D Processo Binário Random

Leia mais

3 3. Variáveis Aleatórias

3 3. Variáveis Aleatórias ÍNDICE 3. VARIÁVEIS ALEATÓRIAS...49 3.. VARIÁVEIS ALEATÓRIAS UNIDIMENSIONAIS...49 3.2. VARIÁVEIS DISCRETAS FUNÇÃO DE PROBABILIDADE E FUNÇÃO DISTRIBUIÇÃO DE PROBABILIDADE...50 3.2.. Função de probabilidade...50

Leia mais

Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte I

Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte I Exercícios de Teoria da Probabilidade e Processos Estocásticos Parte I 2014/2015 Os exercícios assinalados com (*) têm um nível de dificuldade superior. Exercício 1. Seja (X, F) um espaço mensurável. Mostre

Leia mais

Processos estocásticos

Processos estocásticos 36341 - Introdução aos Processos Estocásticos Curso de Pós-Graduação em Engenharia Elétrica Departamento de Engenharia Elétrica Universidade de Brasília Processos estocásticos Geovany A. Borges gaborges@ene.unb.br

Leia mais

Processos Aleatórios e Ruído

Processos Aleatórios e Ruído Processos Aleatórios e Ruído Luis Henrique Assumpção Lolis 11 de abril de 2014 Luis Henrique Assumpção Lolis Processos Aleatórios e Ruído 1 Conteúdo 1 O Experimento Aleatório / Espaço de Amostras 2 Algebra

Leia mais

Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma:

Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: 46 VALOR ESPERADO CONDICIONADO Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: Variável contínua E + ( X Y

Leia mais

Modelagem de um sistema por cadeias de Markov

Modelagem de um sistema por cadeias de Markov Modelagem de um sistema por cadeias de Markov Sistemas sem memória : somente o estado imediatamente anterior influencia o estado futuro. rocesso estacionário: probabilidades de transição de um estado para

Leia mais

195

195 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245

Leia mais

Probabilidade combinada e amostragem condicional

Probabilidade combinada e amostragem condicional Probabilidade combinada e amostragem condicional Introdução O objetivo desta aula é apresentar algumas técnicas de análise de correlação entre sinais que são muito empregadas em processamento de sinais.

Leia mais

Aula 1. Wilson Correa. June 27, 2017

Aula 1. Wilson Correa. June 27, 2017 Aula 1 Definições Básicas Wilson Correa June 27, 2017 Série de Tempo Definição Uma série de tempo é qualquer conjunto de observações ordenadas no tempo. Podem ser: Discretas. Ex: Valores Diários de Poluição,

Leia mais

PRINCÍPIOS DE COMUNICAÇÃO

PRINCÍPIOS DE COMUNICAÇÃO PRINCÍPIOS DE COMUNICAÇÃO RUÍDO EM MODULAÇÕES ANALÓGICAS Evelio M. G. Fernández - 2011 Processo Aleatório (ou Estocástico): Função aleatória do tempo para modelar formas de onda desconhecidas. Processos

Leia mais

Comunicações Digitais Prof. André Noll Barreto. Prova /1 (04/04/2017)

Comunicações Digitais Prof. André Noll Barreto. Prova /1 (04/04/2017) Prova 1 17/1 (4/4/17) Aluno: Matrícula: Instruções A prova consiste de quatro questões discursivas A prova terá a duração de h A prova pode ser feita a lápis ou caneta Não é permitida consulta a notas

Leia mais

Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 06 / Classes Especiais de Processos Aleatórios

Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 06 / Classes Especiais de Processos Aleatórios Disciplina: Processamento Estatístico de Sinais (ENGA83) - Aula 06 / Classes Especiais de Processos Aleatórios Prof. Eduardo Simas (eduardo.simas@ufba.br) Programa de Pós-Graduação em Engenharia Elétrica/PPGEE

Leia mais

Séries Temporais. Fernando Lucambio. Agosto de Departamento de Estatística Universidade Federal do Paraná Curitiba/PR, , Brasil

Séries Temporais. Fernando Lucambio. Agosto de Departamento de Estatística Universidade Federal do Paraná Curitiba/PR, , Brasil Séries rais Autocorrelação Fernando Lucambio Departamento de Estatística Universidade Federal do Paraná Curitiba/PR, 81531 990, Brasil email: lucambio.ufpr@gmail.com Agosto de 2015 AUTOCORRELAÇÃO Uma importante

Leia mais

Análise e Processamento de Sinal e Imagem. III - Sinais Aleatórios e Filtragem Óptima

Análise e Processamento de Sinal e Imagem. III - Sinais Aleatórios e Filtragem Óptima III - Sinais Aleatórios e Filtragem Óptima António M. Gonçalves Pinheiro Departamento de Física Covilhã - Portugal pinheiro@ubi.pt Sinais Aleatórios e Filtragem Óptima 1. Noção de Sinal Aleatório 2. Sinais

Leia mais

Princípios de Modelagem Matemática Aula 10

Princípios de Modelagem Matemática Aula 10 Princípios de Modelagem Matemática Aula 10 Prof. José Geraldo DFM CEFET/MG 19 de maio de 2014 1 Alguns resultados importantes em estatística A distribuição normal tem importante papel em estatística pois

Leia mais

Processos de Poisson

Processos de Poisson Processos de Poisson Mauro C. M. Campos 1 SUMÁRIO I Alguns fatos sobre a distribuição exponencial 1 II Alguns fatos sobre a distribuição de Poisson 2 III Processos estocásticos em tempo contínuo 2 IV Processos

Leia mais

PARTE TEÓRICA Perguntas de escolha múltipla

PARTE TEÓRICA Perguntas de escolha múltipla PROBABILIDADES E ESTATÍSTICA MIEEC/FEUP PARTE TEÓRICA Perguntas de escolha múltipla 1 Dada a experiência aleatória ε define-se espaço amostral associado a ε como sendo: A O espaço físico onde se realiza

Leia mais

CONHECIMENTOS ESPECÍFICOS

CONHECIMENTOS ESPECÍFICOS fonte de graus de soma de quadrado variação liberdade quadrados médio teste F regressão 1 1,4 1,4 46,2 resíduo 28 0,8 0,03 total 2,2 A tabela de análise de variância (ANOVA) ilustrada acima resulta de

Leia mais

ROTEIRO DA APRESENTAÇÃO PROCESSOS ESTOCÁSTICOS

ROTEIRO DA APRESENTAÇÃO PROCESSOS ESTOCÁSTICOS ROTEIRO DA APRESENTAÇÃO MODELOS ESTOCÁSTICOS APLICADOS À INDÚSTRIA Prof. Lupércio França Bessegato Departamento de Estatística Universidade Federal de Juiz de Fora lupercio.bessegato@ufjf.edu.br www.ufjf.br/lupercio_bessegato

Leia mais

Módulo I: Introdução a Processos Estocásticos

Módulo I: Introdução a Processos Estocásticos Módulo I: Introdução a Processos Estocásticos Wamberto J. L. Queiroz Universidade Federal de Campina Grande-UFCG Departamento de Engenharia Elétrica Processos Estocásticos Campina Grande - PB Módulo I:

Leia mais

canal para sinais contínuos

canal para sinais contínuos Processos estocásticos, Entropia e capacidade de canal para sinais contínuos 24 de setembro de 2013 Processos estocásticos, Entropia e capacidade de canal para1 sin Conteúdo 1 Probabilidade de sinais contínuos

Leia mais

Processos Estocásticos e Cadeias de Markov Discretas

Processos Estocásticos e Cadeias de Markov Discretas Processos Estocásticos e Cadeias de Markov Discretas Processo Estocástico(I) Definição: Um processo estocástico é uma família de variáveis aleatórias {X(t) t T}, definidas em um espaço de probabilidades,

Leia mais

Par de Variáveis Aleatórias

Par de Variáveis Aleatórias Par de Variáveis Aleatórias Luis Henrique Assumpção Lolis 7 de abril de 2014 Luis Henrique Assumpção Lolis Par de Variáveis Aleatórias 1 Conteúdo 1 Introdução 2 Par de Variáveis Aleatórias Discretas 3

Leia mais

Prof. Walter Fetter Lages 4 de outubro de 2004

Prof. Walter Fetter Lages 4 de outubro de 2004 Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Elétrica Programa de Pós-Graduação em Engenharia Elétrica ELE7-Tópicos Especiais em Automação e Controle II Introdução

Leia mais

Aula 11. Variáveis Aleatórias Contínuas Bidimensionais

Aula 11. Variáveis Aleatórias Contínuas Bidimensionais Aula. Variáveis Aleatórias Contínuas Bidimensionais Resumo de caso unidimensional Caso Discreto p p 2 p 3 Caso Contínuo f(x) x x 2 x 3 i p i + f x dx X x x 2 x 3 P p p 2 p 3 Caso bidimensional Caso Discreto

Leia mais

Módulo III: Processos de Poisson, Gaussiano e Wiener

Módulo III: Processos de Poisson, Gaussiano e Wiener Módulo III: Processos de Poisson, Gaussiano e Wiener Wamberto J. L. Queiroz Universidade Federal de Campina Grande-UFCG Departamento de Engenharia Elétrica Processos Estocásticos Campina Grande - PB Módulo

Leia mais

MP-208: Filtragem Ótima com Aplicações Aeroespaciais

MP-208: Filtragem Ótima com Aplicações Aeroespaciais MP-208: Filtragem Ótima com Aplicações Aeroespaciais Seção 2.6: Vetores Aleatórios Davi Antônio dos Santos Departamento de Mecatrônica Instituto Tecnológico de Aeronáutica davists@ita.br São José dos Campos,

Leia mais

Segunda Lista de Exercícios Cálculo de Probabilidades II Prof. Michel H. Montoril

Segunda Lista de Exercícios Cálculo de Probabilidades II Prof. Michel H. Montoril Exercício 1. Uma urna contém 4 bolas numeradas: {1, 2, 2, 3}. Retira-se dessa urna duas bolas aleatoriamente e sem reposição. Sejam 1 : O número da primeira bola escolhida; 2 : O número da segunda bola

Leia mais

Econometria IV Modelos Lineares de Séries Temporais. Fernando Chague

Econometria IV Modelos Lineares de Séries Temporais. Fernando Chague Econometria IV Modelos Lineares de Séries Temporais Fernando Chague 2016 Estacionariedade Estacionariedade Inferência estatística em séries temporais requer alguma forma de estacionariedade dos dados Intuição:

Leia mais

M. Eisencraft 6.3 Funções de correlação 81. R YX (τ) R YY (τ). (6.19) R XY (τ) = R YX ( τ) (6.20)

M. Eisencraft 6.3 Funções de correlação 81. R YX (τ) R YY (τ). (6.19) R XY (τ) = R YX ( τ) (6.20) M. Eisencraft 6.3 Funções de correlação 81 R XY (τ) = E[X(t)Y(t+τ)] e (6.17) R YX (τ) = E[Y(t)X(t+τ)]. (6.18) As propriedades de correlação de dois processos X(t) e Y(t) podem ser mostradas convenientemente

Leia mais

Revisões de Matemática e Estatística

Revisões de Matemática e Estatística Revisões de Matemática e Estatística Joaquim J.S. Ramalho Contents 1 Operadores matemáticos 2 1.1 Somatório........................................ 2 1.2 Duplo somatório....................................

Leia mais

Processamento de Sinal e Imagem Engenharia Electrotécnica e de Computadores

Processamento de Sinal e Imagem Engenharia Electrotécnica e de Computadores António M Gonçalves Pinheiro Departamento de Física Covilhã - Portugal pinheiro@ubipt d[n] v[n] x[n] Filtro Estimador d[n] d[n] - Sinal v[n] - Ruído x[n] - Sinal corrompido com ruído ˆd[n] - Sinal Estimado

Leia mais

CURTA REVISÃO SOBRE PROBABILIDADE E PROCESSOS ESTOCÁSTICOS

CURTA REVISÃO SOBRE PROBABILIDADE E PROCESSOS ESTOCÁSTICOS CURTA REVISÃO SOBRE PROBABILIDADE E PROCESSOS ESTOCÁSTICOS PARTE i Histórico Probabilidade Axiomática de Kolmogorov Variáveis Aleatórias Densidade de Probabilidade Desigualdade de Chebyshev Versão Fraca

Leia mais

Introdução aos Proc. Estocásticos - ENG 430

Introdução aos Proc. Estocásticos - ENG 430 Introdução aos Proc. Estocásticos - ENG 430 Fabrício Simões IFBA 16 de novembro de 2015 Fabrício Simões (IFBA) Introdução aos Proc. Estocásticos - ENG 430 16 de novembro de 2015 1 / 34 1 Motivação 2 Conceitos

Leia mais

Variáveis Aleatórias. Esperança e Variância. Prof. Luiz Medeiros Departamento de Estatística - UFPB

Variáveis Aleatórias. Esperança e Variância. Prof. Luiz Medeiros Departamento de Estatística - UFPB Variáveis Aleatórias Esperança e Variância Prof. Luiz Medeiros Departamento de Estatística - UFPB ESPERANÇA E VARIÂNCIA Nos modelos matemáticos aleatórios parâmetros podem ser empregados para caracterizar

Leia mais

TP501 Processos Estocásticos

TP501 Processos Estocásticos P501 Processos Estocásticos Prof. Dr. Dayan Adionel Guimarães Motivação A natureza aleatória de muitos fenômenos observados em Engenharia se manifesta temporal ou espacialmente. Uma família de variáveis

Leia mais

Séries Temporais e Modelos Dinâmicos. Econometria. Marcelo C. Medeiros. Aula 2

Séries Temporais e Modelos Dinâmicos. Econometria. Marcelo C. Medeiros. Aula 2 em Econometria Departamento de Economia Pontifícia Universidade Católica do Rio de Janeiro Aula 2 O Modelo Estrutural Seja z t = (z 1t,...,z mt ) R m um vetor composto das variáveis de interesse. Considere

Leia mais

IV CARACTERIZAÇÃO DO CRM EM FAIXA LARGA

IV CARACTERIZAÇÃO DO CRM EM FAIXA LARGA IV CARACTERIZAÇÃO DO CRM EM FAIXA LARGA Ao se projetar um sistema de comunicação móvel não é suficiente que se empregue um dos modelos usuais de propagação existentes. É preciso que se refinem tais modelos,

Leia mais

Modelagem Estocástica e Quantificação de Incertezas

Modelagem Estocástica e Quantificação de Incertezas Modelagem Estocástica e Quantificação de Incertezas Rubens Sampaio rsampaio@puc-rio.br Roberta de Queiroz Lima robertalima@puc-rio.br Departamento de Engenharia Mecânica DINCON 2015 Organização do curso

Leia mais

Transmissão de impulsos em banda-base

Transmissão de impulsos em banda-base ransmissão de impulsos em banda-base ransmissão de impulsos através de um canal com ruído aditivo.3 O filtro adaptado e o correlacionador ransmissão de sinais em canais banda-base Introdução Consideremos

Leia mais

teoria de probabilidade e estatística, uma sequência de palavra série de tempo é usada alternativamente para

teoria de probabilidade e estatística, uma sequência de palavra série de tempo é usada alternativamente para Na teoria de probabilidade e estatística, uma sequência de variáveis aleatórias é independente e indenticamente distribuida (i.i.d) se cada variável aleatória tem a mesma distribuição de probabilidade

Leia mais

Estimação no Domínio do tempo: Covariâncias e modelos ARIMA

Estimação no Domínio do tempo: Covariâncias e modelos ARIMA Estimação no Domínio do tempo: Covariâncias e modelos ARIMA Airlane Pereira Alencar 8 de Março de 2019 Alencar, A.P., Rocha, F.M.M. (IME-USP) Processos Estocásticos 8 de Março de 2019 1 / 26 Índice 1 Estacionariedade

Leia mais

Variáveis Aleatórias Bidimensionais &Teoremas de Limite 1/22

Variáveis Aleatórias Bidimensionais &Teoremas de Limite 1/22 all Variáveis Aleatórias Bidimensionais & Teoremas de Limite Professores Eduardo Zambon e Magnos Martinello UFES Universidade Federal do Espírito Santo DI Departamento de Informática CEUNES Centro Universitário

Leia mais

Conceitos Básicos de Séries Temporais para Modelagem Macroeconômica

Conceitos Básicos de Séries Temporais para Modelagem Macroeconômica Conceitos Básicos de Séries Temporais para Modelagem Macroeconômica Material de apoio à aula de RBC Referencia bibliográfica: Introduction to Econometrics G S Maddala e Kajal Lahiri 4a. Edição, John Wiley

Leia mais

SÉRIES TEMPORAIS série temporal

SÉRIES TEMPORAIS série temporal SÉRIES TEMPORAIS Uma série temporal é uma sequência ordenada de observações ou parâmetros. Embora a ordenação dos dados seja normalmente através do tempo, ela também pode ser realizada através de outras

Leia mais

Noções de Processos Estocásticos e Cadeias de Markov

Noções de Processos Estocásticos e Cadeias de Markov Noções de Processos Estocásticos e Cadeias de Markov Processo Estocástico Definição: Processo Estocástico é uma coleção de variáveis aleatórias indexadas por um parâmetro t R (entendido como tempo). X={

Leia mais

Sinais e Sistemas Mecatrónicos

Sinais e Sistemas Mecatrónicos Sinais e Sistemas Mecatrónicos Sinais e Sistemas Sinais Contínuos no Tempo José Sá da Costa José Sá da Costa T2 - Sinais Contínuos 1 Sinais Sinal É uma função associada a um fenómeno (físico, químico,

Leia mais

2.3 Operações sobre uma variável aleatória - Esperança matemática

2.3 Operações sobre uma variável aleatória - Esperança matemática matemática 58 atingir a mosca dado que ele atingiu o alvo. Exercício 2.33. [3] Duas caixas tem bolas vermelhas, verdes e azuis dentro; a quantidade de cada uma é dada a seguir. Caixa 01-5 vermelhas; 35

Leia mais

CONHECIMENTOS ESPECÍFICOS

CONHECIMENTOS ESPECÍFICOS CONHECIMENTOS ESPECÍFICOS A distribuição dos tempos de permanência dos estudantes nos cursos de graduação de certa universidade é uma distribuição normal com média igual a 6 anos e desvio padrão igual

Leia mais

I. INTRODUÇÃO Generalidades

I. INTRODUÇÃO Generalidades 1 I. INTRODUÇÃO 1.1. Generalidades Qualquer sistema real opera sempre em ambientes onde a incerteza impera, principalmente quando o sistema envolve, pela sua natureza, ações humanas imprevisíveis ou desgaste

Leia mais

Cálculo II (Primitivas e Integral)

Cálculo II (Primitivas e Integral) Cálculo II (Primitivas e Integral) Antônio Calixto de Souza Filho Escola de Artes, Ciências e Humanidades Universidade de São Paulo 5 de março de 2013 1 Aplicações de Integrais subject Aplicações de Integrais

Leia mais

ME-310 Probabilidade II Lista 2

ME-310 Probabilidade II Lista 2 ME-3 Probabilidade II Lista 2. Uma máquina funciona enquanto pelo menos 3 das 5 turbinas funcionam. Se cada turbina funciona um tempo aleatório com densidade xe x, x >, independentemente das outras, calcule

Leia mais

Teoria da Probabilidade e Processos Estocásticos Mestrado em Matemática Financeira

Teoria da Probabilidade e Processos Estocásticos Mestrado em Matemática Financeira Teoria da Probabilidade e Processos Estocásticos Mestrado em Matemática Financeira 15 de Janeiro 013 Época Normal - horas Resolva os seguintes exercícios, justificando cuidadosamente as suas respostas.

Leia mais

TE802 Processos Estocásticos em Engenharia

TE802 Processos Estocásticos em Engenharia TE802 Processos Estocásticos em Engenharia Duas Variáveis Aleatórias 29 de agosto de 2017 Duas Variáveis Aleatórias Função Distribuição Acumulada Conjunta: F X,Y (x,y) = P[X x, Y y] Propriedades: (a) 0

Leia mais

FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CAMPUS

FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CAMPUS FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CAMPUS UNIVERSITÁRIO DE SINOP CURSO DE ENGENHARIA ELÉTRICA Princípios de Comunicações Slides 5 e 6 Milton Luiz Neri Pereira (UNEMAT/FACET/DEE) 1 2.1 Sinais Um

Leia mais

Eventos coletivamente exaustivos: A união dos eventos é o espaço amostral.

Eventos coletivamente exaustivos: A união dos eventos é o espaço amostral. DEFINIÇÕES ADICIONAIS: PROBABILIDADE Espaço amostral (Ω) é o conjunto de todos os possíveis resultados de um experimento. Evento é qualquer subconjunto do espaço amostral. Evento combinado: Possui duas

Leia mais

Séries Temporais e Modelos Dinâmicos. Econometria. Marcelo C. Medeiros. Aula 4

Séries Temporais e Modelos Dinâmicos. Econometria. Marcelo C. Medeiros. Aula 4 em Econometria Departamento de Economia Pontifícia Universidade Católica do Rio de Janeiro Aula 4 O Processo Média-Móvel Muitas vezes, a estrutura auto-regressiva não é suficiente para descrever totalmente

Leia mais

Catarina Marques. Estatística II Licenciatura em Gestão. Conceitos: População, Unidade Estatística e Amostra

Catarina Marques. Estatística II Licenciatura em Gestão. Conceitos: População, Unidade Estatística e Amostra Amostragem Estatística II Licenciatura em Gestão 1 Conceitos: População, Unidade Estatística e Amostra População (ou Universo) dimensão N Conjunto de unidades com uma ou mais características comuns População

Leia mais

Nome: N. o : f(u) du para todo o x (V) d) Se F (x) tiver pontos de descontinuidade, então X é discreta (F)

Nome: N. o : f(u) du para todo o x (V) d) Se F (x) tiver pontos de descontinuidade, então X é discreta (F) ESTATÍSTICA I 2. o Ano/Gestão 1. o Semestre Época Normal Duração: 2 horas 1. a Parte Teórica N. o de Exame: RESOLUÇÃO 09.01.2015 Este exame é composto por duas partes. Esta é a 1 a Parte Teórica (Cotação:

Leia mais

TE060 Princípios de Comunicação. Probabilidade. Probabilidade Condicional. Notes. Notes. Notes

TE060 Princípios de Comunicação. Probabilidade. Probabilidade Condicional. Notes. Notes. Notes TE060 Princípios de Comunicação Efeito do Ruído em Sistemas com Modulação de Onda Contínua 5 de novembro de 2013 Probabilidade Uma medida de probabilidade P é uma função que associa um número não negativo

Leia mais

O movimento Browniano

O movimento Browniano O movimento Browniano R. Vilela Mendes http://label2.ist.utl.pt/vilela/ March 2010 () March 2010 1 / 35 Sumário O movimento Browniano Propriedade Markoviana Probabilidade de transição. Medida de Wiener

Leia mais

Fundamentos da Teoria da Probabilidade

Fundamentos da Teoria da Probabilidade Fundamentos da Teoria da Probabilidade Edmar José do Nascimento (Princípios de Comunicações) http://www.univasf.edu.br/ edmar.nascimento Universidade Federal do Vale do São Francisco Sinais Aleatórios

Leia mais

Sinais e Sistemas. Sinais e Sistemas Fundamentos. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas

Sinais e Sistemas. Sinais e Sistemas Fundamentos. Renato Dourado Maia. Universidade Estadual de Montes Claros. Engenharia de Sistemas Sinais e Sistemas Sinais e Sistemas Fundamentos Renato Dourado Maia Universidade Estadual de Montes Claros Engenharia de Sistemas Classificação de Sinais Sinal de Tempo Contínuo: É definido para todo tempo

Leia mais

3 Definições. 3.1 Processos Estocásticos e Processo de Wiener

3 Definições. 3.1 Processos Estocásticos e Processo de Wiener 25 3 Definições 3.1 Processos Estocásticos e Processo de Wiener Um processo estocástico corresponde a uma variável que evolui no decorrer do tempo de forma incerta ou aleatória. O preço de uma ação negociada

Leia mais

Comunicações Digitais Prof. André Noll Barreto. Prova /1 (04/04/2017)

Comunicações Digitais Prof. André Noll Barreto. Prova /1 (04/04/2017) Prova 7/ (4/4/7) Aluno: Matrícula: Instruções A prova consiste de 4 (quatro) questões discursivas A prova terá a duração de h A prova pode ser feita a lápis ou caneta Não é permitida consulta a qualquer

Leia mais

MOQ-13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel

MOQ-13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel MOQ-13 PROBABILIDADE E ESTATÍSTICA Professor: Rodrigo A. Scarpel rodrigo@ita.br www.mec.ita.br/~rodrigo Programa do curso: Semanas 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 e 16 Introdução à probabilidade (eventos,

Leia mais

PROCESSOS ESTOCÁSTICOS

PROCESSOS ESTOCÁSTICOS PROCESSOS ESTOCÁSTICOS Definições, Principais Tipos, Aplicações em Confiabilidade de Sistemas CLARKE, A. B., DISNEY, R. L. Probabilidade e Processos Estocásticos, Rio de Janeiro: Livros Técnicos e Científicos

Leia mais

BIOESTATÍSTICA. Parte 3 Variáveis Aleatórias

BIOESTATÍSTICA. Parte 3 Variáveis Aleatórias BIOESTATÍSTICA Parte 3 Variáveis Aleatórias Aulas Teóricas de 29/03/2011 a 26/04/2011 3.1. Conceito de Variável Aleatória. Função de Distribuição Variáveis aleatórias Uma variável aleatória pode ser entendida

Leia mais

Teoria Ergódica (9 a aula)

Teoria Ergódica (9 a aula) Outubro 2012 Espaços de Sequências Seja (X, d 0 ) um espaço métrico compacto. B Z (X ) = X Z = { x = (x j ) j Z : x j X, j Z } B N (X ) = X N = { x = (x j ) j N : x j X, j N } B(X ) designa indiferentemente

Leia mais

Cálculo II (Primitivas e Integral)

Cálculo II (Primitivas e Integral) Cálculo II (Primitivas e Integral) Antônio Calixto de Souza Filho Escola de Artes, Ciências e Humanidades Universidade de São Paulo 19 de março de 2013 1 Aplicações de Integrais 2 subject Aplicações de

Leia mais

Probabilidade e Modelos Probabilísticos

Probabilidade e Modelos Probabilísticos Probabilidade e Modelos Probabilísticos 2ª Parte: modelos probabilísticos para variáveis aleatórias contínuas, modelo uniforme, modelo exponencial, modelo normal 1 Distribuição de Probabilidades A distribuição

Leia mais

Modelagem e Avaliação de Desempenho. Pós Graduação em Engenharia Elétrica - PPGEE Prof. Carlos Marcelo Pedroso 2014

Modelagem e Avaliação de Desempenho. Pós Graduação em Engenharia Elétrica - PPGEE Prof. Carlos Marcelo Pedroso 2014 Modelagem e Avaliação de Desempenho Pós Graduação em Engenharia Elétrica - PPGEE Prof. Carlos Marcelo Pedroso 2014 Análise de desempenho São disponíveis duas abordagens para realizar a análise de desempenho:

Leia mais

Probabilidade de Ruína e Processos de Lévy α-estáveis

Probabilidade de Ruína e Processos de Lévy α-estáveis Apresentação Probabilidade de Ruína e Processos de Lévy α-estáveis Universidade de São Paulo IME - USP 08 de abril, 2010 Apresentação Distribuições Estáveis e Processos de Lévy α-estáveis Convergência

Leia mais

DISTRIBUIÇÃO CONJUNTA (parte II)

DISTRIBUIÇÃO CONJUNTA (parte II) UFPE - Universidade Federal de Pernambuco Departamento de Estatística Disciplina: ET-406 Estatística Econômica Professor: Waldemar A. de Santa Cruz Oliveira Júnior DISTRIBUIÇÃO CONJUNTA (parte II) Variáveis

Leia mais

Análise Espectral de Processos Estocásticos

Análise Espectral de Processos Estocásticos Análise Espectral de Processos Estocásticos Airlane Pereira Alencar 21 de Março de 2019 Alencar, A.P. (IME-USP) Análise espectral 21 de Março de 2019 1 / 24 Índice 1 Objetivos 2 Pré-requisitos 3 Espectro

Leia mais

Modelos de Perturbações. As perturbações existentes num sistema impôem limitações fortes no desempenho dos sistemas de controlo.

Modelos de Perturbações. As perturbações existentes num sistema impôem limitações fortes no desempenho dos sistemas de controlo. 38 Modelos de Perturbações As perturbações existentes num sistema impôem limitações fortes no desempenho dos sistemas de controlo. Pertub. à entrada Pertub. internas Pertub. à saída u Sistema medição y

Leia mais

Análise de séries temporais. Prof. Thaís C O Fonseca DME - UFRJ

Análise de séries temporais. Prof. Thaís C O Fonseca DME - UFRJ Análise de séries temporais Prof. Thaís C O Fonseca DME - UFRJ Conteúdo do curso Parte 1: Problemas e objetivos, conceitos básicos, processos estocásticos, estacionariedade, autocorrelação e correlação

Leia mais

Vetor de Variáveis Aleatórias

Vetor de Variáveis Aleatórias Vetor de Variáveis Aleatórias Luis Henrique Assumpção Lolis 25 de junho de 2013 Luis Henrique Assumpção Lolis Vetor de Variáveis Aleatórias 1 Conteúdo 1 Vetor de Variáveis Aleatórias 2 Função de Várias

Leia mais

p.1/48 Eduardo Mendes Departamento de Engenharia Eletrônica Universidade Federal de Minas Gerais Av. Antônio Carlos 6627, Belo Horizonte, MG, Brasil

p.1/48 Eduardo Mendes Departamento de Engenharia Eletrônica Universidade Federal de Minas Gerais Av. Antônio Carlos 6627, Belo Horizonte, MG, Brasil p1/48 Capítulo 4 - Métodos ão Paramétricos Eduardo Mendes Departamento de Engenharia Eletrônica Universidade Federal de Minas Gerais Av Antônio Carlos 27, elo Horizonte, MG, rasil p2/48 Introdução Os métodos

Leia mais

Modelagem e Avaliação de Desempenho. Pós Graduação em Engenharia Elétrica - PPGEE Prof. Carlos Marcelo Pedroso 2017

Modelagem e Avaliação de Desempenho. Pós Graduação em Engenharia Elétrica - PPGEE Prof. Carlos Marcelo Pedroso 2017 Modelagem e Avaliação de Desempenho Pós Graduação em Engenharia Elétrica - PPGEE Prof. Carlos Marcelo Pedroso 2017 Análise de desempenho São disponíveis duas abordagens para realizar a análise de desempenho:

Leia mais