13 AULA. Regra da Cadeia e Derivação Implícita LIVRO. META Derivar funções compostas e funções definidas implicitamente.

Tamanho: px
Começar a partir da página:

Download "13 AULA. Regra da Cadeia e Derivação Implícita LIVRO. META Derivar funções compostas e funções definidas implicitamente."

Transcrição

1 1 LIVRO Regra da Cadeia e Derivação Implícita 13 AULA META Derivar funções compostas e funções definidas implicitamente. OBJETIVOS Estender os conceitos da regra da cadeia e da derivação implícita de funções de uma variável a valores reais. PRÉ-REQUISITOS Ter compreendido os conceitos limite, continuidade e derivadas de funções de uma variável a valores reais.

2 Regra da Cadeia e Derivação Implícita 13.1 Introdução 13.2 Regra da Cadeia Muitas vezes a função z = f(x, y) é dada sob a forma de função composta, em que os argumentos x, y são eles próprios funções de t x = φ 1 (t) y = φ 2 (t). Então, z = f(φ 1 (t), φ 2 (t)) e podemos, portanto, falar em diferenciabilidade relativamente a t. Figura 13.72: Função composta. Para derivarmos z em função de t temos o seguinte: Teorema Sejam x = φ 1 (t) e y = φ 2 (t) diferenciáveis em e z = f(x, y) diferenciável no ponto =(φ 1 ( ), φ 2 ( )). Então z(t) =f(φ 1 (t), φ 2 (t)) é diferenciável em e ainda = ( ) dφ1 + ( ) dφ2. Demonstração: Como z é diferenciável em, temos em particular que: Δz = ( ) Δx + ( ) Δy + αη 216

3 Livro de Cálculo II onde η 0 com α 0 e α = (Δx) 2 +(Δy) 2 sendo que Δx = φ 1 ( +) φ 1 ( ) e Δy = φ 2 ( +) φ 2 ( ). 13 AULA Logo, para 0 Δz = ( ) Δx + Observemos que ainda: Δx lim 0 = ( ) Δy ± η ( ) dφ1 Δy e lim t 0 0 = (Δx ) 2 + ( ) dφ2 0= [Δx 0 e Δy 0], ( ) Δy 2 (13.1) pois φ 1 e φ 2 sendo diferenciáveis em são contínuas em. Passando ao limite a expressão (13.1) com 0, temos ( ) dφ1 ( ) dφ2 = + [ (Δx ) 2 pois η 0 com 0 e ( ) ] Δy 2 L R com Exemplo Seja z = f(x, y) =e xy onde x = sen t e y = cos t. Calcule dz em t =. Solução: Temos que =(φ 1 ( ), φ 2 ( ))=(sen, cos ). Logo = ( ) dφ1 + ( ) dφ2, ou seja, = (y 0 e x 0y 0 ) (cos )+(x 0 e x 0y 0 ) ( sen ) = e sen cos (cos 2 sen 2 ). 217

4 Regra da Cadeia e Derivação Implícita É freqüente encontrar-se z = f(x, y) com y = y(x). Neste caso, z = f(x, y(x)) = z(x). Ainda Portanto, dz = +. dz = +. Exemplo Seja z = f(x, y) =x 2 + y 2. Considere a curva y = φ(x) =x 3 e calcule: (a) (1, 1) (b) dz (1) Solução: (a) Temos que =2x +2y =2x +6yx2. Logo (1, 1)= =8. (b) dz (1) = (1, 1) + (1, 1) (1)=8+1 3= Derivação de funções definidas implicitamente A Regra da Cadeia pode ser usada para uma descrição do processo de diferenciação implícita. Suponhamos que a equação da forma F (x, y) =0define y implicitamente como uma função diferenciável de x, ou seja, y = f(x), onde F (x, f(x))=0, para todo x no domínio de f. Se F é diferenciável, podemos usar a Regra da 218

5 Livro de Cálculo II Cadeira para diferenciar ambos os lados da equação F (x, y) =0 com relação a x. Como x e y são ambas funções de x, obtemos: 13 AULA + =0. No entanto, obtemos = 1; então, se 0, resolvemos para e =. (13.1) Para derivar essa equação assumimos que F (x, y) =0define y implicitamente em função de x. O próximo teorema nos fornece condições segundo as quais essa hipótese é válida. Teorema (Teorema da Função Implícita) Seja F : A R 2 onde A é um aberto e F é de classe C k, (k 1) em A. Se F se anula em =(x 0,y 0 ) A e () 0, então existe um intervalo aberto I contendo x 0 e um aberto B A, B com a seguinte propriedade: Para cada x I existe um único ξ(x) R tal que (x, ξ(x)) B e F (x, ξ(x)) = 0, ou seja, F (x, y) =0define y = ξ(x), implicitamente. Exemplo Mostre que existe um intervalo I contendo x 0 = 2, no qual está definida da função y = ξ(x) satisfazendo x 2 + xy + y 2 =7com ξ(2) = 1 e encontre. Solução: Definimos F (x, y) =x 2 + xy + y 2 7. Observemos que F é de classe C em R 2, F (2, 1) = 0 e (2, 1) =

6 Regra da Cadeia e Derivação Implícita Pelo Teorema anterior, existe um intervalo I contendo x 0 =2e uma função y = ξ(x), tais que: x 2 + xξ(x)+(ξ(x)) 2 =7, x I. Ainda: ξ(2)=1,ξé de classe C. Temos então que F (x, y) = 0 define y = ξ(x) implicitamente, logo, usando a fórmula 13.1, obtemos ξ (x) = = = 2x + y x +2y. Em particular, ξ (2) = 5 4. Suponhamos agora que z seja dado implicitamente como uma função z = f(x, y) por uma equação da forma F (x, y, z) =0. Isto é o mesmo que F (x, y, f(x, y)) = 0 para todo (x, y) no domínio de f. Se F e f forem diferenciáveis, utilizamos a Regra da Cadeia para diferenciar a equação F (x, y, z) =0como se segue: + + =0. Mas =1e =0portanto, essa equação se escreve + =0. Se 0, resolvendo para e obtemos: Analogamente, obtemos =. (13.2) =. (13.3) Novamente, uma versão do Teorema da Função Implícita nos dá as condições sob as quais nossa hipótese é válida. Se F 220

7 Livro de Cálculo II C k, (k 1) é definida em um aberto contendo =(x 0,y 0,z 0 ), onde F ( )=0e () 0, então a equação F (x, y, z) =0 define z como uma função de x e y perto do ponto, e as derivadas parciais dessa função são dadas pelas fórmulas (13.2) e (13.3). 13 AULA Exemplo Determine e se exyz = x 2 + y 2 + z 2. Solução: Seja F (x, y, z) =e xyz x 2 y 2 z 2. Então, das equações (13.2) e (13.3), temos = = = yzexyz 2x xye xyz 2z = xzexyz 2y xye xyz 2z Outra maneira: e Assim Temos (exyz )=e xyz ( (xyz) =exyz yz + xy ) ou seja, (x2 + y 2 + z 2 )=2x +2z. ( e xyz yz + xy ) =2x +2z, 2x yzexyz = xye xyz 2z em todo (x, y) D(f) com xye xyz 2z Resumo A Regra da Cadeia é dada pelo seguinte: 221

8 Regra da Cadeia e Derivação Implícita Teorema Sejam x = φ 1 (t) e y = φ 2 (t) diferenciáveis em e z = f(x, y) diferenciável no ponto =(φ 1 ( ), φ 2 ( )). Então z(t) =f(φ 1 (t), φ 2 (t)) é diferenciável em e ainda ( ) ( ) ( ) ( ) ( ) dz dz dφ1 dz dφ2 = +. A Regra da Cadeia pode ser usada para uma descrição do processo de diferenciação implícita. Suponhamos que a equação da forma F (x, y) =0define y implicitamente como uma função diferenciável de x, ou seja, y = f(x), onde F (x, f(x))=0, para todo x no domínio de f. Se F é diferenciável, podemos usar a Regra da Cadeira para diferenciar ambos os lados da equação F (x, y) =0 com relação a x. Como x e y são ambas funções de x, obtemos: No entanto, obtemos + =0. = 1; então, se =. 0, resolvemos para Para derivar essa equação assumimos que F (x, y) =0define y implicitamente em função de x. O próximo teorema nos fornece condições segundo as quais essa hipótese é válida. Teorema (Teorema da Função Implícita) Seja F : A R 2 onde A é um aberto e F é de classe C k, (k 1) em A. Se F se anula em =(x 0,y 0 ) A e () 0, então existe um intervalo aberto I contendo x 0 e um aberto B A, B com a seguinte propriedade: Para cada x I existe um único ξ(x) R tal que (x, ξ(x)) B e F (x, ξ(x)) = 0, ou seja, F (x, y) =0define y = ξ(x), implicitamente. e 222

9 Livro de Cálculo II 13.5 Atividades 01. Calcule dz : (a) z = sen xy, x =3t, e y = t 2. (a) z = ln(1 + x 2 + y 2 ),x= sen 3t, e y = cos 3t. 13 AULA 02. Seja f(x, y) =x 2 + y 2. Considere a curva y = φ(x) =x 3 e calcule: a) (1, 1); dz b) (1). 03. Seja g(t) =f(3t, 2t 2 1). (a) Expresse g (t) em termos das derivadas parciais de f. (b) Calcule g (0) admitindo f (0, 1) = Suponha que, para todo t, f(t 2, 2t) =t 3 3t. Mostre que f (1, 2) = f (1, 2). 05. Considerando a função F (x, y) =f ( ) x y, y. Mostre que x x + y f = A equação y 3 + xy + x 3 =4define implicitamente alguma função diferenciável y = y(x)? Em caso afirmativo, expresse em termos de x e y. (Sugestão: Observe que (0, 3 4) satisfaz a equação e utilize o teorema das funções implícitas para o caso F (x, y) =0) 07. Mostre que cada uma das equações seguintes define implicitamente pelo menos uma função diferenciável y = y(x). Expresse em termos de x e y. 223

10 Regra da Cadeia e Derivação Implícita (a) x 2 y + sen y = x (b) y 4 + x 2 y 2 + x 4 = Suponha que y = y(x) seja diferenciável e dada implicitamente pela equação x = F (x 2 + y, y 2 ), onde F (u, v) é suposta diferenciável. Expresse em termos de x, y e das derivadas parciais de F Comentário das Atividades Essas atividades, são referentes aos assuntos discutidos no decorrer desta aula e têm o objetivo de você (aluno) exercitar os conceitos aprendidos. Lembre-se, sempre, que existem tutores para ajuda-los na resolução dessas atividades Referências GUIDORIZZI, H. L., Um Curso de Cálculo (Vol. 1 e 2). Rio de Janeiro: LTC Editora, STEWART, J., Cálculo (vol. 1 e 2). São Paulo: Pioneira Thomson Learning, THOMAS, G. B., Cálculo (vol. 1 e 2). São Paulo: Addison Wesley,

14 AULA. Vetor Gradiente e as Derivadas Direcionais LIVRO

14 AULA. Vetor Gradiente e as Derivadas Direcionais LIVRO 1 LIVRO Vetor Gradiente e as Derivadas Direcionais 14 AULA META Definir o vetor gradiente de uma função de duas variáveis reais e interpretá-lo geometricamente. Além disso, estudaremos a derivada direcional

Leia mais

12 AULA. ciáveis LIVRO. META Estudar derivadas de funções de duas variáveis a valores reais.

12 AULA. ciáveis LIVRO. META Estudar derivadas de funções de duas variáveis a valores reais. 1 LIVRO Diferen- Funções ciáveis META Estudar derivadas de funções de duas variáveis a valores reais. OBJETIVOS Estender os conceitos de diferenciabilidade de funções de uma variável a valores reais. PRÉ-REQUISITOS

Leia mais

Derivadas Parciais Capítulo 14

Derivadas Parciais Capítulo 14 Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS 14.5 Regra da Cadeia Nesta seção, aprenderemos sobre: A Regra da Cadeia e sua aplicação em diferenciação. A REGRA DA CADEIA Lembremo-nos de que a Regra

Leia mais

Derivadas Parciais. Copyright Cengage Learning. Todos os direitos reservados.

Derivadas Parciais. Copyright Cengage Learning. Todos os direitos reservados. 14 Derivadas Parciais Copyright Cengage Learning. Todos os direitos reservados. 1 14.5 A Regra da Cadeia Copyright Cengage Learning. Todos os direitos reservados. A Regra da Cadeia Lembremo-nos de que

Leia mais

15 AULA. Máximos e Mínimos LIVRO. META Encontrar os pontos de máximo e mínimo de uma função de duas variáveis a valores reais.

15 AULA. Máximos e Mínimos LIVRO. META Encontrar os pontos de máximo e mínimo de uma função de duas variáveis a valores reais. 1 LIVRO Máximos e Mínimos 1 AULA META Encontrar os pontos de máximo e mínimo de uma função de duas variáveis a valores reais. OBJETIVOS Maximizar e/ou minimizar função de duas variáveis a valores reais.

Leia mais

A Derivada. Derivadas Aula 16. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

A Derivada. Derivadas Aula 16. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil Derivadas Aula 16 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 04 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014104 - Engenharia Mecânica A Derivada Seja x = f(t)

Leia mais

Total Escolha 5 (cinco) questões. Justifique todas as passagens. Boa Sorte!

Total Escolha 5 (cinco) questões. Justifique todas as passagens. Boa Sorte! ā Prova de MAT 147 - Cálculo II - FEA-USP 15/10/01 Nome : GABARITO N ō USP : Professor : Oswaldo Rio Branco de Oliveira Q 1 3 4 5 6 7 Total N Escolha 5 (cinco) questões. Justifique todas as passagens.

Leia mais

9 AULA. Curvas Espaciais LIVRO. META Estudar as curvas no espaço (R 3 ). OBJETIVOS Descrever o movimento de objetos no espaço.

9 AULA. Curvas Espaciais LIVRO. META Estudar as curvas no espaço (R 3 ). OBJETIVOS Descrever o movimento de objetos no espaço. 1 LIVRO Curvas Espaciais META Estudar as curvas no espaço (R 3 ). OBJETIVOS Descrever o movimento de objetos no espaço. PRÉ-REQUISITOS Funções vetoriais (Aula 08). Curvas Espaciais.1 Introdução Na aula

Leia mais

Cálculo Diferencial e Integral II

Cálculo Diferencial e Integral II Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral II Ficha de trabalho 1 (versão de 6/0/009 (Esboço de Conjuntos. Topologia. Limites. Continuidade

Leia mais

5 AULA. em Séries de Potências LIVRO. META Apresentar os principais métodos de representação de funções em séries de potências.

5 AULA. em Séries de Potências LIVRO. META Apresentar os principais métodos de representação de funções em séries de potências. LIVRO Métodos de Representação de Funções em Séries de AULA META Apresentar os principais métodos de representação de funções em séries de potências. OBJETIVOS Representar funções em séries de potências.

Leia mais

6 AULA. Equações Paramétricas LIVRO. META Estudar funções que a cada ponto do domínio associa um par ordenado

6 AULA. Equações Paramétricas LIVRO. META Estudar funções que a cada ponto do domínio associa um par ordenado 1 LIVRO Equações Paramétricas 6 AULA META Estudar funções que a cada ponto do domínio associa um par ordenado de R 2 OBJETIVOS Estudar movimentos de partículas no plano. PRÉ-REQUISITOS Ter compreendido

Leia mais

Derivadas direcionais Definição (Derivadas segundo um vector): f : Dom(f) R n R e P 0 int(dom(f)) então

Derivadas direcionais Definição (Derivadas segundo um vector): f : Dom(f) R n R e P 0 int(dom(f)) então Derivadas direcionais Definição (Derivadas segundo um vector): f : Dom(f) R n R e P 0 int(dom(f)) então Seja D v f(p 0 ) = lim λ 0 f(p 0 + λ v) f(p 0 ) λ v representa a derivada direcional de f segundo

Leia mais

Universidade Estadual de Montes Claros Departamento de Ciências Exatas Curso de Licenciatura em Matemática. Notas de Aulas de

Universidade Estadual de Montes Claros Departamento de Ciências Exatas Curso de Licenciatura em Matemática. Notas de Aulas de Universidade Estadual de Montes Claros Departamento de Ciências Exatas Curso de Licenciatura em Matemática Notas de Aulas de Cálculo Rosivaldo Antonio Gonçalves Notas de aulas que foram elaboradas para

Leia mais

Aulas n o 22: A Função Logaritmo Natural

Aulas n o 22: A Função Logaritmo Natural CÁLCULO I Aulas n o 22: A Função Logaritmo Natural Prof. Edilson Neri Júnior Prof. André Almeida 1 A Função Logaritmo Natural 2 Derivadas e Integral Propriedades dos Logaritmos 3 Gráfico Seja x > 0. Definimos

Leia mais

Resumo com exercícios resolvidos do assunto:

Resumo com exercícios resolvidos do assunto: www.engenhariafacil.weebly.com Resumo com exercícios resolvidos do assunto: (I) (II) (III) (IV) Derivadas Parciais; Plano Tangente; Diferenciabilidade; Regra da Cadeia. (I) Derivadas Parciais Uma derivada

Leia mais

Derivada - Parte 2 - Regras de derivação

Derivada - Parte 2 - Regras de derivação Derivada - Parte 2 - Wellington D. Previero previero@utfpr.edu.br http://paginapessoal.utfpr.edu.br/previero Universidade Tecnológica Federal do Paraná - UTFPR Câmpus Londrina Wellington D. Previero Derivada

Leia mais

Derivadas Parciais - parte 1. 1) Determine as derivadas parciais de primeira ordem da função.

Derivadas Parciais - parte 1. 1) Determine as derivadas parciais de primeira ordem da função. Terceira Lista de Exercícios Cálculo II - Engenharia de Produção ( extraída do livro C ÁLCULO - vol 2 James Stewart ) Derivadas Parciais - parte 1 1) Determine as derivadas parciais de primeira ordem da

Leia mais

Resumo: Regra da cadeia, caso geral

Resumo: Regra da cadeia, caso geral Resumo: Regra da cadeia, caso geral Teorema Suponha que u = u(x 1,..., x n ) seja uma função diferenciável de n variáveis x 1,... x n onde cada x i é uma função diferenciável de m variáveis t 1,..., t

Leia mais

Cálculo II. Derivadas Parciais

Cálculo II. Derivadas Parciais Cálculo II Derivadas Parciais (I) (II) Definição Se f é uma função de duas variáveis, suas derivadas parciais são as funções f x e f y definidas por f x ( x, y) lim h 0 f ( x h, y) f( x,

Leia mais

DERIVADAS PARCIAIS. y = lim

DERIVADAS PARCIAIS. y = lim DERIVADAS PARCIAIS Definição: Seja f uma função de duas variáveis, x e y (f: D R onde D R 2 ) e (x 0, y 0 ) é um ponto no domínio de f ((x 0, y 0 ) D). A derivada parcial de f em relação a x no ponto (x

Leia mais

7.3 Diferenciabilidade

7.3 Diferenciabilidade CAPÍTULO 7. INTRODUÇÃO À ANÁLISE EM RN 7.18 Estude quanto a continuidade a função f de R 2 com valores em R definida por: x 2, se x 2 + y 2 < 2y, f(x, y) = x, se x 2 + y 2 = 2y, y 2, se x 2 + y 2 > 2y.

Leia mais

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente.

Aula 15. Derivadas Direcionais e Vetor Gradiente. Quando u = (1, 0) ou u = (0, 1), obtemos as derivadas parciais em relação a x ou y, respectivamente. Aula 15 Derivadas Direcionais e Vetor Gradiente Seja f(x, y) uma função de variáveis. Iremos usar a notação D u f(x 0, y 0 ) para: Derivada direcional de f no ponto (x 0, y 0 ), na direção do vetor unitário

Leia mais

Derivadas Parciais. Sumário. 1 Funções de Várias Variáveis. Raimundo A. R. Rodrigues Jr. 1 de agosto de Funções de Duas Variáveis.

Derivadas Parciais. Sumário. 1 Funções de Várias Variáveis. Raimundo A. R. Rodrigues Jr. 1 de agosto de Funções de Duas Variáveis. Derivadas Parciais Raimundo A. R. Rodrigues Jr 1 de agosto de 2016 Sumário 1 Funções de Várias Variáveis 1 1.1 Funções de Duas Variáveis.............................. 1 1.2 Grácos........................................

Leia mais

4 o Roteiro de Atividades: reforço da segunda parte do curso de Cálculo II Instituto de Astronomia e Geofísica

4 o Roteiro de Atividades: reforço da segunda parte do curso de Cálculo II Instituto de Astronomia e Geofísica 4 o Roteiro de Atividades: reforço da segunda parte do curso de Cálculo II Instituto de Astronomia e Geofísica Objetivo do Roteiro Pesquisa e Atividades: Teoremas de diferenciabilidade de funções, Vetor

Leia mais

8 AULA. Funções com Valores Vetoriais LIVRO. META Estudar funções de uma variável real a valores em R 3

8 AULA. Funções com Valores Vetoriais LIVRO. META Estudar funções de uma variável real a valores em R 3 1 LIVRO Funções com Vlores Vetoriis 8 AULA META Estudr funções de um vriável rel vlores em R 3 OBJETIVOS Estudr movimentos de prtículs no espço. PRÉ-REQUISITOS Ter compreendido os conceitos de funções

Leia mais

Matemática Licenciatura - Semestre Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa. Diferenciabilidade.

Matemática Licenciatura - Semestre Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa. Diferenciabilidade. 1 Matemática Licenciatura - Semestre 2010.1 Curso: Cálculo Diferencial e Integral I Professor: Robson Sousa Diferenciabilidade Funções Trigonométricas Inicialmente, observe pela gura que para ângulos 0

Leia mais

5. Determine o conjunto dos pontos em que a função dada é diferenciável. Justifique.

5. Determine o conjunto dos pontos em que a função dada é diferenciável. Justifique. 4 ā Lista de Exercícios de SMA-332- Cálculo II 1. Mostre que as funções dadas são diferenciáveis. a) f(x, y) = xy b) f(x, y) = x + y c) f(x, y) = x 2 y 2 d) f(x, y) = 1 xy e) f(x, y) = 1 x + y f) f(x,

Leia mais

10 AULA. Funções de Varias Variáveis Reais a Valores LIVRO

10 AULA. Funções de Varias Variáveis Reais a Valores LIVRO 1 LIVRO Funções de Varias Variáveis Reais a Valores Reais META Estudar o domínio, o gráfico e as curvas de níveis de funções de duas variáveis a valores reais. OBJETIVOS Estender os conceitos de domínio

Leia mais

PROFESSOR: RICARDO SÁ EARP

PROFESSOR: RICARDO SÁ EARP LISTA DE EXERCÍCIOS SOBRE TRABALHO, CAMPOS CONSERVATIVOS, TEOREMA DE GREEN, FLUXO DE UM CAMPO AO LONGO DE UMA CURVA, DIVERGÊNCIA E ROTACIONAL DE UM CAMPO NO PLANO, FUNÇÕES HARMÔNICAS PROFESSOR: RICARDO

Leia mais

MAT Lista de exercícios

MAT Lista de exercícios 1 Curvas no R n 1. Esboce a imagem das seguintes curvas para t R a) γ(t) = (1, t) b) γ(t) = (t, cos(t)) c) γ(t) = (t, t ) d) γ(t) = (cos(t), sen(t), 2t) e) γ(t) = (t, 2t, 3t) f) γ(t) = ( 2 cos(t), 2sen(t))

Leia mais

Polinómio e série de Taylor

Polinómio e série de Taylor Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE MATEMÁTICA II - o Semestre 05/06 Exercícios Suplementares (Eng a Física Tecnológica, Matemática Aplicada e Computação

Leia mais

Cálculo a Várias Variáveis I - MAT Cronograma para P2: aulas teóricas (segundas e quartas)

Cálculo a Várias Variáveis I - MAT Cronograma para P2: aulas teóricas (segundas e quartas) Cálculo a Várias Variáveis I - MAT 116 0141 Cronograma para P: aulas teóricas (segundas e quartas) Aula 10 4 de março (segunda) Aula 11 6 de março (quarta) Referências: Cálculo Vol James Stewart Seções

Leia mais

y (n) (x) = dn y dx n(x) y (0) (x) = y(x).

y (n) (x) = dn y dx n(x) y (0) (x) = y(x). Capítulo 1 Introdução 1.1 Definições Denotaremos por I R um intervalo aberto ou uma reunião de intervalos abertos e y : I R uma função que possua todas as suas derivadas, a menos que seja indicado o contrário.

Leia mais

Derivadas Parciais. Copyright Cengage Learning. Todos os direitos reservados.

Derivadas Parciais. Copyright Cengage Learning. Todos os direitos reservados. 14 Derivadas Parciais Copyright Cengage Learning. Todos os direitos reservados. 14.4 Planos Tangentes e Aproximações Lineares Copyright Cengage Learning. Todos os direitos reservados. Planos Tangentes

Leia mais

1. Limite. lim. Ou seja, o limite é igual ao valor da função em x 0. Exemplos: 1.1) Calcule lim x 1 x 2 + 2

1. Limite. lim. Ou seja, o limite é igual ao valor da função em x 0. Exemplos: 1.1) Calcule lim x 1 x 2 + 2 1. Limite Definição: o limite de uma função f(x) quando seu argumento x tende a x0 é o valor L para o qual a função se aproxima quando x se aproxima de x0 (note que a função não precisa estar definida

Leia mais

3 AULA. Séries de Números Reais LIVRO. META Representar funções como somas de séries infinitas. OBJETIVOS Calcular somas de infinitos números reais.

3 AULA. Séries de Números Reais LIVRO. META Representar funções como somas de séries infinitas. OBJETIVOS Calcular somas de infinitos números reais. LIVRO Séries de Números Reais META Representar funções como somas de séries infinitas. OBJETIVOS Calcular somas de infinitos números reais. PRÉ-REQUISITOS Seqüências (Aula 02). Séries de Números Reais.

Leia mais

MAT 3210 Cálculo Diferencial e Integral II. Prova SUB B

MAT 3210 Cálculo Diferencial e Integral II. Prova SUB B MAT 3210 Cálculo Diferencial e Integral II Prof. Paolo Piccione 25 de Novembro de 2011 Prova SUB B Nome: Número USP: Assinatura: Instruções A duração da prova é de uma hora e quarenta minutos. Assinale

Leia mais

MAT 3210 Cálculo Diferencial e Integral II. Prova SUB C

MAT 3210 Cálculo Diferencial e Integral II. Prova SUB C MAT 3210 Cálculo Diferencial e Integral II Prof. Paolo Piccione 25 de Novembro de 2011 Prova SUB C Nome: Número USP: Assinatura: Instruções A duração da prova é de uma hora e quarenta minutos. Assinale

Leia mais

MAT 3210 Cálculo Diferencial e Integral II. Prova SUB D

MAT 3210 Cálculo Diferencial e Integral II. Prova SUB D MAT 3210 Cálculo Diferencial e Integral II Prof. Paolo Piccione 25 de Novembro de 2011 Prova SUB D Nome: Número USP: Assinatura: Instruções A duração da prova é de uma hora e quarenta minutos. Assinale

Leia mais

11.5 Derivada Direcional, Vetor Gradiente e Planos Tangentes

11.5 Derivada Direcional, Vetor Gradiente e Planos Tangentes 11.5 Derivada Direcional, Vetor Gradiente e Planos Tangentes Luiza Amalia Pinto Cantão Depto. de Engenharia Ambiental Universidade Estadual Paulista UNESP luiza@sorocaba.unesp.br Estudos Anteriores Derivadas

Leia mais

Lista 1 - Cálculo Numérico - Zeros de funções

Lista 1 - Cálculo Numérico - Zeros de funções Lista 1 - Cálculo Numérico - Zeros de funções 1.) De acordo com o teorema de Bolzano, se uma função contínua f(x) assume valores de sinais opostos nos pontos extremos do intervalo [a, b], isto é se f(a)

Leia mais

Cálculo Diferencial e Integral II Resolução do Exame/Teste de Recuperação 02 de Julho de 2018, 15:00h - versão 2 Duração: Exame (3h), Teste (1h30)

Cálculo Diferencial e Integral II Resolução do Exame/Teste de Recuperação 02 de Julho de 2018, 15:00h - versão 2 Duração: Exame (3h), Teste (1h30) Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Cálculo Diferencial e Integral II do Exame/Teste de Recuperação 2 de Julho de 218, 15:h - versão 2 Duração: Exame (3h),

Leia mais

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Instituto de Matemática PRIMEIRA PROVA UNIFICADA CÁLCULO I POLITÉCNICA E ENGENHARIA QUÍMICA 13/12/2012.

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Instituto de Matemática PRIMEIRA PROVA UNIFICADA CÁLCULO I POLITÉCNICA E ENGENHARIA QUÍMICA 13/12/2012. UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Instituto de Matemática PRIMEIRA PROVA UNIFICADA CÁLCULO I POLITÉCNICA E ENGENHARIA QUÍMICA 13/12/2012. GABARITO 1 a Questão. (3.0 pontos). (a) Calcule: lim x 0 +

Leia mais

Aula 15 Derivadas parciais de ordens superiores

Aula 15 Derivadas parciais de ordens superiores MÓDULO 1 AULA 15 Aula 15 Derivadas parciais de ordens superiores Objetivos Usar a Regra da Cadeia para calcular derivadas parciais de ordens superiores. Conhecer uma condição suficiente para a comutatividade

Leia mais

Instituto de Matemática - IM/UFRJ Cálculo I - MAC118 1 a Prova - Gabarito - 13/10/2016

Instituto de Matemática - IM/UFRJ Cálculo I - MAC118 1 a Prova - Gabarito - 13/10/2016 Instituto de Matemática - IM/UFRJ Cálculo I - MAC118 1 a Prova - Gabarito - 13/10/2016 Questão 1: (2 pontos) x (a) (0.4 ponto) Calcule o ite: 2 + 3 2. x 1 x 1 ( πx + 5 ) (b) (0.4 ponto) Calcule o ite:

Leia mais

CÁLCULO II Prof. Jerônimo Monteiro

CÁLCULO II Prof. Jerônimo Monteiro CÁLCULO II Pro. Jerônimo Monteiro Gabarito - Lista Semanal 08 Questão 1. Calcule 2 para (x, y, onde x = r cos θ e y = r sen θ. 2 Solução: Primeiro, calculamos pela regra da cadeia, como segue: = + = (

Leia mais

I. Derivadas Parciais, Diferenciabilidade e Plano Tangente

I. Derivadas Parciais, Diferenciabilidade e Plano Tangente 1. MAT - 0147 CÁLCULO DIFERENCIAL E INTEGRAL II PARA ECONOMIA a LISTA DE EXERCÍCIOS - 017 I. Derivadas Parciais, Diferenciabilidade e Plano Tangente 1) Calcule as derivadas parciais de primeira ordem das

Leia mais

Gabarito da Primeira Prova MAT Tipo A

Gabarito da Primeira Prova MAT Tipo A Gabarito da Primeira Prova MAT-2454 - Tipo A 10 de Outubro de 2011 -A- Questão 1. Apenas uma das funções f ou g abaixo admite plano tangente a seu gráfico no ponto P = 0,0,0): x 2 y fx,y) = x 2 +y2, se

Leia mais

A derivada (continuação) Aula 17

A derivada (continuação) Aula 17 A derivada (continuação) Aula 17 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 08 de Abril de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica Teorema

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia III 2a. Lista de Exercícios - 1o. semestre de 2014

MAT Cálculo Diferencial e Integral para Engenharia III 2a. Lista de Exercícios - 1o. semestre de 2014 MAT455 - Cálculo Diferencial e Integral para Engenharia III a. Lista de Exercícios - 1o. semestre de 014 1. Calcule as seguintes integrais de linha ao longo da curva indicada: x ds, (t) = (t 3, t), 0 t

Leia mais

Revisão : máximo, minimo em dimensão 1

Revisão : máximo, minimo em dimensão 1 Revisão : máximo, minimo em dimensão 1 ( de Rolle) Seja f uma função que satisfaça as seguintes hipóteses: 1 f é contínua no intervalo fechado [a, b], 2 f é diferenciável no intervalo aberto (a, b), 3

Leia mais

Ano INTRODUÇÃO E EXEMPLOS Professor Oswaldo Rio Branco de Oliveira

Ano INTRODUÇÃO E EXEMPLOS Professor Oswaldo Rio Branco de Oliveira Ano 2015-2018-2019 TRS TEOREMAS DAS FUNÇÕES IMPLÍCITAS - INTRODUÇÃO E EXEMPLOS Professor Oswaldo Rio Branco de Oliveira http://www.ime.usp.br/~oliveira oliveira@ime.usp.br 1. OTeoremaFundamentaldasFunçõesImpĺıcitas...2

Leia mais

MAT Cálculo Diferencial e Integral para Engenharia II 2 a Lista de Exercícios

MAT Cálculo Diferencial e Integral para Engenharia II 2 a Lista de Exercícios MAT2454 - Cálculo Diferencial e Integral para Engenharia II 2 a Lista de Exercícios - 2012 1. Ache as derivadas parciais de primeira ordem das funções: ( y (a) f(x, y) = arctg (b) f(x, y) = ln(1+cos x)

Leia mais

Aula 13. Plano Tangente e Aproximação Linear

Aula 13. Plano Tangente e Aproximação Linear Aula 13 Plano Tangente e Aproximação Linear Se fx) é uma função de uma variável, diferenciável no ponto x 0, então a equação da reta tangente à curva y = fx) no ponto x 0, fx 0 )) é dada por: y fx 0 )

Leia mais

Aula 14. Regra da cadeia

Aula 14. Regra da cadeia Aula 14 Regra da cadeia Lembremos da Regra da Cadeia para funções de uma variável Considere duas funções diferenciáveis, y = f(x) e x = g(t) A derivada da função composta f (g(t)) é calculada por meio

Leia mais

(*) livro Cálculo Diferencial e Integral de Funções de Várias Variáveis, de Diomara e Cândida

(*) livro Cálculo Diferencial e Integral de Funções de Várias Variáveis, de Diomara e Cândida Universidade Federal do Rio de Janeiro Instituto de Matemática Departamento de Matemática Lista de Cálculo II- Funções de Várias Variáveis (*) livro Cálculo Diferencial e Integral de Funções de Várias

Leia mais

Derivadas 1 DEFINIÇÃO. A derivada é a inclinação da reta tangente a um ponto de uma determinada curva, essa reta é obtida a partir de um limite.

Derivadas 1 DEFINIÇÃO. A derivada é a inclinação da reta tangente a um ponto de uma determinada curva, essa reta é obtida a partir de um limite. Derivadas 1 DEFINIÇÃO A partir das noções de limite, é possível chegarmos a uma definição importantíssima para o Cálculo, esta é a derivada. Por definição: A derivada é a inclinação da reta tangente a

Leia mais

Universidade Federal do Paraná

Universidade Federal do Paraná Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Matematica Prof. Juan Carlos Vila Bravo 1 ra Lista de exercicios de Cálculo Diferencial e Integral II FUNÇÕES DE VÁRIAS VARIÁVEIS

Leia mais

Cálculo 1 - Quinta Lista de Exercícios Derivadas

Cálculo 1 - Quinta Lista de Exercícios Derivadas Cálculo 1 - Quinta Lista de Exercícios Derivadas Prof. Fabio Silva Botelho November 2, 2017 1. Seja f : D = R\{ 7/5} R onde 1 5x+7. Seja x D. Utilizando a definição de derivada, calcule f (x). Calcule

Leia mais

MAT2453 Cálculo Diferencial e Integral I EPUSP

MAT2453 Cálculo Diferencial e Integral I EPUSP Primeira Prova 17/04/2017 Tipo de prova: 1. (1,2 pt) Dada f : R R, suponhamos que lim f(x) =. Então: x + a. f é decrescente. b. lim x + f(x2 ) = +. c. m 0, temos f(x) 0 se x m. d. lim f(x) = +. x e. Nenhuma

Leia mais

1 Diferenciabilidade e derivadas direcionais

1 Diferenciabilidade e derivadas direcionais UFPR - Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Matemática CM048 - Cálculo II - Matemática Diurno Prof. Zeca Eidam Nosso objetivo nestas notas é provar alguns resultados

Leia mais

MAT1153 / LISTA DE EXERCÍCIOS : CAMPOS CONSERVATIVOS, INTEGRAIS DE LINHA, TRABALHO E TEOREMA DE GREEN

MAT1153 / LISTA DE EXERCÍCIOS : CAMPOS CONSERVATIVOS, INTEGRAIS DE LINHA, TRABALHO E TEOREMA DE GREEN MAT1153 / 2008.1 LISTA DE EXERCÍCIOS : CAMPOS CONSERVATIVOS, INTEGRAIS DE LINHA, TRABALHO E TEOREMA DE GREEN OBS: Faça os exercícios sobre campos conservativos em primeiro lugar. (1 Fazer exercícios 1:(c,

Leia mais

Objetivo. Alguns exemplos. Derivar funções definidas implicitamente.

Objetivo. Alguns exemplos. Derivar funções definidas implicitamente. MÓDULO 1 AULA 12 Aula12 Funções implícitas Objetivo Derivar funções definidas implicitamente. Introdução As funções são o principal objeto de estudo nos cursos de Cálculo. Queremos saber se uma dada função

Leia mais

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos

ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS. Apresente e justifique todos os cálculos Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ANÁLISE COMPLEXA E EQUAÇÕES DIFERENCIAIS TESTES DE RECUPERAÇÃO A - 6 DE JUNHO DE 9 - DAS H ÀS :3H Teste Apresente e justifique

Leia mais

xy 2 (b) A função é contínua na origem? Justique sua resposta! (a) Calculando o limite pela reta y = mx:

xy 2 (b) A função é contínua na origem? Justique sua resposta! (a) Calculando o limite pela reta y = mx: NOME: UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Instituto de Matemática PRIMEIRA PROVA UNIFICADA CÁLCULO II Politécnica, Engenharia Química e Ciência da Computação 21/05/2013. 1 a QUESTÃO : Dada a função

Leia mais

Exercícios propostos para as aulas práticas

Exercícios propostos para as aulas práticas Análise Matemática III Engenharia Civil 2005/2006 Exercícios propostos para as aulas práticas Departamento de Matemática da Universidade de Coimbra Algumas noções topológicas em IR n 1 Verifique se cada

Leia mais

Justifique todas as passagens. f v (0,0) = f(0,0) v.

Justifique todas as passagens. f v (0,0) = f(0,0) v. 2 ā Prova de Cálculo II para Oceanográfico - MAT145 27/10/2010 Nome : GABARITO N ō USP : Professor : Oswaldo Rio Branco de Oliveira Justifique todas as passagens Q 1 2 3 4 5 6 7 Total N 1. Dê exemplos

Leia mais

Capítulo 1 Funções reais de uma variável 1.3 Derivadas de funções definidas implicitamente

Capítulo 1 Funções reais de uma variável 1.3 Derivadas de funções definidas implicitamente 11-1-13 1.3 Derivadas de funções definidas implicitamente Uma equação do tipo f(,y) = nem sempre permite obter eplicitamente y como função de. Por eemplo, y 1 y 1 não é uma função y 1 y 1 y 1 y 1 3 1.3

Leia mais

Capítulo 5 Integral. Definição Uma função será chamada de antiderivada ou de primitiva de uma função num intervalo I se: ( )= ( ), para todo I.

Capítulo 5 Integral. Definição Uma função será chamada de antiderivada ou de primitiva de uma função num intervalo I se: ( )= ( ), para todo I. Capítulo 5 Integral 1. Integral Indefinida Em estudos anteriores resolvemos o problema: Dada uma função, determinar a função derivada. Desejamos agora estudar o problema inverso: Dada uma função, determinar

Leia mais

O Teorema de Peano. f : D R n. uma função contínua. Vamos considerar o seguinte problema: Encontrar um intervalo I R e uma função ϕ : I R n tais que

O Teorema de Peano. f : D R n. uma função contínua. Vamos considerar o seguinte problema: Encontrar um intervalo I R e uma função ϕ : I R n tais que O Teorema de Peano Equações de primeira ordem Seja D um conjunto aberto de R R n, e seja f : D R n (t, x) f(t, x) uma função contínua. Vamos considerar o seguinte problema: Encontrar um intervalo I R e

Leia mais

CÁLCULO I Aula 08: Regra da Cadeia. Derivação Implícita. Derivada da Função Inversa.

CÁLCULO I Aula 08: Regra da Cadeia. Derivação Implícita. Derivada da Função Inversa. CÁLCULO I Aula 08: Regra da Cadeia.. Função Inversa. Prof. Edilson Neri Júnior Prof. André Almeida Universidade Federal do Pará 1 2 3 Teorema (Regra da Cadeia) Sejam g(y) e y = f (x) duas funções deriváveis,

Leia mais

Nome: Gabarito Data: 28/10/2015. Questão 01. Calcule a derivada da função f(x) = sen x pela definição e confirme o resultado

Nome: Gabarito Data: 28/10/2015. Questão 01. Calcule a derivada da função f(x) = sen x pela definição e confirme o resultado Fundação Universidade Federal de Pelotas Departamento de Matemática e Estatística Curso de Licenciatura em Matemática - Diurno Segunda Prova de Cálculo I Prof. Dr. Maurício Zan Nome: Gabarito Data: 8/0/05.

Leia mais

UNIVERSIDADE CATÓLICA DE GOIÀS Pro- Reitoria de Graduação PLANO DE ENSINO

UNIVERSIDADE CATÓLICA DE GOIÀS Pro- Reitoria de Graduação PLANO DE ENSINO UNIVERSIDADE CATÓLICA DE GOIÀS Pro- Reitoria de Graduação PLANO DE ENSINO DISCIPLINA Cálculo II CÓDIGO MAF-1072-A01 PROFESSOR CRISTIAN PATRICIO NOVOA BUSTOS CURSO Engenharia PERÍODO CRÉDITO CARGA HORÁRIA

Leia mais

Aula 6. Doravante iremos dizer que r(t) é uma parametrização da curva, e t é o parâmetro usado para descrever a curva.

Aula 6. Doravante iremos dizer que r(t) é uma parametrização da curva, e t é o parâmetro usado para descrever a curva. Curvas ou Funções Vetoriais: Aula 6 Exemplo 1. Círculo como coleção de vetores. Vetor posição de curva: r(t) = (cos t, sen t), t 2π r(t) pode ser vista como uma função vetorial: r : [, 2π] R R 2 Doravante

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I Cálculo Diferencial e Integral I Complementos ao texto de apoio às aulas. Amélia Bastos, António Bravo Julho 24 Introdução O texto apresentado tem por objectivo ser um complemento ao texto de apoio ao

Leia mais

a definição de derivada parcial como limite do que aplicar as regras de derivação.)

a definição de derivada parcial como limite do que aplicar as regras de derivação.) 2 a LISTA DE MAT 2454 - CÁLCULO II - POLI 2 o semestre de 2003. Ache as derivadas parciais de primeira ordem das funções : (a f(x, y = arctg y (b f(x, y, z, t = x y x z t 2. Seja f : IR IR uma função derivável.

Leia mais

TÉCNICAS DE DIFERENCIAÇÃO13

TÉCNICAS DE DIFERENCIAÇÃO13 TÉCNICAS DE DIFERENCIAÇÃO3 Gil da Costa Marques 3. Introdução 3. Derivada da soma ou da diferença de funções 3.3 Derivada do produto de funções 3.4 Derivada de uma função composta: a Regra da Cadeia 3.5

Leia mais

{ 1 se x é racional, 0 se x é irracional. cos(k!πx) = cos(mπ) = ±1. { 1 se x Ak

{ 1 se x é racional, 0 se x é irracional. cos(k!πx) = cos(mπ) = ±1. { 1 se x Ak Solução dos Exercícios Capítulo 0 Exercício 0.: Seja f k : [0, ] R a função definida por Mostre que f k (x) = lim j (cos k!πx)2j. { f k (x) = se x {/k!, 2/k!,..., }, 0 senão e que f k converge pontualmente

Leia mais

Fundação Universidade Federal de Pelotas Curso de Licenciatura em Matemática Disciplina de Análise II - Prof. Dr. Maurício Zahn Lista 01 de Exercícios

Fundação Universidade Federal de Pelotas Curso de Licenciatura em Matemática Disciplina de Análise II - Prof. Dr. Maurício Zahn Lista 01 de Exercícios Fundação Universidade Federal de Pelotas Curso de Licenciatura em Matemática Disciplina de Análise II - Prof Dr Maurício Zahn Lista 01 de Eercícios 1 Use a definição de derivada para calcular a derivada

Leia mais

Professor: Luiz Gonzaga Damasceno. Turma: Disciplina: Matemática II Avaliação: Lista Recuperação Data: 01/03.11.

Professor: Luiz Gonzaga Damasceno. Turma: Disciplina: Matemática II Avaliação: Lista Recuperação Data: 01/03.11. Data da Prova: 08..0 0) lim x+ x 8x+ 9 (B) (C) 9 (E) 0) lim x 5 x+5 x 5 0 (B) 0 (C) 0, 0, (E) 5 0) lim x x x (B) (C) / / (E) 0 0) lim x x x (B) 0,5 (C) - - 0,5 (E) 05) Calcule, se existir, o limite lim

Leia mais

1. FUNÇÕES REAIS DE VARIÁVEL REAL

1. FUNÇÕES REAIS DE VARIÁVEL REAL 1 1 FUNÇÕES REAIS DE VARIÁVEL REAL 11 Funções trigonométricas inversas 111 As funções arco-seno e arco-cosseno Como as funções seno e cosseno não são injectivas em IR, só poderemos definir as suas funções

Leia mais

Cálculo Diferencial e Integral 2: Aproximações Lineares. Regra da Cadeia.

Cálculo Diferencial e Integral 2: Aproximações Lineares. Regra da Cadeia. Aproximações lineares. Diferenciais. Cálculo Diferencial e Integral 2: Aproximações Lineares.. Jorge M. V. Capela Instituto de Química - UNESP Araraquara, SP capela@iq.unesp.br Araraquara, SP - 2017 Aproximações

Leia mais

1 A Equação Fundamental Áreas Primeiras definições Uma questão importante... 7

1 A Equação Fundamental Áreas Primeiras definições Uma questão importante... 7 Conteúdo 1 4 1.1- Áreas............................. 4 1.2 Primeiras definições...................... 6 1.3 - Uma questão importante.................. 7 1 EDA Aula 1 Objetivos Apresentar as equações diferenciais

Leia mais

UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 16. F (t 0 ) = f (g(t 0 )).g (t 0 ) F (t) = f (g(t)).g (t)

UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 16. F (t 0 ) = f (g(t 0 )).g (t 0 ) F (t) = f (g(t)).g (t) Assunto: Regra da cadeia UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 16 Palavras-chaves: derivada,derivadas parciais, função composta, regra da cadeia Regra da Cadeia Os teoremas que

Leia mais

Diferenciabilidade de funções reais de várias variáveis reais

Diferenciabilidade de funções reais de várias variáveis reais Diferenciabilidade de funções reais de várias variáveis reais Cálculo II Departamento de Matemática Universidade de Aveiro 2018-2019 Cálculo II 2018-2019 Diferenciabilidade de f.r.v.v.r. 1 / 1 Derivadas

Leia mais

8.1. Comprimento de Arco. Nesta seção, nós aprenderemos sobre: Comprimento de Arco e suas funções. MAIS APLICAÇÕES DE INTEGRAÇÃO

8.1. Comprimento de Arco. Nesta seção, nós aprenderemos sobre: Comprimento de Arco e suas funções. MAIS APLICAÇÕES DE INTEGRAÇÃO MAIS APLICAÇÕES DE INTEGRAÇÃO 8.1 Comprimento de Arco Nesta seção, nós aprenderemos sobre: Comprimento de Arco e suas funções. COMPRIMENTO DE ARCO Podemos pensar em colocar um pedaço de barbante sobre

Leia mais

Actividade Formativa 2

Actividade Formativa 2 Actividade Formativa 2 Resolução 1. Resolva as seguintes inequações, e interprete o resultado geometricamente: a. 3 7x 2. b. 4 5x > 3. c. x + 3 x 4. 3/7 3 7 2 7 3 7 + 2 7 = 1 7 = 5 7 Figura 1: Representação

Leia mais

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari MATEMÁTICA II Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari amanda.perticarrari@unesp.br DERIVADAS PARCIAIS DERIVADAS PARCIAIS Sejam z = f x, y uma função real de duas variáveis reais; x 0, y 0

Leia mais

MAT Cálculo II - FEA, Economia Calcule os seguintes limites, caso existam. Se não existirem, explique por quê: xy. (i) lim.

MAT Cálculo II - FEA, Economia Calcule os seguintes limites, caso existam. Se não existirem, explique por quê: xy. (i) lim. MAT0147 - Cálculo II - FEA, Economia - 2011 Prof. Gláucio Terra 2 a Lista de Exercícios 1. Calcule os seguintes limites, caso existam. Se não existirem, explique por quê: xy x 2 y (a) lim (f) lim (x,y)

Leia mais

LICENCIATURA EM ENGENHARIA CIVIL FOLHA 2

LICENCIATURA EM ENGENHARIA CIVIL FOLHA 2 UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA LICENCIATURA EM ENGENHARIA CIVIL REGIME DIURNO/NOCTURNO - o SEMESTRE - o ANO - 009/00 DISCIPLINA DE ANÁLISE MATEMÁTICA FOLHA. Das figuras abaio esboçadas

Leia mais

Derivadas Parciais Capítulo 14

Derivadas Parciais Capítulo 14 Derivadas Parciais Capítulo 14 DERIVADAS PARCIAIS 14.3 Derivadas Parciais Nesta seção, nós aprenderemos sobre: Os vários aspectos de derivadas parciais. INTRODUÇÃO Em um dia quente, a umidade muito alta

Leia mais

Lista de Exercícios Usando a definição de derivada lim h 0, determine a derivada das. a)f(x) = 3x + 2. b)f(x) = 1 4x 2.

Lista de Exercícios Usando a definição de derivada lim h 0, determine a derivada das. a)f(x) = 3x + 2. b)f(x) = 1 4x 2. EC239 - MATEMÁTICA Prof. Gustavo Ramos Sampaio Lista de Exercícios 2-2017.1 f(x+h) f(x) 8. Usando a definição de derivada lim h 0, determine a derivada das h seguintes funções: a)f(x) = 3x + 2 b)f(x) =

Leia mais

1) = 4 +8) =7 4 +8) 5 4) 8. Derivada da Função Composta (Regra da Cadeia)

1) = 4 +8) =7 4 +8) 5 4) 8. Derivada da Função Composta (Regra da Cadeia) 8. Derivada da Função Composta (Regra da Cadeia) Regra da Cadeia (primeira notação): Se e são funções diferenciáveis e = é a função composta definida por )=), então é diferenciável e é dada por )=) = ).

Leia mais

Cálculo Diferencial e Integral I

Cálculo Diferencial e Integral I 2 o Ficha B1 x 2 x se x > 0 x + 1 x arctg(x 2 ) x se x 0 i) Estude a função f do ponto de vista da continuidade. iii) O conjunto f([1, 2]) é limitado? Resolução. 1. i) Para x > 0 a função f é contínua

Leia mais

Aula 22 Derivadas Parciais - Diferencial - Matriz Jacobiana

Aula 22 Derivadas Parciais - Diferencial - Matriz Jacobiana Derivadas Parciais - Diferencial - Matriz Jacobiana MÓDULO 3 - AULA 22 Aula 22 Derivadas Parciais - Diferencial - Matriz Jacobiana Introdução Uma das técnicas do cálculo tem como base a idéia de aproximação

Leia mais

UNEMAT Universidade do Estado de Mato Grosso Campus Universitário de Sinop Faculdade de Ciências Exatas e Tecnológicas Curso de Engenharia Civil

UNEMAT Universidade do Estado de Mato Grosso Campus Universitário de Sinop Faculdade de Ciências Exatas e Tecnológicas Curso de Engenharia Civil PLANO DE ENSINO Disciplina: Cálculo Diferencial e Integral I C. H. 90 Créditos 6.0.0.0.0 Professor: Rogério Dias Dalla Riva Curso: Bacharelado em Engenharia Civil Semestre: 1 Período Letivo: 2015/1 1 EMENTA:

Leia mais

, ou seja, o ponto x 1

, ou seja, o ponto x 1 4 DERIVADAS, DIFERENCIAIS E SUAS APLICAÇÕES 4.1 Retas Tangentes e Taxas de Variação Muitos problemas de Cálculo envolvem a determinação da taxa de variação de uma função em determinado momento. Tais problemas

Leia mais

Prova de Conhecimentos Específicos 1 a QUESTÃO: (2,0 pontos)

Prova de Conhecimentos Específicos 1 a QUESTÃO: (2,0 pontos) Prova de Conhecimentos Específicos 1 a QUESTÃO: (,0 pontos) a) etermine números reais a 0, b, c, e d tais que o gráfico de f(x) ax + bx + cx + d tenha um ponto de inflexão em (1, ) e o coeficiente angular

Leia mais