Aula 03 Custos de um algoritmo e funções de complexidade

Tamanho: px
Começar a partir da página:

Download "Aula 03 Custos de um algoritmo e funções de complexidade"

Transcrição

1 BC1424 Algoritmos e Estruturas de Dados I Aula 03 Custos de um algoritmo e funções de complexidade Prof. Jesús P. Mena-Chalco 1Q

2 Custo de um algoritmo e funções de complexidade Introdução baseada nas aulas do Prof. Antonio A. F. Loureiro (UFMG) 2

3 Estrutura de dados Estrutura de dados e algoritmos estão intimamente ligados: Não se pode estudar ED sem considerar os algoritmos associados a elas; Asssim como a escolha dos algoritmos (em geral) depende da representação e da ED. 3

4 Medida do tempo de execução de um programa Algoritmos são encontrados em todas as áreas de Computação. O projeto de algoritmos é influenciado pelo estudo de seus comportamentos. Os algoritmos podem ser estudados considerandos, entre outros, dois aspectos: Tempo de execução. Espaço ocupado (quantidade de memória). 4

5 (1) Análise de um algoritmo particular Qual é o custo de usar um dado algoritmo para resolver um problema específico? Características que devem ser investigadas: Tempo de execução. Quantidade de memória. 5

6 (2) Análise de uma classe de algoritmos Qual é o algoritmo de menos custo possível para resolver um problema particular? Toda uma familia de algoritmos é investigada. Procura-se identificar um que seja o melhor possível. Colocam-se limites para a complexidade computacional dos algoritmos pertencentes à classe. 6

7 Custo de um algoritmo Se conseguirmos determinar o menor custo possível para resolver problemas de uma dada classe, então teremos a medida da dificuldade inerente para resolver o problema. 7

8 Custo de um algoritmo Se conseguirmos determinar o menor custo possível para resolver problemas de uma dada classe, então teremos a medida da dificuldade inerente para resolver o problema. Quando um algoritmo é igual ao menor custo possível, o algoritmo é ótimo para a medida de custo considerada. 8

9 Custo de um algoritmo Se conseguirmos determinar o menor custo possível para resolver problemas de uma dada classe, então teremos a medida da dificuldade inerente para resolver o problema. Quando um algoritmo é igual ao menor custo possível, o algoritmo é ótimo para a medida de custo considerada. Podem existir vários algoritmos para resolver um mesmo problema. 9

10 Custo de um algoritmo Se conseguirmos determinar o menor custo possível para resolver problemas de uma dada classe, então teremos a medida da dificuldade inerente para resolver o problema. Quando um algoritmo é igual ao menor custo possível, o algoritmo é ótimo para a medida de custo considerada. Podem existir vários algoritmos para resolver um mesmo problema. Se a mesma medida de custo é aplicada a diferentes algoritmos então é possível compará-los e escolher o mais adequado. 10

11 Fonte: 11

12 Medida de custo pela execução de um programa em uma plataforma real 12

13 (1) Medida de custo pela execução de um programa em uma plataforma real Tais medidas são bastante inadequadas e os resultados jamais devem ser generalizados: Os resultados são dependentes do compilador que pode favorecer algumas construções em detrimento de outras; Os resultados dependem de hardware; Quanto grandes quantidades de memória são utilizadas, as medidas de tempo podem depender deste aspecto. 13

14 (1) Medida de custo pela execução de um programa em uma plataforma real Tais medidas são bastante inadequadas e os resultados jamais devem ser generalizados: Os resultados são dependentes do compilador que pode favorecer algumas construções em detrimento de outras; Os resultados dependem de hardware; Quanto grandes quantidades de memória são utilizadas, as medidas de tempo podem depender deste aspecto. Apesar disso, há argumentos a favor de se obterem medidas reais de tempo: Exemplo: Quando há vários algoritmos distintos para resolver o problema; Assim, são considerados tanto os custos reais das operações como os custos não aparentes, tais como alocação de memória, indexação, carga, dentre outros. 14

15 Medida de custo por meio de um modelo matemático 15

16 (2) Medida de custo por meio de um modelo matemático 16

17 (2) Medida de custo por meio de um modelo matemático Usa um modelo matemático baseado em um computador idealizado. Deve ser especificado o conjunto de operações e seus custos de execuções. É mais usual ignorar o custo de algumas das operações e considerar apenas as mais significantes. Em algoritmos de ordenação: Consideramos o conjunto de comparações entre os elementos do conjunto a ser ordenado e ignoramos as operações aritméticas, de atribuição e manipulação de índices, caso existam. 17

18 Função de complexidade 18

19 Função de complexidade Para medir o custo de execução de um algoritmo, é comum definir uma função de custo ou função de complexidade f. 19

20 Função de complexidade Para medir o custo de execução de um algoritmo, é comum definir uma função de custo ou função de complexidade f. Função de complexidade de tempo: mede o tempo necessário para executar um algoritmo para um problema de tamanho n. Função de complexidade de espaço: mede a memória necessária para executar um algoritmo para um problema de tamanho n. 20

21 Função de complexidade Para medir o custo de execução de um algoritmo, é comum definir uma função de custo ou função de complexidade f. Função de complexidade de tempo: mede o tempo necessário para executar um algoritmo para um problema de tamanho n. Função de complexidade de espaço: mede a memória necessária para executar um algoritmo para um problema de tamanho n. Utilizaremos f para denotar uma função de complexidade de tempo daqui para frente. Na realidade, f não representa tempo diretamente, mas o número de vezes que determinada operação (considerada relevante) é realizada. 21

22 Exemplo: Maior elemento Considere o algoritmo para encontrar o maior elemento de um vetor de inteiros A[0...n-1], para n>=1 22

23 Exemplo: Maior elemento 23

24 Exemplo: Maior elemento Seja f uma função de complexidade tal que de comparações entre os elementos de A. é o número Logo: 24

25 Exemplo: Maior elemento 25

26 Tamanho da entrada de dados A medida do custo de execução de um algoritmo depende principalmente do tamanho de entrada dos dados. É comum considerar o tempo de execução de um programa como uma função do tamanho de entrada. 26

27 Tamanho da entrada de dados A medida do custo de execução de um algoritmo depende principalmente do tamanho de entrada dos dados. É comum considerar o tempo de execução de um programa como uma função do tamanho de entrada. No caso da função para determinar o máximo, o custo é unifome (n-1) sobre todos os problemas de tamanho n. Já para um algoritmos de ordenação isso não ocorre: se os dados de entrada estiverem quase ordenados, então o algoritmo pode ter que trabalhar menos. 27

28 Melhor caso, pior caso e caso médio Melhor caso: Menor tempo de execução sobre todas as entradas de tamanho n. Pior caso: Maior tempo de execução sobre todas as entradas de tamanho n. Caso médio (caso esperado): Média dos tempos de execução de todas as entradas de tamanho n. Aqui supoe-se uma distribuição de probabilidades sobre o conjunto de entradas de tamanho n. 28

29 Exemplo: Busca de um registro Considere o problema de acessar os registros de um arquivo (cada registro tem chave única). O problema: Dada uma chave qualquer, localize o registro que contenha esta chave Considere o algoritmo de busca sequencial. 29

30 Exemplo: Busca de um registro 30

31 Exemplo: Busca de um registro 31

32 Exemplo: Busca de um registro Seja f uma função de complexidade tal que f(n) é o número de registros consultados. Melhor caso: Quando o elemento procurado é o primeiro consultado 32

33 Exemplo: Busca de um registro Seja f uma função de complexidade tal que f(n) é o número de registros consultados. Melhor caso: Pior caso: Quando o elemento procurado é o primeiro consultado Quando o elemento procurado é o último consultado 33

34 Exemplo: Busca de um registro Seja f uma função de complexidade tal que f(n) é o número de registros consultados. Melhor caso: Quando o elemento procurado é o primeiro consultado Pior caso: Quando o elemento procurado é o último consultado Caso médio: 34

35 Exemplo: Busca de um registro (caso médio) Consideremos que toda pesquisa recupera um elemento. Para recuperar o i-ésimo elemento são necessárias i comparações. 35

36 Exemplo: Busca de um registro (caso médio) Consideremos que toda pesquisa recupera um elemento. Para recuperar o i-ésimo elemento são necessárias i comparações. Seja a probabilidade de que o i-ésimo elemento seja procurado: 36

37 Exemplo: Busca de um registro (caso médio) Consideremos que toda pesquisa recupera um elemento. Para recuperar o i-ésimo elemento são necessárias i comparações. Seja a probabilidade de que o i-ésimo elemento seja procurado: Se cada elemento tiver a mesma probabilidade de ser escolhido que todos os outros, então Uma pesquisa examina aproximadamente metade dos elementos 37

38 Maior e Menor elementos Consideremos diferentes versões para o maior e o menor elemento de um vetor de n inteiros, para n>=1. A:=

39 Maior e Menor elementos (versão 1) Identifique a função de complexidade f(n) para o vetor A de n elementos: - Melhor caso: - Pior caso: - Caso médio: 39

40 Maior e Menor elementos (versão 1) Identifique a função de complexidade f(n) para o vetor A de n elementos: - Melhor caso: - Pior caso: - Caso médio: 40

41 Maior e Menor elementos (versão 2) Identifique a função de complexidade f(n) para o vetor A de n elementos: - Melhor caso: - Pior caso: - Caso médio: 41

42 Maior e Menor elementos (versão 2) Identifique a função de complexidade f(n) para o vetor A de n elementos: - Melhor caso: Quando os elementos estão em ordem crescente. - Pior caso: - Caso médio: 42

43 Maior e Menor elementos (versão 2) Identifique a função de complexidade f(n) para o vetor A de n elementos: - Melhor caso: Quando os elementos estão em ordem crescente. - Pior caso: Quando os elementos estão em ordem decrescente. - Caso médio: 43

44 Maior e Menor elementos (versão 2) Identifique a função de complexidade f(n) para o vetor A de n elementos: - Melhor caso: Quando os elementos estão em ordem crescente. - Pior caso: Quando os elementos estão em ordem decrescente. - Caso médio: Quando metade das vezes max>=a[i] 44

45 Maior e Menor elementos (versão 3) A:=

46 Maior e Menor elementos (versão 3) A:= Min = 3 Max =

47 Maior e Menor elementos (versão 3) A:= Min = 3 Max = > Min = 3 Max = 60 47

48 Maior e Menor elementos (versão 3) A:= Min = 3 Max = > Min = 3 Max = 60 < 1 90 Min = -1 Max =

49 Maior e Menor elementos (versão 3) A:= Min = 3 Max = > Min = 3 Max = 60 < Min = -1 Max = Min = -2 Max = 90 49

50 Maior e Menor elementos (versão 3) A:= Min = 3 Max = > Min = 3 Max = 60 < 3 Min = -1 Max = Comparações = Min = -2 Max = 90 50

51 Versão 3 Identifique a função de complexidade f(n) para o vetor A de n elementos: - Melhor caso - Pior caso - Caso médio 51

52 Versão 3 1 comparação Identifique a função de complexidade f(n) para o vetor A de n elementos: - Melhor caso - Pior caso - Caso médio (n-2)/2comparações (n-2)/2 + (n-2/2) comparações 52

53 Versão 3 1 comparação Identifique a função de complexidade f(n) para o vetor A de n elementos: - Melhor caso - Pior caso - Caso médio (n-2)/2comparações (n-2)/2 + (n-2/2) comparações 53

54 Maior e Menor elementos Introdução baseada nas aulas do Prof. Antonio A. F. Loureiro (UFMG) 54

55 Maior e Menor elementos f(n) maxmin1 maxmin2 maxmin n Melhor caso 55

56 Funções de complexidade Não existe algoritmo que identifique o maior e o menor elemento de um vetor de n elementos com uma função menor a: 56

57 Comportamento assintótico de funções A análise de algoritmos é realizada para valores grandes de n. Estudaremos o comportamento assintótico das funções de custo. O comportamento assintótico de f(n) representa o limite do comportamento de custo, quando n cresce. 57

58 Dominação assintótica Definição: Uma função f(n) domina assintoticamente uma outra função g(n) se existem duas constantes positivas c e tais que, para, temos: 58

59 Dominação assintótica Definição: Uma função f(n) domina assintoticamente uma outra função g(n) se existem duas constantes positivas c e tais que, para, temos: 59

60 Dominação assintótica Exemplo: Sejam Ambas as funções dominam assintoticamente uma da outra, ja que: para n>=1 para n>=0 60

61 Notação assintótica de funções Existem 3 notações assintóticas de funções: Notação Notação Notação 61

62 Notação g(n) é um limite assintótico firme de f(n) 62

63 Notação f(n) é da ordem no máximo g(n) O é usada para expressar o tempo de execução de um algoritmo no pior caso, está se definindo também o limite (superior) do tempo de execução desse algoritmo para todas as entradas. 63

64 Notação Operações entre conjuntos de funções 64

65 Notação Omega: Define um limite inferior para a função, por um fator constante. g(n) é um limite assintoticamente inferior 65

66 Teorema 66

67 Comparação de programas Podemos avaliar programas comparando as funções de complexidade, negligenciando as constantes de proporcionalidade. Um programa com tempo de execução que outro com tempo é melhor do 67

68 Comparação de programas Programa 1 Programa 2 Exemplo: O programa1 leva O programa2 leva vezes para ser executado. vezes para ser executa. Qual dos dois é o melhor? Depende do tamanho do problema. 68

69 Comparação de programas Programa 1 Programa 2 Exemplo: O programa1 leva O programa2 leva vezes para ser executado. vezes para ser executa. Qual dos dois é o melhor? Depende do tamanho do problema. Para n<50, o programa 2 é melhor Para n>50, o programa 1 é melhor 69

70 Comparação de programas 70

71 Comparação de funções de complexidade 71

72 Hierarquias de funções A seguinte herarquia de funções pode ser definida do ponto de vista assintótico: onde e são constantes arbitrárias com 72

BCC202 - Estrutura de Dados I

BCC202 - Estrutura de Dados I BCC202 - Estrutura de Dados I Aula 04: Análise de Algoritmos (Parte 1) Reinaldo Fortes Universidade Federal de Ouro Preto, UFOP Departamento de Ciência da Computação, DECOM Website: www.decom.ufop.br/reifortes

Leia mais

BC1424 Algoritmos e Estruturas de Dados I Aula 05 Custos de um algoritmo e funções de complexidade

BC1424 Algoritmos e Estruturas de Dados I Aula 05 Custos de um algoritmo e funções de complexidade BC1424 Algoritmos e Estruturas de Dados I Aula 05 Custos de um algoritmo e funções de complexidade Prof. Jesús P. Mena-Chalco 1Q-2016 1 1995 2015 2 Custo de um algoritmo e funções de complexidade Introdução

Leia mais

Universidade Federal de Mato Grosso do Sul Faculdade de Computação Disciplina de Verão: Algoritmos e Programação II

Universidade Federal de Mato Grosso do Sul Faculdade de Computação Disciplina de Verão: Algoritmos e Programação II Universidade Federal de Mato Grosso do Sul Faculdade de Computação Disciplina de Verão: Algoritmos e Programação II Professores: Liana Duenha 10 de março de 2014 Professores: Liana Duenha () Universidade

Leia mais

Aula 01 Introdução Custo de um algoritmo, Funções de complexidad e Recursão

Aula 01 Introdução Custo de um algoritmo, Funções de complexidad e Recursão MC3305 Algoritmos e Estruturas de Dados II Aula 01 Introdução Custo de um algoritmo, Funções de complexidad e Recursão Prof. Jesús P. Mena-Chalco jesus.mena@ufabc.edu.br 2Q-2015 1 Custo de um algoritmo

Leia mais

EFICIÊNCIA DE ALGORITMOS E

EFICIÊNCIA DE ALGORITMOS E AULA 2 EFICIÊNCIA DE ALGORITMOS E PROGRAMAS Medir a eficiência de um algoritmo ou programa significa tentar predizer os recursos necessários para seu funcionamento. O recurso que temos mais interesse neste

Leia mais

Medida do Tempo de Execução de um Programa. Bruno Hott Algoritmos e Estruturas de Dados I DECSI UFOP

Medida do Tempo de Execução de um Programa. Bruno Hott Algoritmos e Estruturas de Dados I DECSI UFOP Medida do Tempo de Execução de um Programa Bruno Hott Algoritmos e Estruturas de Dados I DECSI UFOP Medida do Tempo de Execução de um Programa O projeto de algoritmos é fortemente influenciado pelo estudo

Leia mais

Análise de complexidade

Análise de complexidade Introdução Algoritmo: sequência de instruções necessárias para a resolução de um problema bem formulado (passíveis de implementação em computador) Estratégia: especificar (definir propriedades) arquitectura

Leia mais

Aula 02: Custos de um algoritmo e funções de complexidade

Aula 02: Custos de um algoritmo e funções de complexidade MCTA028 Programação Estruturada Aula 02: Custos de um algoritmo e funções de complexidade Prof. Jesús P. Mena-Chalco jesus.mena@ufabc.edu.br 3Q-20106 1 Linguagem C: Tipos de dados 2 Linguagem C: Tipos

Leia mais

Sistemas Distribuídos: Princípios e Algoritmos Introdução à Análise de Complexidade de Algoritmos

Sistemas Distribuídos: Princípios e Algoritmos Introdução à Análise de Complexidade de Algoritmos Sistemas Distribuídos: Princípios e Algoritmos Introdução à Análise de Complexidade de Algoritmos Francisco José da Silva e Silva Laboratório de Sistemas Distribuídos (LSD) Departamento de Informática

Leia mais

Análise de Algoritmos

Análise de Algoritmos Análise de Algoritmos Parte 1 Prof. Túlio Toffolo http://www.toffolo.com.br BCC202 Aula 04 Algoritmos e Estruturas de Dados I Qual a diferença entre um algoritmo e um programa? Como escolher o algoritmo

Leia mais

OTIMIZAÇÃO VETORIAL. Formulação do Problema

OTIMIZAÇÃO VETORIAL. Formulação do Problema OTIMIZAÇÃO VETORIAL Formulação do Problema Otimização Multiobjetivo (também chamada otimização multicritério ou otimização vetorial) pode ser definida como o problema de encontrar: um vetor de variáveis

Leia mais

Aula 03 Limite assintótico para a ordenação, Ordenação em tempo linear

Aula 03 Limite assintótico para a ordenação, Ordenação em tempo linear MC3305 Algoritmos e Estruturas de Dados II Aula 03 Limite assintótico para a ordenação, Ordenação em tempo linear Prof. Jesús P. Mena-Chalco jesus.mena@ufabc.edu.br 2Q-2015 1 2 Ordenação Ordenar corresponde

Leia mais

INE5403 - Fundamentos de Matemática Discreta para a Computação

INE5403 - Fundamentos de Matemática Discreta para a Computação INE5403 - Fundamentos de Matemática Discreta para a Computação 2) Fundamentos 2.1) Conjuntos e Sub-conjuntos 2.2) Números Inteiros 2.3) Funções 2.4) Seqüências e Somas 2.5) Crescimento de Funções Divisão

Leia mais

Complexidade de Algoritmos. Edson Prestes

Complexidade de Algoritmos. Edson Prestes Edson Prestes Um problema pode ser resolvido através de diversos algoritmos; O fato de um algoritmo resolver um dado problema não significa que seja aceitável na prática. Na maioria das vezes, a escolha

Leia mais

As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem:

As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem: 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia. Introdução O Cálculo Numérico

Leia mais

CI165 Introdução. André Vignatti. 31 de julho de 2014

CI165 Introdução. André Vignatti. 31 de julho de 2014 Introdução 31 de julho de 2014 Antes de mais nada... Os slides de 6 aulas (introdução, insertion sort, mergesort, quicksort, recorrências e limitantes de ordenação) foram originalmente feitos pelos Profs.

Leia mais

Complexidade de algoritmos Notação Big-O

Complexidade de algoritmos Notação Big-O Complexidade de algoritmos Notação Big-O Prof. Byron Leite Prof. Tiago Massoni Engenharia da Computação Poli - UPE Motivação O projeto de algoritmos é influenciado pelo estudo de seus comportamentos Problema

Leia mais

Pesquisa Sequencial e Binária. Introdução à Programação SI2

Pesquisa Sequencial e Binária. Introdução à Programação SI2 Pesquisa Sequencial e Binária Introdução à Programação SI2 3 Contexto Diferentes estratégias para pesquisa (busca) de um elemento específico em um conjunto de dados. Lista, array, coleção Operação importante,

Leia mais

Universidade Federal de Alfenas

Universidade Federal de Alfenas Universidade Federal de Alfenas Projeto e Análise de Algoritmos Aula 04 Introdução a Análise de Algoritmos humberto@bcc.unifal-mg.edu.br Última aula Fundamentos de Matemática Exercícios: Somatórios; Logaritmos

Leia mais

IME, UFF Dezembro de 2013

IME, UFF Dezembro de 2013 IME, UFF Dezembro de 2013 Sumário Problemas n, ω, 2ω, Z, ω 2, Q, R David (1862-1943) Longe, muito longe, em um ponto infinitamente distante no universo, existe um lugar onde as pessoas convivem com o infinito

Leia mais

Estrutura de Dados Básica

Estrutura de Dados Básica Estrutura de Dados Básica Professor: Osvaldo Kotaro Takai. Aula 7: Recursividade O objetivo desta aula é apresentar o conceito de recursão para solução de problemas. A recursão é uma técnica de programação

Leia mais

Algoritmo e Programação

Algoritmo e Programação Algoritmo e Programação Professor: José Valentim dos Santos Filho Colegiado: Engenharia da Computação Prof.: José Valentim dos Santos Filho 1 Ementa Noções básicas de algoritmo; Construções básicas: operadores,

Leia mais

Árvores Binárias de Busca

Árvores Binárias de Busca Árvores Binárias de Busca Uma Árvore Binária de Busca T (ABB) ou Árvore Binária de Pesquisa é tal que ou T = 0 e a árvore é dita vazia ou seu nó contém uma chave e: 1. Todas as chaves da sub-árvore esquerda

Leia mais

LP II Estrutura de Dados. Introdução e Linguagem C. Prof. José Honorato F. Nunes honorato.nunes@ifbaiano.bonfim.edu.br

LP II Estrutura de Dados. Introdução e Linguagem C. Prof. José Honorato F. Nunes honorato.nunes@ifbaiano.bonfim.edu.br LP II Estrutura de Dados Introdução e Linguagem C Prof. José Honorato F. Nunes honorato.nunes@ifbaiano.bonfim.edu.br Resumo da aula Considerações Gerais Introdução a Linguagem C Variáveis e C Tipos de

Leia mais

AMBIENTE PARA AUXILIAR O DESENVOLVIMENTO DE PROGRAMAS MONOLÍTICOS

AMBIENTE PARA AUXILIAR O DESENVOLVIMENTO DE PROGRAMAS MONOLÍTICOS UNIVERSIDADE REGIONAL DE BLUMENAU CENTRO DE CIÊNCIAS EXATAS E NATURAIS CURSO DE CIÊNCIAS DA COMPUTAÇÃO BACHARELADO AMBIENTE PARA AUXILIAR O DESENVOLVIMENTO DE PROGRAMAS MONOLÍTICOS Orientando: Oliver Mário

Leia mais

Aula 04 Ordenação parcial

Aula 04 Ordenação parcial MC3305 Algoritmos e Estruturas de Dados II Aula 04 Ordenação parcial Prof. Jesús P. Mena-Chalco jesus.mena@ufabc.edu.br 2Q-2015 1 Ordenação Limite assintótico para algoritmos de ordenação baseadas em comparações

Leia mais

Programação II. Aula 2

Programação II. Aula 2 Programação II Aula 2 Introdução Para que serve programação? Resolver algum problema computacionalmente. Desenvolver um programa de computador (solução) cuja execução leve a um resultado (aceitável) de

Leia mais

Notas de aula número 1: Otimização *

Notas de aula número 1: Otimização * UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL UFRGS DEPARTAMENTO DE ECONOMIA CURSO DE CIÊNCIAS ECONÔMICAS DISCIPLINA: TEORIA MICROECONÔMICA II Primeiro Semestre/2001 Professor: Sabino da Silva Porto Júnior

Leia mais

ECO039 Linguagens Formais

ECO039 Linguagens Formais Prof a.dra.thatyana de Faria Piola Seraphim Universidade Federal de Itajubá thatyana@unifei.edu.br Introdução ˆ As três principais áreas da teoria da computação (Autômatos, Computabilidade e Complexidade)

Leia mais

Sobre o Professor Dr. Sylvio Barbon Junior

Sobre o Professor Dr. Sylvio Barbon Junior 5COP096 Teoria da Computação Aula 1 Apresentação da Disciplina e Revisão de Conceitos Prof. Dr. Sylvio Barbon Junior 1 Sobre o Professor Dr. Sylvio Barbon Junior 5COP096 Teoria da Computação Formação:

Leia mais

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE ENGENHARIA ELÉTRICA COLEGIADO DO CURSO DE GRADUAÇÃO EM ENGENHARIA ELÉTRICA/ENG.

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE ENGENHARIA ELÉTRICA COLEGIADO DO CURSO DE GRADUAÇÃO EM ENGENHARIA ELÉTRICA/ENG. UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE ENGENHARIA ELÉTRICA COLEGIADO DO CURSO DE GRADUAÇÃO EM ENGENHARIA ELÉTRICA/ENG. COMPUTAÇÃO PLANO DE CURSO DISCIPLINA: MÉTODOS E TÉCNICAS DE PROGRAMAÇÃO CÓDIGO:

Leia mais

CAPÍTULO 3 - TIPOS DE DADOS E IDENTIFICADORES

CAPÍTULO 3 - TIPOS DE DADOS E IDENTIFICADORES CAPÍTULO 3 - TIPOS DE DADOS E IDENTIFICADORES 3.1 - IDENTIFICADORES Os objetos que usamos no nosso algoritmo são uma representação simbólica de um valor de dado. Assim, quando executamos a seguinte instrução:

Leia mais

ESTRUTURAS DE DADOS II

ESTRUTURAS DE DADOS II ESTRUTURAS DE DADOS II Msc. Daniele Carvalho Oliveira Doutoranda em Ciência da Computação - UFU Mestre em Ciência da Computação UFU Bacharel em Ciência da Computação - UFJF Conteúdo Programático 1. Introdução

Leia mais

ESCOLA E.B. 2,3 D. AFONSO III. Planificação da disciplina de Matemática - CEF - 2º Ano Ano letivo de 2014/2015

ESCOLA E.B. 2,3 D. AFONSO III. Planificação da disciplina de Matemática - CEF - 2º Ano Ano letivo de 2014/2015 CONTEÚDOS PROGRAMÁTICOS Planificação da disciplina de Matemática - CEF - 2º Ano Ano letivo de 2014/2015 COMPETÊNCIAS OBJECTIVOS CONCEITOS METEDOLOGIAS /SITUAÇÕES DE APREDIZAGEM AULAS PREVISTAS Módulo 11

Leia mais

Algoritmos ANÁLISE DE COMPLEXIDADE. Origem do vocábulo algoritmo. O papel de algoritmos em computação. Antonio Alfredo Ferreira Loureiro

Algoritmos ANÁLISE DE COMPLEXIDADE. Origem do vocábulo algoritmo. O papel de algoritmos em computação. Antonio Alfredo Ferreira Loureiro UFMG/ICEX/DCC PROJETO E ANÁLISE DE ALGORITMOS Algoritmos ANÁLISE DE COMPLEXIDADE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO 1 SEMESTRE DE 2007 Os algoritmos fazem parte do dia-a-dia das pessoas. Exemplos de

Leia mais

computador-cálculo numérico perfeita. As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem:

computador-cálculo numérico perfeita. As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem: 1 UNIVERSIDADE FEDERAL DE VIÇOSA Departamento de Matemática - CCE Cálculo Numérico - MAT 271 Prof.: Valéria Mattos da Rosa As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia

Leia mais

Projeto e Análise de Algoritmos. Profa. Juliana Kaizer Vizzotto. Projeto e Análise de Algoritmos - Aula 1

Projeto e Análise de Algoritmos. Profa. Juliana Kaizer Vizzotto. Projeto e Análise de Algoritmos - Aula 1 Projeto e Análise de Algoritmos Profa. Juliana Kaizer Vizzotto Projeto e Análise de Algoritmos - Aula 1 Roteiro Introdução Exemplo: ordenação Introdução Análise de Algoritmos Estudo teórico da performance

Leia mais

FACULDADE CAMPO LIMPO PAULISTA MESTRADO EM CIÊNCIA DA COMPUTAÇÃO. Projeto e Análise de Algoritmos II Lista de Exercícios 2

FACULDADE CAMPO LIMPO PAULISTA MESTRADO EM CIÊNCIA DA COMPUTAÇÃO. Projeto e Análise de Algoritmos II Lista de Exercícios 2 FACULDADE CAMPO LIMPO PAULISTA MESTRADO EM CIÊNCIA DA COMPUTAÇÃO Projeto e Análise de Algoritmos II Lista de Exercícios 2 Prof. Osvaldo. 1. Desenvolva algoritmos para as operações abaixo e calcule a complexidade

Leia mais

Estruturas de Dados. Prof. Gustavo Willam Pereira Créditos: Profa. Juliana Pinheiro Campos

Estruturas de Dados. Prof. Gustavo Willam Pereira Créditos: Profa. Juliana Pinheiro Campos Estruturas de Dados Prof. Gustavo Willam Pereira Créditos: Profa. Juliana Pinheiro Campos Árvores Conceitos Árvores binárias Árvores binárias de pesquisa Árvores binárias balanceadas Árvores ESTRUTURAS

Leia mais

BC1424 Algoritmos e Estruturas de Dados I. Aula 16: Árvores (introdução) Prof. Jesús P. Mena-Chalco. jesus.mena@ufabc.edu.br

BC1424 Algoritmos e Estruturas de Dados I. Aula 16: Árvores (introdução) Prof. Jesús P. Mena-Chalco. jesus.mena@ufabc.edu.br BC1424 Algoritmos e Estruturas de Dados I Aula 16: Árvores (introdução) Prof. Jesús P. Mena-Chalco jesus.mena@ufabc.edu.br 1Q-2015 1 2 Árvores Uma árvore é uma estrutura de dados mais geral que uma lista

Leia mais

Métodos de Pesquisa em Memória Primária

Métodos de Pesquisa em Memória Primária Algoritmos e Estrutura de Dados II Métodos de Pesquisa em Memória Primária Prof Márcio Bueno ed2tarde@marciobueno.com / ed2noite@marciobueno.com Pesquisa Por pesquisa (procura ou busca) entende-se o ato

Leia mais

ARQUITETURA DE COMPUTADORES

ARQUITETURA DE COMPUTADORES ARQUITETURA DE COMPUTADORES Aula 02: Conceitos Básicos Conceitos Básicos Conceitos fundamentais: dado, informação e processamento de dados Conceitos de algoritmo, algoritmo ótimo, hardware. Software e

Leia mais

Programas simples em C

Programas simples em C Programas simples em C Problema 1. Escreve um programa em C que dados dois inteiros indique se são iguais ou qual o maior. Utilizar a construção em 5 etapas... quais? 1. Perceber o problema 2. Ideia da

Leia mais

Deadlocks. Prof. Marcos Ribeiro Quinet de Andrade Universidade Federal Fluminense - UFF Pólo Universitário de Rio das Ostras - PURO

Deadlocks. Prof. Marcos Ribeiro Quinet de Andrade Universidade Federal Fluminense - UFF Pólo Universitário de Rio das Ostras - PURO Prof. Marcos Ribeiro Quinet de Andrade Universidade Federal Fluminense - UFF Pólo Universitário de Rio das Ostras - PURO Dispositivos e recursos são compartilhados a todo momento: impressora, disco, arquivos,

Leia mais

Programação Elementar de Computadores Jurandy Soares

Programação Elementar de Computadores Jurandy Soares Programação Elementar de Computadores Jurandy Soares Básico de Computadores Computador: dispositivos físicos + programas Dispositivos físicos: hardware Programas: as instruções que dizem aos dispositivos

Leia mais

Notas da Aula 17 - Fundamentos de Sistemas Operacionais

Notas da Aula 17 - Fundamentos de Sistemas Operacionais Notas da Aula 17 - Fundamentos de Sistemas Operacionais 1. Gerenciamento de Memória: Introdução O gerenciamento de memória é provavelmente a tarefa mais complexa de um sistema operacional multiprogramado.

Leia mais

Pesquisa em Memória Primária. Prof. Jonas Potros

Pesquisa em Memória Primária. Prof. Jonas Potros Pesquisa em Memória Primária Prof. Jonas Potros Pesquisa em Memoria Primária Estudo de como recuperar informação a partir de uma grande massa de informação previamente armazenada. A informação é dividida

Leia mais

Capítulo 3. Avaliação de Desempenho. 3.1 Definição de Desempenho

Capítulo 3. Avaliação de Desempenho. 3.1 Definição de Desempenho 20 Capítulo 3 Avaliação de Desempenho Este capítulo aborda como medir, informar e documentar aspectos relativos ao desempenho de um computador. Além disso, descreve os principais fatores que influenciam

Leia mais

Aula 9. Introdução à Computação. ADS IFBA www.ifba.edu.br/professores/antoniocarlos

Aula 9. Introdução à Computação. ADS IFBA www.ifba.edu.br/professores/antoniocarlos Aula 9 Introdução à Computação Ponto Flutuante Ponto Flutuante Precisamos de uma maneira para representar Números com frações, por exemplo, 3,1416 Números muito pequenos, por exemplo, 0,00000001 Números

Leia mais

Complemento IV Introdução aos Algoritmos Genéticos

Complemento IV Introdução aos Algoritmos Genéticos Complemento IV Introdução aos Algoritmos Genéticos Esse documento é parte integrante do material fornecido pela WEB para a 2ª edição do livro Data Mining: Conceitos, técnicas, algoritmos, orientações e

Leia mais

Jogo de balanceamento de carga

Jogo de balanceamento de carga Jogo de balanceamento de carga Dados: n tarefas m máquinas w i : peso da tarefa i s j : velocidade da máquina j Teoria dos Jogos p. 1 Jogo de balanceamento de carga Dados: n tarefas m máquinas w i : peso

Leia mais

Lógica Matemática e Computacional 5 FUNÇÃO

Lógica Matemática e Computacional 5 FUNÇÃO 5 FUNÇÃO 5.1 Introdução O conceito de função fundamenta o tratamento científico de problemas porque descreve e formaliza a relação estabelecida entre as grandezas que o integram. O rigor da linguagem e

Leia mais

O texto desta seção foi publicado em http://msdn.microsoft.com/ptbr/library/ms177433.aspx. o http://msdn.microsoft.com/pt-br/library/ms178104.

O texto desta seção foi publicado em http://msdn.microsoft.com/ptbr/library/ms177433.aspx. o http://msdn.microsoft.com/pt-br/library/ms178104. AULA 12 - Deadlocks Em alguns casos pode ocorrer a seguinte situação: um processo solicita um determinado recurso e este não está disponível no momento. Quando isso ocontece o processo entra para o estado

Leia mais

4.1. Introdução. 4.2. Layout do DNS

4.1. Introdução. 4.2. Layout do DNS MIT 18.996 Tópico da Teoria da Ciência da Computação: Problemas de Pesquisa na Internet Segundo Trimestre 2002 Aula 4 27de fevereiro de 2002 Palestrantes: T. Leighton, D. Shaw, R. Sudaran Redatores: K.

Leia mais

Organização de Arquivos

Organização de Arquivos Classificação e Pesquisa de Dados Aula 2 Organização de s: s Sequenciais e s Sequenciais Indexados UFRGS INF01124 Organização de s Propósito Estudo de técnicas de armazenamento e recuperação de dados em

Leia mais

Armazenamento e Recuperação da Informação

Armazenamento e Recuperação da Informação Coleção UAB UFSCar Sistemas de Informação Organização e Recuperação da Informação Jander Moreira Armazenamento e Recuperação da Informação Armazenamento e Recuperação da Informação Reitor Targino de Araújo

Leia mais

Aula 4 Pseudocódigo Tipos de Dados, Expressões e Variáveis

Aula 4 Pseudocódigo Tipos de Dados, Expressões e Variáveis 1. TIPOS DE DADOS Todo o trabalho realizado por um computador é baseado na manipulação das informações contidas em sua memória. Estas informações podem ser classificadas em dois tipos: As instruções, que

Leia mais

MC102 Algoritmos e Programação de Computadores

MC102 Algoritmos e Programação de Computadores MC102 Algoritmos e Programação de Computadores Instituto de Computação UNICAMP Primeiro Semestre de 2015 Roteiro 1 Fundamentos de análise de algoritmos 2 Cálculo da função de custo 3 Exercícios Instituto

Leia mais

Recursividade. Túlio Toffolo tulio@toffolo.com.br www.toffolo.com.br. BCC202 Aula 08 Algoritmos e Estruturas de Dados I

Recursividade. Túlio Toffolo tulio@toffolo.com.br www.toffolo.com.br. BCC202 Aula 08 Algoritmos e Estruturas de Dados I Recursividade Túlio Toffolo tulio@toffolo.com.br www.toffolo.com.br BCC202 Aula 08 Algoritmos e Estruturas de Dados I Outros Exemplos de Recursividade Factais são outros exemplos de recursividade Quando

Leia mais

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 02. Prof. Dr. Marco Antonio Leonel Caetano

MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação. Aula 02. Prof. Dr. Marco Antonio Leonel Caetano MESTRADO EM MACROECONOMIA e FINANÇAS Disciplina de Computação Aula 02 Prof. Dr. Marco Antonio Leonel Caetano 1 Guia de Estudo para Aula 02 Comandos de Repetição - O Comando FOR - O comando IF com o comando

Leia mais

Linguagem de Programação I

Linguagem de Programação I Linguagem de Programação I Carlos Eduardo Batista Centro de Informática - UFPB bidu@ci.ufpb.br Complexidade dos sistemas de software Estrutura Decomposição Abstração Hierarquia Projeto de sistemas complexos

Leia mais

Unidade 5 Armazenamento e Indexação

Unidade 5 Armazenamento e Indexação Unidade 5 Armazenamento e Indexação Engenharia de Computação / Engenharia de Produção Banco de Dados Prof. Maria das Graças da Silva Teixeira Material base: Banco de Dados, 2009.2, prof. Otacílio José

Leia mais

¹CPTL/UFMS, Três Lagoas, MS,Brasil, oliveiralimarafael@hotmail.com. ²CPTL/UFMS, Três Lagoas, MS, Brasil.

¹CPTL/UFMS, Três Lagoas, MS,Brasil, oliveiralimarafael@hotmail.com. ²CPTL/UFMS, Três Lagoas, MS, Brasil. Encontro de Ensino, Pesquisa e Extensão, Presidente Prudente, 22 a 25 de outubro, 2012 36 INTRODUÇÃO A CRIPTOGRAFIA RSA Rafael Lima Oliveira¹, Prof. Dr. Fernando Pereira de Souza². ¹CPTL/UFMS, Três Lagoas,

Leia mais

FAT32 ou NTFS, qual o melhor?

FAT32 ou NTFS, qual o melhor? FAT32 ou NTFS, qual o melhor? Entenda quais as principais diferenças entre eles e qual a melhor escolha O que é um sistema de arquivos? O conceito mais importante sobre este assunto, sem sombra de dúvidas,

Leia mais

Pesquisa Sequencial e Binária

Pesquisa Sequencial e Binária Pesquisa Sequencial e Binária Prof. Wylliams Barbosa Santos wylliamss@gmail.com Introdução à Programação Crédito de Conteúdo: Professora Ceça Moraes Agenda Pesquisa Sequencial Noções de complexidade Pesquisa

Leia mais

TABELA DE EQUIVALÊNCIA FECOMP Curso de Engenharia de Computação

TABELA DE EQUIVALÊNCIA FECOMP Curso de Engenharia de Computação TABELA DE EQUIVALÊNCIA FECOMP Curso de Engenharia de Computação Disciplina A Disciplina B Código Disciplina C/H Curso Disciplina C/H Código Curso Ano do Currículo 66303 ESTRUTURA DE DADOS I 68/0 ENG. DE

Leia mais

Introdução à Programação

Introdução à Programação Introdução à Programação Introdução a Linguagem C Construções Básicas Programa em C #include int main ( ) { Palavras Reservadas } float celsius ; float farenheit ; celsius = 30; farenheit = 9.0/5

Leia mais

Tabela de Símbolos. Análise Semântica A Tabela de Símbolos. Principais Operações. Estrutura da Tabela de Símbolos. Declarações 11/6/2008

Tabela de Símbolos. Análise Semântica A Tabela de Símbolos. Principais Operações. Estrutura da Tabela de Símbolos. Declarações 11/6/2008 Tabela de Símbolos Análise Semântica A Tabela de Símbolos Fabiano Baldo Após a árvore de derivação, a tabela de símbolos é o principal atributo herdado em um compilador. É possível, mas não necessário,

Leia mais

UNIVERSIDADE PRESBITERIANA MACKENZIE FACULDADE DE COMPUTAÇÃO E INFORMÁTICA

UNIVERSIDADE PRESBITERIANA MACKENZIE FACULDADE DE COMPUTAÇÃO E INFORMÁTICA EDITAL DO PROGRAMA DE CERTIFICAÇÕES EM COMPUTAÇÃO MACK COMPUTING CERTIFICATION MCC 2º SEMESTRE DE 2014 O Diretor da Faculdade de Computação e Informática (FCI), no uso de suas atribuições estatutárias

Leia mais

Algoritmo. Linguagem natural: o Ambígua o Imprecisa o Incompleta. Pseudocódigo: o Portugol (livro texto) o Visualg (linguagem) Fluxograma

Algoritmo. Linguagem natural: o Ambígua o Imprecisa o Incompleta. Pseudocódigo: o Portugol (livro texto) o Visualg (linguagem) Fluxograma Roteiro: Conceitos básicos de algoritmo, linguagem, processador de linguagem e ambiente de programação; Aspectos fundamentais da organização e do funcionamento de um computador; Construções básicas de

Leia mais

Noções básicas de Informática: Software

Noções básicas de Informática: Software Universidade Federal do Rio Grande do Norte Departamento de Engenharia de Computação e Automação Noções básicas de Informática: Software DCA0800 - Algoritmos e Lógica de Programação Heitor Medeiros 1 Sobre

Leia mais

Exercícios Teóricos Resolvidos

Exercícios Teóricos Resolvidos Universidade Federal de Minas Gerais Instituto de Ciências Exatas Departamento de Matemática Exercícios Teóricos Resolvidos O propósito deste texto é tentar mostrar aos alunos várias maneiras de raciocinar

Leia mais

Arquitetura de Computadores I

Arquitetura de Computadores I Arquitetura de Computadores I Pipeline Edson Moreno edson.moreno@pucrs.br http://www.inf.pucrs.br/~emoreno Organização do MIPS: pipeline Visão geral do pipeline Analogia com uma Lavanderia doméstica 1

Leia mais

IME, UFF Julho de 2013

IME, UFF Julho de 2013 IME, UFF Julho de 2013 Sumário. Problemas n, ω, 2ω, Z, ω 2, Q, R. David (1862-1943) Longe, muito longe, em um ponto infinitamente distante no universo, existe um lugar onde as pessoas convivem com o infinito.

Leia mais

Somatórias e produtórias

Somatórias e produtórias Capítulo 8 Somatórias e produtórias 8. Introdução Muitas quantidades importantes em matemática são definidas como a soma de uma quantidade variável de parcelas também variáveis, por exemplo a soma + +

Leia mais

ESTRUTURAS DE INFORMAÇÃO E ANÁLISE DE ALGORITMOS

ESTRUTURAS DE INFORMAÇÃO E ANÁLISE DE ALGORITMOS ESTRUTURAS DE INFORMAÇÃO E ANÁLISE DE ALGORITMOS Estrutura de informação é uma maneira sistemática de organizar e aceder a dados e algoritmo é um procedimento passo a passo para realizar uma tarefa num

Leia mais

Aula 13 Técnicas de Integração

Aula 13 Técnicas de Integração Aula 13 Técnicas de Integração Objetivos da Aula Estudar técnicas especiais de integração: integração por substituição e por partes, mostrando que estes processos são ferramentas poderosas para facilitar

Leia mais

CONSTRUÇÃO DE GRÁFICOS DE FUNÇÕES UTILIZANDO CÁLCULO DIFERENCIAL

CONSTRUÇÃO DE GRÁFICOS DE FUNÇÕES UTILIZANDO CÁLCULO DIFERENCIAL CONSTRUÇÃO DE GRÁFICOS DE FUNÇÕES UTILIZANDO CÁLCULO DIFERENCIAL FERREIRA, Eliézer Pires Universidade Estadual de Goiás - UnU Iporá eliezer_3d@hotmail.com SOUZA, Uender Barbosa de Universidade Estadual

Leia mais

ESTRUTURA DE DADOS PILHA

ESTRUTURA DE DADOS PILHA ESTRUTURA DE DADOS PILHA CONCEITO DE PILHAS - Pilhas são listas lineares onde a inserção de um novo item ou a remoção de um item já existente se dá em uma única extremidade, no topo. Pilha vazia Insere(A)

Leia mais

Algoritmos e Linguagem de Programação I

Algoritmos e Linguagem de Programação I Algoritmos e Linguagem de Programação I Roberto Ferreira roberto.ferreira@lapa.ifbaiano.edu.br 2014.1 Módulo I Aula 4 Introdução ao C Linguagem de Programação É um conjunto de regras sintáticas e semânticas

Leia mais

RECUPERAÇÃO DE DOCUMENTOS TEXTO USANDO MODELOS PROBABILISTICOS ESTENDIDOS

RECUPERAÇÃO DE DOCUMENTOS TEXTO USANDO MODELOS PROBABILISTICOS ESTENDIDOS ISBN 978-85-61091-05-7 Encontro Internacional de Produção Científica Cesumar 27 a 30 de outubro de 2009 RECUPERAÇÃO DE DOCUMENTOS TEXTO USANDO MODELOS PROBABILISTICOS ESTENDIDOS Marcello Erick Bonfim 1

Leia mais

Notas da Aula 4 - Fundamentos de Sistemas Operacionais

Notas da Aula 4 - Fundamentos de Sistemas Operacionais Notas da Aula 4 - Fundamentos de Sistemas Operacionais 1. Threads Threads são linhas de execução dentro de um processo. Quando um processo é criado, ele tem uma única linha de execução, ou thread. Esta

Leia mais

Software Matemático para aplicação da Teoria dos Conjuntos

Software Matemático para aplicação da Teoria dos Conjuntos Software Matemático para aplicação da Teoria dos Conjuntos Ana Paula Cavalheiro Oliveira (man05103@feg.unesp.br) Diego Teixeira de Souza (man05109@feg.unesp.br) Rodrigo Alexandre Ribeiro (man04023@feg.unesp.br)

Leia mais

Álgebra Linear. Mauri C. Nascimento Departamento de Matemática UNESP/Bauru. 19 de fevereiro de 2013

Álgebra Linear. Mauri C. Nascimento Departamento de Matemática UNESP/Bauru. 19 de fevereiro de 2013 Álgebra Linear Mauri C. Nascimento Departamento de Matemática UNESP/Bauru 19 de fevereiro de 2013 Sumário 1 Matrizes e Determinantes 3 1.1 Matrizes............................................ 3 1.2 Determinante

Leia mais

Complexidade de Algoritmos

Complexidade de Algoritmos Complexidade de Algoritmos ACH2002 - Introdução à Ciência da Computação II Delano M. Beder Escola de Artes, Ciências e Humanidades (EACH) Universidade de São Paulo dbeder@usp.br 08/2008 Material baseado

Leia mais

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA CELSO SUCKOW DA FONSECA HABILIDADES CONTEÚDO METODOLOGIA/ESTRATÉGIA HORA/ AULA ANÁLISE GRÁFICA DE FUNÇÕES

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA CELSO SUCKOW DA FONSECA HABILIDADES CONTEÚDO METODOLOGIA/ESTRATÉGIA HORA/ AULA ANÁLISE GRÁFICA DE FUNÇÕES CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA CELSO SUCKOW DA FONSECA ENSINO MÉDIO ÁREA CURRICULAR: CIÊNCIA DA NATUREZA, MATEMÁTICA E SUAS TECNOLOGIAS DISCIPLINA: MATEMÁTICA I SÉRIE 1.ª CH 68 ANO 2012 COMPETÊNCIAS:.

Leia mais

MC102 Algoritmos e Programação de Computadores 2ª Aula Programa, entrada e saída de dados

MC102 Algoritmos e Programação de Computadores 2ª Aula Programa, entrada e saída de dados MC102 Algoritmos e Programação de Computadores 2ª Aula Programa, entrada e saída de dados 1. Objetivos Falar sobre programa de computador, diferenciando programa em linguagem de máquina, de programa em

Leia mais

Contagem. George Darmiton da Cunha Cavalcanti CIn - UFPE

Contagem. George Darmiton da Cunha Cavalcanti CIn - UFPE Contagem George Darmiton da Cunha Cavalcanti CIn - UFPE Sumário Princípios Básicos de Contagem A Regra do Produto A Regra da Soma O número de subconjuntos de um conjunto finito Princípio da Inclusão-Exclusão

Leia mais

PROGRAMA DE DISCIPLINA

PROGRAMA DE DISCIPLINA PROGRAMA DE DISCIPLINA Disciplina: Introdução à Programação Carga horária total: 60 Carga horária teórica: 0 Carga horária prática: 60 Código da Disciplina: CCMP0041 Período de oferta: 2010.2 Turma: CA

Leia mais

Introdução ao GeoGebra

Introdução ao GeoGebra Universidade Federal de Alfenas UNIFAL-MG Introdução ao GeoGebra Prof. Dr. José Carlos de Souza Junior AGOSTO 2010 Sumário 1 Primeiros Passos com o GeoGebra 4 1.1 Conhecendo o Programa............................

Leia mais

Chapter 2. 2.1 Noções Preliminares

Chapter 2. 2.1 Noções Preliminares Chapter 2 Seqüências de Números Reais Na Análise os conceitos e resultados mais importantes se referem a limites, direto ou indiretamente. Daí, num primeiro momento, estudaremos os limites de seqüências

Leia mais

Introdução à Lógica de Programação

Introdução à Lógica de Programação Sistemas Operacionais e Introdução à Programação Introdução à Lógica de Programação 1 Estruturas de dados Representação computacional das informações do problema ser resolvido Informações podem ser de

Leia mais

Capítulo 1. Introdução. 1.1 Linguagens. OBJETIVOS DO CAPÍTULO Ao final deste capítulo você deverá ser capaz de:

Capítulo 1. Introdução. 1.1 Linguagens. OBJETIVOS DO CAPÍTULO Ao final deste capítulo você deverá ser capaz de: i Sumário 1 Introdução 1 1.1 Linguagens....................................... 1 1.2 O que é um Compilador?................................ 2 1.3 Processadores de Programas: Compiladores, Interpretadores

Leia mais

Descrição Formal de Linguagens -Sumário - Descrição Formal de Linguagens. -Overview- -Overview- - Fundamentos das Linguagens de Programação -

Descrição Formal de Linguagens -Sumário - Descrição Formal de Linguagens. -Overview- -Overview- - Fundamentos das Linguagens de Programação - Descrição Formal de Linguagens Linguagens de Programação Ciência da Computação DIN UEM CTC Prof. Jucimar Aula 4 Descrição Formal de Linguagens -Sumário - 1. Fundamentos de Linguagens de Programação 2.

Leia mais

Metodologias de Desenvolvimento de Sistemas. Analise de Sistemas I UNIPAC Rodrigo Videschi

Metodologias de Desenvolvimento de Sistemas. Analise de Sistemas I UNIPAC Rodrigo Videschi Metodologias de Desenvolvimento de Sistemas Analise de Sistemas I UNIPAC Rodrigo Videschi Histórico Uso de Metodologias Histórico Uso de Metodologias Era da Pré-Metodologia 1960-1970 Era da Metodologia

Leia mais

O Problema do Troco Principio da Casa dos Pombos. > Princípios de Contagem e Enumeração Computacional 0/48

O Problema do Troco Principio da Casa dos Pombos. > Princípios de Contagem e Enumeração Computacional 0/48 Conteúdo 1 Princípios de Contagem e Enumeração Computacional Permutações com Repetições Combinações com Repetições O Problema do Troco Principio da Casa dos Pombos > Princípios de Contagem e Enumeração

Leia mais

HORÁRIO DE PROVAS 1º semestre 2012

HORÁRIO DE PROVAS 1º semestre 2012 1º PERÍODO 1ª Bimestrais 26/03 Cálculo Diferencial e Integral I 28/03 Comunicação e Expressão 29/03 Lógica para Computação 30/03 Introdução à Computação 02/04 Geometria Analítica e Vetores 03/04 Física

Leia mais

Cálculo Aproximado do número PI utilizando Programação Paralela

Cálculo Aproximado do número PI utilizando Programação Paralela Universidade de São Paulo Instituto de Ciências Matemáticas e de Computação Cálculo Aproximado do número PI utilizando Programação Paralela Grupo 17 Raphael Ferras Renan Pagaiane Yule Vaz SSC-0143 Programação

Leia mais