MATEMATICA Vestibular UFU 2ª Fase 17 de Janeiro de 2011

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "MATEMATICA Vestibular UFU 2ª Fase 17 de Janeiro de 2011"

Transcrição

1 Vesibular UFU ª Fase 17 de Janeiro de 011 PRIMEIRA QUESTÃO A realidade mosra que as favelas já fazem pare do cenário urbano de muias cidades brasileiras. Suponha que se deseja realizar uma esimaiva quano à área ocupada pela favela da figura abaixo. Para isso, considera-se um sisema de coordenadas caresianas x0y e, a parir dele, é consruída uma espécie de rede formada por quadrados se ajusando e mapeando oda a área ocupada pela favela. Dessa forma, a esimaiva desejada pode ser obida somandose as áreas dos quadrados presene na rede. Sabendo que no quadrado ABCD, represenado na figura acima, há os vérices A=(0,) e B=(40,0): A) Esplicie e execue um plano de resolução que conduza à obenção da área do quadrado ABCD. B) Esabeleça e descreva relações maemáicas capazes de ober as coordenadas caresianas do pono C. Deermine esas coodenadas. A) Do Δ OAD reângulo em O obemos o lado do quadrado e por Piágoras emos: AD = OA + OD AD = () + (40) AD = + AD 500 = Como a área do Δ é (lado) emos: A= AD = 500m

2 Vesibular UFU ª Fase 17 de Janeiro de 011 B) Os Δ s AOD e DEC são congruenes. Enão : Logo, as coordenadas de C são: xc = OD + DE = 70m yc = OD = 40m C (70,40) OA DE OD CE SEGUNDA QUESTÃO Na elaboração de políicas públicas que esejam em conformidade com a legislação urbanísica de uso e ocupação do solo em regiões meropolianas, é fundamenal o conhecimeno de leis descriivas do crescimeno populacional urbano. Suponha que a lei dada pela função p() = 0,5.( k ) expresse um modelo represenaivo da população de uma cidade (em milhões de habianes) ao longo do empo (em anos), conados a parir de 1970, iso é, +0 corresponde ao ano de 1970, sendo k uma consane real. Sabendo que a população dessa cidade em 000 era de 1 milhão de habianes: A) Exraia do exo dado uma relação de forma a ober o valor de k. B) Segundo o modelo de evolução populacional dado, descreva e execue um plano de resolução que possibilie esimar em qual ano a população desa cidade aingirá 16 milhões de habianes. A) = = k P () = 0,5 k () 1= 0,5 1 k = 0,5 1 k = k = 1 1 k =

3 Vesibular UFU ª Fase 17 de Janeiro de 011 B) P()=0,5 16 = 0,5 4 = 0,5 5 = 5 = = 5 = 150anos Logo = 10 TERCEIRA QUESTÃO A prefeiura de uma cidade, preocupada com o meio ambiene e com o problema da fala de espaço físico adequado desinado a depósios de lixo, criou uma cooperaiva de reciclagem em parceria com os moradores de baixa renda. A Tabela 1 fornece os preços de venda (em reais) de cada kg de papel, vidro e plásico referene à primeira semana dos meses de seembro de 009 e seembro de 010; a Tabela expressa a quanidade oal (em kg) vendida desses rês maeriais na primeira semana dos meses mencionados acima e o rendimeno (em reais) referenes à venda dos maeriais reciclados, obidos nas referidas semanas. Sabe-se que, na primeira semana de seembro de 010, foram vendidos 50% a mais de papel do que o vendido na primeira semana de 009 e iguais quanidades, que aquelas comercializadas na primeira semana de 009, de vidro e plásico. Inerpree e analise o exo dado, descrevendo expressões maemáicas que conduzem ao valor de R. Deermine-o.

4 Vesibular UFU ª Fase 17 de Janeiro de 011 1ª Sem / 09 1ª Sem / 10 Sejam : x é a quanidade, em kg, de papel x 3 x + = x ( kg de papel) y é a quanidade, em kg, devidro z é a quanidade, em kg, de plásico 3 x+ y+ z = 9000 x+ y+ z = ,3x+ 0, y+ 0,5z = x 0, 4 + 0,3y+ z = R 3 x+ y+ z = x+ y+ z = x+ y+ 5z = x+ 3y+ 10z = 10R em 4 1 x = (000) = 10R x = 000kg R = 480 em 1 emos y + z = 6000 em emos y + 5z = z = 6000 y z = z = 600kg y+ 5(6000 y) = = 3y 3y = 1000 y = 3400 kg

5 Vesibular UFU ª Fase 17 de Janeiro de 011 QUARTA QUESTÃO Ao assisir a uma reporagem na TV sobre o impaco do crescimeno demográfico nos recursos hídricos, o Sr. José decidiu adoar medidas que auxiliam na preservação de recursos naurais. Ele consruiu um reservaório para capação de água da chuva e ambém insalou um aquecedor solar em sua residência. O sisema de aquecimeno solar é composo de coleores solares (placas) e um reservaório érmico chamado boiler, o qual em o formao de um cilindro circular reo, como mosra figura abaixo. Por sua vez, foi escolhido e consruído um reservaório para a capação de água da chuva na forma de um prisma reo cuja base é um quadrado. Sabe-se que: 1. - o lado da base do prisma (que corresponde ao reservaório) mede meros e o raio da base do cilindro ( que corresponde boiler) mede ½ mero;. - a área laeral do prisma (reservaório) é igual ao dobro da área laeral do cilindro (boiler). A parir das considerações acima, redija um exo que relacione o volume do reservaório e o volume do boiler. Uilizando-o esabeleça o valor da razão ( volume do reservaório) / (volume do boiler).

6 Vesibular UFU ª Fase 17 de Janeiro de 011 Prisma (reservaório) Cilindro (Boiler) A L do prisma =.A L do cilindro 1 4..h =.. π.h 8h = π H H 4h = π V reservaório =..h = 4h 1 1 4h V boiler = π. H = π.. = 4 π h V reservaório = 4. V boiler V V reservaório boiler = 4

= + 3. h t t. h t t. h t t. h t t MATEMÁTICA

= + 3. h t t. h t t. h t t. h t t MATEMÁTICA MAEMÁICA 01 Um ourives possui uma esfera de ouro maciça que vai ser fundida para ser dividida em 8 (oio) esferas menores e de igual amanho. Seu objeivo é acondicionar cada esfera obida em uma caixa cúbica.

Leia mais

12 Integral Indefinida

12 Integral Indefinida Inegral Indefinida Em muios problemas, a derivada de uma função é conhecida e o objeivo é enconrar a própria função. Por eemplo, se a aa de crescimeno de uma deerminada população é conhecida, pode-se desejar

Leia mais

CORREÇÃO PROVA UFRGS 2009 MATEMÁTICA FAÉ

CORREÇÃO PROVA UFRGS 2009 MATEMÁTICA FAÉ CORREÇÃO PROVA UFRGS 009 MATEMÁTICA FAÉ QUESTÃO 6 (E) ASSUNTO: MATEMÁTICA BÁSICA (PORCENT. E POTÊNCIAS DE 0) 00 milhões = 00.0 6 Regra de Três: 00.0 6,% 00%.0 8,.0.0 0 dólares QUESTÃO 7 (E) ASSUNTO: MATEMÁTICA

Leia mais

Equações Diferenciais Ordinárias Lineares

Equações Diferenciais Ordinárias Lineares Equações Diferenciais Ordinárias Lineares 67 Noções gerais Equações diferenciais são equações que envolvem uma função incógnia e suas derivadas, além de variáveis independenes Aravés de equações diferenciais

Leia mais

Calcule a área e o perímetro da superfície S. Calcule o volume do tronco de cone indicado na figura 1.

Calcule a área e o perímetro da superfície S. Calcule o volume do tronco de cone indicado na figura 1. 1. (Unesp 017) Um cone circular reo de gerariz medindo 1 cm e raio da base medindo 4 cm foi seccionado por um plano paralelo à sua base, gerando um ronco de cone, como mosra a figura 1. A figura mosra

Leia mais

Universidade Federal de Pelotas UFPEL Departamento de Economia - DECON. Economia Ecológica. Professor Rodrigo Nobre Fernandez

Universidade Federal de Pelotas UFPEL Departamento de Economia - DECON. Economia Ecológica. Professor Rodrigo Nobre Fernandez Universidade Federal de Peloas UFPEL Deparameno de Economia - DECON Economia Ecológica Professor Rodrigo Nobre Fernandez Capíulo 6 Conabilidade Ambienal Nacional Peloas, 2010 6.1 Inrodução O lado moneário

Leia mais

MATEMÁTICA E RACIOCÍNIO LÓGICO

MATEMÁTICA E RACIOCÍNIO LÓGICO AT VIRTUA GEOMETRIA EPACIAL PRIMA 01) A caixa de água de um cero prédio possui o formao de um prisma reo de ase quadrada com 1,6 m de aura e aresa da ase medindo,5 m. Quanos iros de água há nessa caixa

Leia mais

Função definida por várias sentenças

Função definida por várias sentenças Ese caderno didáico em por objeivo o esudo de função definida por várias senenças. Nese maerial você erá disponível: Uma siuação que descreve várias senenças maemáicas que compõem a função. Diversas aividades

Leia mais

Capítulo 19. 4. (UTFPR) Na figura a seguir, temos r//s e t//u//v. Triângulos. 1. Na figura, AB = AC ead = AE. A medida do ângulo oposto α é:

Capítulo 19. 4. (UTFPR) Na figura a seguir, temos r//s e t//u//v. Triângulos. 1. Na figura, AB = AC ead = AE. A medida do ângulo oposto α é: Maemáica II Ângulos apíulo 19 1. (UNIRI) s reas r 1 e r são paralelas. valor do ângulo, apresenado na figura a seguir, é: r 1 Suponha que um passageiro de nome arlos pegou um avião II, que seguiu a direção

Leia mais

Com base no enunciado e no gráfico, assinale V (verdadeira) ou F (falsa) nas afirmações a seguir.

Com base no enunciado e no gráfico, assinale V (verdadeira) ou F (falsa) nas afirmações a seguir. PROVA DE FÍSICA 2º ANO - 1ª MENSAL - 2º TRIMESTRE TIPO A 01) O gráico a seguir represena a curva de aquecimeno de 10 g de uma subsância à pressão de 1 am. Analise as seguines airmações. I. O pono de ebulição

Leia mais

CAPÍTULO III TORÇÃO PROBLEMAS ESTATICAMENTE INDETERMINADOS TORÇÃO - PEÇAS DE SEÇÃO VAZADA DE PAREDES FINAS

CAPÍTULO III TORÇÃO PROBLEMAS ESTATICAMENTE INDETERMINADOS TORÇÃO - PEÇAS DE SEÇÃO VAZADA DE PAREDES FINAS APÍTULO III TORÇÃO PROBLEMAS ESTATIAMENTE INDETERMINADOS TORÇÃO - PEÇAS DE SEÇÃO VAZADA DE PAREDES FINAS A- TORÇÃO PROBLEMAS ESTATIAMENTE INDETERMINADOS Vimos aé aqui que para calcularmos as ensões em

Leia mais

RASCUNHO. a) 120º10 b) 95º10 c) 120º d) 95º e) 110º50

RASCUNHO. a) 120º10 b) 95º10 c) 120º d) 95º e) 110º50 ª QUESTÃO Uma deerminada cidade organizou uma olimpíada de maemáica e física, para os alunos do º ano do ensino médio local. Inscreveramse 6 alunos. No dia da aplicação das provas, consaouse que alunos

Leia mais

Função Exponencial 2013

Função Exponencial 2013 Função Exponencial 1 1. (Uerj 1) Um imóvel perde 6% do valor de venda a cada dois anos. O valor V() desse imóvel em anos pode ser obido por meio da fórmula a seguir, na qual V corresponde ao seu valor

Leia mais

Aula - 2 Movimento em uma dimensão

Aula - 2 Movimento em uma dimensão Aula - Moimeno em uma dimensão Física Geral I - F- 18 o semesre, 1 Ilusração dos Principia de Newon mosrando a ideia de inegral Moimeno 1-D Conceios: posição, moimeno, rajeória Velocidade média Velocidade

Leia mais

METODOLOGIA PROJEÇÃO DE DEMANDA POR TRANSPORTE AÉREO NO BRASIL

METODOLOGIA PROJEÇÃO DE DEMANDA POR TRANSPORTE AÉREO NO BRASIL METODOLOGIA PROJEÇÃO DE DEMANDA POR TRANSPORTE AÉREO NO BRASIL 1. Inrodução O presene documeno visa apresenar dealhes da meodologia uilizada nos desenvolvimenos de previsão de demanda aeroporuária no Brasil

Leia mais

Curso de preparação para a prova de matemática do ENEM Professor Renato Tião

Curso de preparação para a prova de matemática do ENEM Professor Renato Tião Porcenagem As quaro primeiras noções que devem ser assimiladas a respeio do assuno são: I. Que porcenagem é fração e fração é a pare sobre o odo. II. Que o símbolo % indica que o denominador desa fração

Leia mais

Mecânica dos Fluidos. Aula 8 Introdução a Cinemática dos Fluidos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos. Aula 8 Introdução a Cinemática dos Fluidos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues Aula 8 Inrodução a Cinemáica dos Fluidos Tópicos Abordados Nesa Aula Cinemáica dos Fluidos. Definição de Vazão Volumérica. Vazão em Massa e Vazão em Peso. Definição A cinemáica dos fluidos é a ramificação

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tarefa de revisão nº 17 1. Uma empresa lançou um produo no mercado. Esudos efecuados permiiram concluir que a evolução do preço se aproxima do seguine modelo maemáico: 7 se 0 1 p() =, p em euros e em anos.

Leia mais

Equações Simultâneas. Aula 16. Gujarati, 2011 Capítulos 18 a 20 Wooldridge, 2011 Capítulo 16

Equações Simultâneas. Aula 16. Gujarati, 2011 Capítulos 18 a 20 Wooldridge, 2011 Capítulo 16 Equações Simulâneas Aula 16 Gujarai, 011 Capíulos 18 a 0 Wooldridge, 011 Capíulo 16 Inrodução Durane boa pare do desenvolvimeno dos coneúdos desa disciplina, nós nos preocupamos apenas com modelos de regressão

Leia mais

Exercícios sobre o Modelo Logístico Discreto

Exercícios sobre o Modelo Logístico Discreto Exercícios sobre o Modelo Logísico Discreo 1. Faça uma abela e o gráfico do modelo logísico discreo descrio pela equação abaixo para = 0, 1,..., 10, N N = 1,3 N 1, N 0 = 1. 10 Solução. Usando o Excel,

Leia mais

Adaptado de O Prisma e o Pêndulo as dez mais belas experiências científicas, p. 52, Crease, R. (2006)

Adaptado de O Prisma e o Pêndulo as dez mais belas experiências científicas, p. 52, Crease, R. (2006) PROVA MODELO GRUPO I Arisóeles inha examinado corpos em moimeno e inha concluído, pelo modo como os corpos caem denro de água, que a elocidade de um corpo em queda é uniforme, proporcional ao seu peso,

Leia mais

Valor do Trabalho Realizado 16.

Valor do Trabalho Realizado 16. Anonio Vicorino Avila Anonio Edésio Jungles Planejameno e Conrole de Obras 16.2 Definições. 16.1 Objeivo. Valor do Trabalho Realizado 16. Parindo do conceio de Curva S, foi desenvolvida pelo Deparameno

Leia mais

Dados do Plano. Resultado da Avaliação Atuarial. Data da Avaliação: 31/12/2010

Dados do Plano. Resultado da Avaliação Atuarial. Data da Avaliação: 31/12/2010 AVALIAÇÃO ATUARIAL Daa da Avaliação: 3/2/200 Dados do Plano Nome do Plano: CEEEPREV CNPB: 20.020.04-56 Parocinadoras: Companhia Esadual de Geração e Transmissão de Energia Elérica CEEE-GT Companhia Esadual

Leia mais

Q = , 03.( )

Q = , 03.( ) PROVA DE FÍSIA 2º ANO - 1ª MENSAL - 2º TRIMESTRE TIPO A 01) Um bloco de chumbo de massa 1,0 kg, inicialmene a 227, é colocado em conao com uma fone érmica de poência consane. Deermine a quanidade de calor

Leia mais

A FÁBULA DO CONTROLADOR PID E DA CAIXA D AGUA

A FÁBULA DO CONTROLADOR PID E DA CAIXA D AGUA A FÁBULA DO CONTROLADOR PID E DA CAIXA D AGUA Era uma vez uma pequena cidade que não inha água encanada. Mas, um belo dia, o prefeio mandou consruir uma caia d água na serra e ligou-a a uma rede de disribuição.

Leia mais

QUESTÃO 01 Considere os conjuntos A = {x R / 0 x 3} e B = {y Z / 1 y 1}. A representação gráfica do produto cartesiano A B corresponde a:

QUESTÃO 01 Considere os conjuntos A = {x R / 0 x 3} e B = {y Z / 1 y 1}. A representação gráfica do produto cartesiano A B corresponde a: PROVA DE MATEMÁTICA - TURMA DO o ANO DO ENINO MÉDIO COLÉGIO ANCHIETA-A - JUlHO DE. ELAORAÇÃO: PROFEORE ADRIANO CARIÉ E WALTER PORTO. PROFEORA MARIA ANTÔNIA C. GOUVEIA QUETÃO Considere os conjunos A { R

Leia mais

OTIMIZAÇÃO ENERGÉTICA NA CETREL: DIAGNÓSTICO, IMPLEMENTAÇÃO E AVALIAÇÃO DE GANHOS

OTIMIZAÇÃO ENERGÉTICA NA CETREL: DIAGNÓSTICO, IMPLEMENTAÇÃO E AVALIAÇÃO DE GANHOS STC/ 08 17 à 22 de ouubro de 1999 Foz do Iguaçu Paraná - Brasil SESSÃO TÉCNICA ESPECIAL CONSERVAÇÃO DE ENERGIA ELÉTRICA (STC) OTIMIZAÇÃO ENERGÉTICA NA CETREL: DIAGNÓSTICO, IMPLEMENTAÇÃO E AVALIAÇÃO DE

Leia mais

Mat. Professore: Monitor: Fernanda Aranzate

Mat. Professore: Monitor: Fernanda Aranzate Ma. Professore: PC Monior: Fernanda Aranzae Conceio de parição e exclusão e áreas das figuras planas - coninuação 24 ago RESUMO Como vimos na aula passada, as áreas medem o amanho da superfície dessas

Leia mais

Overdose. Série Matemática na Escola. Objetivos

Overdose. Série Matemática na Escola. Objetivos Overdose Série Maemáica na Escola Objeivos 1. Analisar um problema sobre drogas, modelado maemaicamene por funções exponenciais; 2. Inroduzir o ermo meia-vida e com ele ober a função exponencial que modela

Leia mais

Experimento. Guia do professor. O método de Monte Carlo. Governo Federal. Ministério da Educação. Secretaria de Educação a Distância

Experimento. Guia do professor. O método de Monte Carlo. Governo Federal. Ministério da Educação. Secretaria de Educação a Distância Análise de dados e probabilidade Guia do professor Experimeno O méodo de Mone Carlo Objeivos da unidade 1. Apresenar um méodo ineressane e simples que permie esimar a área de uma figura plana qualquer;.

Leia mais

ENGENHARIA ECONÔMICA AVANÇADA

ENGENHARIA ECONÔMICA AVANÇADA ENGENHARIA ECONÔMICA AVANÇADA TÓPICOS AVANÇADOS MATERIAL DE APOIO ÁLVARO GEHLEN DE LEÃO gehleao@pucrs.br 55 5 Avaliação Econômica de Projeos de Invesimeno Nas próximas seções serão apresenados os principais

Leia mais

Duas opções de trajetos para André e Bianca. Percurso 1( Sangiovanni tendo sorteado cara e os dois se encontrando no ponto C): P(A) =

Duas opções de trajetos para André e Bianca. Percurso 1( Sangiovanni tendo sorteado cara e os dois se encontrando no ponto C): P(A) = RESOLUÇÃO 1 A AVALIAÇÃO UNIDADE II -016 COLÉGIO ANCHIETA-BA PROFA. MARIA ANTÔNIA C. GOUVEIA ELABORAÇÃO e PESQUISA: PROF. ADRIANO CARIBÉ e WALTER PORTO. QUESTÃO 01. Três saélies compleam suas respecivas

Leia mais

Pessoal Ocupado, Horas Trabalhadas, Jornada de Trabalho e Produtividade no Brasil

Pessoal Ocupado, Horas Trabalhadas, Jornada de Trabalho e Produtividade no Brasil Pessoal Ocupado, Horas Trabalhadas, Jornada de Trabalho e Produividade no Brasil Fernando de Holanda Barbosa Filho Samuel de Abreu Pessôa Resumo Esse arigo consrói uma série de horas rabalhadas para a

Leia mais

Um estudo de Cinemática

Um estudo de Cinemática Um esudo de Cinemáica Meu objeivo é expor uma ciência muio nova que raa de um ema muio anigo. Talvez nada na naureza seja mais anigo que o movimeno... Galileu Galilei 1. Inrodução Nese exo focaremos nossa

Leia mais

Mecânica de Sistemas de Partículas Prof. Lúcio Fassarella * 2013 *

Mecânica de Sistemas de Partículas Prof. Lúcio Fassarella * 2013 * Mecânica e Sisemas e Parículas Prof. Lúcio Fassarella * 2013 * 1. A velociae e escape e um planea ou esrela é e nia como seno a menor velociae requeria na superfície o objeo para que uma parícula escape

Leia mais

MATEMÁTICA E SUAS TECNOLOGIAS

MATEMÁTICA E SUAS TECNOLOGIAS 1º SIMULADO ENEM 017 Resposa da quesão 1: MATEMÁTICA E SUAS TECNOLOGIAS Basa aplicar a combinação de see espores agrupados dois a dois, logo: 7! C7,!(7 )! 7 6 5! C7,!5! 7 6 5! C7, 1!5! Resposa da quesão

Leia mais

MÉTODO MARSHALL. Os corpos de prova deverão ter a seguinte composição em peso:

MÉTODO MARSHALL. Os corpos de prova deverão ter a seguinte composição em peso: TEXTO COMPLEMENTAR MÉTODO MARSHALL ROTINA DE EXECUÇÃO (PROCEDIMENTOS) Suponhamos que se deseje dosar um concreo asfálico com os seguines maeriais: 1. Pedra 2. Areia 3. Cimeno Porland 4. CAP 85 100 amos

Leia mais

Universidade Federal de Lavras

Universidade Federal de Lavras Universidade Federal de Lavras Deparameno de Ciências Exaas Prof. Daniel Furado Ferreira 8 a Lisa de Exercícios Disribuição de Amosragem 1) O empo de vida de uma lâmpada possui disribuição normal com média

Leia mais

Palavras-chave: Análise de Séries Temporais; HIV; AIDS; HUJBB.

Palavras-chave: Análise de Séries Temporais; HIV; AIDS; HUJBB. Análise de Séries Temporais de Pacienes com HIV/AIDS Inernados no Hospial Universiário João de Barros Barreo (HUJBB), da Região Meropoliana de Belém, Esado do Pará Gilzibene Marques da Silva ¹ Adrilayne

Leia mais

ANÁLISE DE ESTRUTURAS VIA ANSYS

ANÁLISE DE ESTRUTURAS VIA ANSYS 2 ANÁLISE DE ESTRUTURAS VIA ANSYS A Análise de esruuras provavelmene é a aplicação mais comum do méodo dos elemenos finios. O ermo esruura não só diz respeio as esruuras de engenharia civil como pones

Leia mais

Faculdade de Engenharia São Paulo FESP Física Básica 1 (BF1) - Professores: João Arruda e Henriette Righi

Faculdade de Engenharia São Paulo FESP Física Básica 1 (BF1) - Professores: João Arruda e Henriette Righi Faculdade de Engenharia São Paulo FESP Física Básica 1 (BF1) - Professores: João Arruda e Henriee Righi LISTA DE EXERCÍCIOS # 1 Aenção: Aualize seu adobe, ou subsiua os quadrados por negaivo!!! 1) Deermine

Leia mais

Escola E.B. 2,3 / S do Pinheiro

Escola E.B. 2,3 / S do Pinheiro Escola E.B. 2,3 / S do Pinheiro Ciências Físico Químicas 9º ano Movimenos e Forças 1.º Período 1.º Unidade 2010 / 2011 Massa, Força Gravíica e Força de Ario 1 - A bordo de um vaivém espacial, segue um

Leia mais

SISTEMA PÚBLICO DE ABASTECIMENTO DE ÁGUA

SISTEMA PÚBLICO DE ABASTECIMENTO DE ÁGUA Capiulo V SISTEMA PÚBLICO DE ABASTECIMENTO DE ÁGUA 5.1 - INTRODUÇÃO I - QUALIDADE DA ÁGUA A água em sua uilização obedece a padrões qualiaivos que são variáveis de acordo com o seu uso (domésico, indusrial,

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web Inerbis SuperPro Web 1. O lucro de uma empresa é dado pela expressão maemáica L R C, onde L é o lucro, o cuso da produção e R a receia do produo. Uma fábrica de raores produziu n unidades e verificou que

Leia mais

Introdução às Medidas em Física

Introdução às Medidas em Física Inrodução às Medidas em Física 43152 Elisabeh Maeus Yoshimura emaeus@if.usp.br Bloco F Conjuno Alessandro Vola sl 18 agradecimenos a Nemiala Added por vários slides Conceios Básicos Lei Zero da Termodinâmica

Leia mais

Aula 1. Atividades. Para as questões dessa aula, podem ser úteis as seguintes relações:

Aula 1. Atividades. Para as questões dessa aula, podem ser úteis as seguintes relações: Aula 1 Para as quesões dessa aula, podem ser úeis as seguines relações: 1. E c = P = d = m. v E m V E P = m. g. h cos = sen = g = Aividades Z = V caeo adjacene hipoenusa caeo oposo hipoenusa caeo oposo

Leia mais

INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas.

INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas. SIMULADO DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - JULHO DE 0. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÕES de 0 a

Leia mais

Relações de troca, sazonalidade e margens de comercialização de carne de frango na Região Metropolitana de Belém no período 1997-2004

Relações de troca, sazonalidade e margens de comercialização de carne de frango na Região Metropolitana de Belém no período 1997-2004 RELAÇÕES DE TROCA, SAZONALIDADE E MARGENS DE COMERCIALIZAÇÃO DE CARNE DE FRANGO NA REGIÃO METROPOLITANA DE BELÉM NO PERÍODO 1997-2004 MARCOS ANTÔNIO SOUZA DOS SANTOS; FABRÍCIO KHOURY REBELLO; MARIA LÚCIA

Leia mais

Escola de Pós-Graduação em Economia da Fundação Getulio Vargas (EPGE/FGV) Macroeconomia I / 2016. Professor: Rubens Penha Cysne

Escola de Pós-Graduação em Economia da Fundação Getulio Vargas (EPGE/FGV) Macroeconomia I / 2016. Professor: Rubens Penha Cysne Escola de Pós-Graduação em Economia da Fundação Geulio Vargas (EPGE/FGV) Macroeconomia I / 2016 Professor: Rubens Penha Cysne Lisa de Exercícios 4 - Gerações Superposas Obs: Na ausência de de nição de

Leia mais

Estando o capacitor inicialmente descarregado, o gráfico que representa a corrente i no circuito após o fechamento da chave S é:

Estando o capacitor inicialmente descarregado, o gráfico que representa a corrente i no circuito após o fechamento da chave S é: PROCESSO SELETIVO 27 2 O DIA GABARITO 1 13 FÍSICA QUESTÕES DE 31 A 45 31. Considere o circuio mosrado na figura abaixo: S V R C Esando o capacior inicialmene descarregado, o gráfico que represena a correne

Leia mais

Experiências para o Ensino de Queda Livre

Experiências para o Ensino de Queda Livre Universidade Esadual de Campinas Insiuo de Física Gleb Waagin Relaório Final da disciplina F 69A - Tópicos de Ensino de Física I Campinas, de juno de 7. Experiências para o Ensino de Queda Livre Aluno:

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática. Primeira Lista de Exercícios MAT 241 Cálculo III

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática. Primeira Lista de Exercícios MAT 241 Cálculo III Universidade Federal de Viçosa Cenro de Ciências Exaas e Tecnológicas Deparameno de Maemáica Primeira Lisa de Exercícios MAT 4 Cálculo III Julgue a veracidade das afirmações abaixo assinalando ( V para

Leia mais

Estudo comparativo de processo produtivo com esteira alimentadora em uma indústria de embalagens

Estudo comparativo de processo produtivo com esteira alimentadora em uma indústria de embalagens Esudo comparaivo de processo produivo com eseira alimenadora em uma indúsria de embalagens Ana Paula Aparecida Barboza (IMIH) anapbarboza@yahoo.com.br Leicia Neves de Almeida Gomes (IMIH) leyneves@homail.com

Leia mais

GABARITO DE QUÍMICA INSTITUTO MILITAR DE ENGENHARIA

GABARITO DE QUÍMICA INSTITUTO MILITAR DE ENGENHARIA GABARITO DE QUÍMICA INSTITUTO MILITAR DE ENGENHARIA Realizada em 8 de ouubro de 010 GABARITO DISCURSIVA DADOS: Massas aômicas (u) O C H N Na S Cu Zn 16 1 1 14 3 3 63,5 65,4 Tempo de meia - vida do U 38

Leia mais

Capítulo 5: Introdução às Séries Temporais e aos Modelos ARIMA

Capítulo 5: Introdução às Séries Temporais e aos Modelos ARIMA 0 Capíulo 5: Inrodução às Séries emporais e aos odelos ARIA Nese capíulo faremos uma inrodução às séries emporais. O nosso objeivo aqui é puramene operacional e esaremos mais preocupados com as definições

Leia mais

Campo magnético variável

Campo magnético variável Campo magnéico variável Já vimos que a passagem de uma correne elécrica cria um campo magnéico em orno de um conduor aravés do qual a correne flui. Esa descobera de Orsed levou os cienisas a desejaram

Leia mais

Figura 1 Carga de um circuito RC série

Figura 1 Carga de um circuito RC série ASSOIAÇÃO EDUAIONAL DOM BOSO FAULDADE DE ENGENHAIA DE ESENDE ENGENHAIA ELÉTIA ELETÔNIA Disciplina: Laboraório de ircuios Eléricos orrene onínua 1. Objeivo Sempre que um capacior é carregado ou descarregado

Leia mais

TOMADA DE DECISÃO EM FUTUROS AGROPECUÁRIOS COM MODELOS DE PREVISÃO DE SÉRIES TEMPORAIS

TOMADA DE DECISÃO EM FUTUROS AGROPECUÁRIOS COM MODELOS DE PREVISÃO DE SÉRIES TEMPORAIS ARTIGO: TOMADA DE DECISÃO EM FUTUROS AGROPECUÁRIOS COM MODELOS DE PREVISÃO DE SÉRIES TEMPORAIS REVISTA: RAE-elerônica Revisa de Adminisração de Empresas FGV EASP/SP, v. 3, n. 1, Ar. 9, jan./jun. 2004 1

Leia mais

EXPERIÊNCIA 7 CONSTANTE DE TEMPO EM CIRCUITOS RC

EXPERIÊNCIA 7 CONSTANTE DE TEMPO EM CIRCUITOS RC EXPERIÊNIA 7 ONSTANTE DE TEMPO EM IRUITOS R I - OBJETIVO: Medida da consane de empo em um circuio capaciivo. Medida da resisência inerna de um volímero e da capaciância de um circuio aravés da consane

Leia mais

Escola Secundária Dom Manuel Martins

Escola Secundária Dom Manuel Martins Escola Secundária Dom Manuel Marins Seúbal Prof. Carlos Cunha 1ª Ficha de Avaliação FÍSICO QUÍMICA A ANO LECTIVO 2006 / 2007 ANO II N. º NOME: TURMA: C CLASSIFICAÇÃO Grisson e a sua equipa são chamados

Leia mais

Física B Extensivo V. 5

Física B Extensivo V. 5 Gabario Eensivo V 5 Resolva Aula 8 Aula 9 80) E 80) A 90) f = 50 MHz = 50 0 6 Hz v = 3 0 8 m/s v = f = v f = 3 0 8 50 0 = 6 m 90) B y = 0,5 cos [ (4 0)] y = 0,5 cos y = A cos A = 0,5 m 6 = 4 s = 0,5 s

Leia mais

Física. MU e MUV 1 ACESSO VESTIBULAR. Lista de Física Prof. Alexsandro

Física. MU e MUV 1 ACESSO VESTIBULAR. Lista de Física Prof. Alexsandro Física Lisa de Física Prof. Alexsandro MU e MU 1 - (UnB DF) Qual é o empo gaso para que um merô de 2m a uma velocidade de 18km/h aravesse um únel de 1m? Dê sua resposa em segundos. 2 - (UERJ) Um rem é

Leia mais

Espaço SENAI. Missão do Sistema SENAI

Espaço SENAI. Missão do Sistema SENAI Sumário Inrodução 5 Gerador de funções 6 Caracerísicas de geradores de funções 6 Tipos de sinal fornecidos 6 Faixa de freqüência 7 Tensão máxima de pico a pico na saída 7 Impedância de saída 7 Disposiivos

Leia mais

Questão 1. Questão 3. Questão 2. alternativa B. alternativa E. alternativa C. Os números inteiros x e y satisfazem a equação

Questão 1. Questão 3. Questão 2. alternativa B. alternativa E. alternativa C. Os números inteiros x e y satisfazem a equação Quesão Os números ineiros x e y saisfazem a equação x x y y 5 5.Enãox y é: a) 8 b) 5 c) 9 d) 6 e) 7 alernaiva B x x y y 5 5 x ( ) 5 y (5 ) x y 7 x 6 y 5 5 5 Como x e y são ineiros, pelo Teorema Fundamenal

Leia mais

Lista de Exercícios 1

Lista de Exercícios 1 Universidade Federal de Ouro Preo Deparameno de Maemáica MTM14 - CÁLCULO DIFERENCIAL E INTEGRAL III Anônio Silva, Edney Oliveira, Marcos Marcial, Wenderson Ferreira Lisa de Exercícios 1 1 Para cada um

Leia mais

Análise econômica dos benefícios advindos do uso de cartões de crédito e débito. Outubro de 2012

Análise econômica dos benefícios advindos do uso de cartões de crédito e débito. Outubro de 2012 1 Análise econômica dos benefícios advindos do uso de carões de crédio e débio Ouubro de 2012 Inrodução 2 Premissas do Esudo: Maior uso de carões aumena a formalização da economia; e Maior uso de carões

Leia mais

APLICAÇÃO DE MODELAGEM NO CRESCIMENTO POPULACIONAL BRASILEIRO

APLICAÇÃO DE MODELAGEM NO CRESCIMENTO POPULACIONAL BRASILEIRO ALICAÇÃO DE MODELAGEM NO CRESCIMENTO OULACIONAL BRASILEIRO Adriano Luís Simonao (Faculdades Inegradas FAFIBE) Kenia Crisina Gallo (G- Faculdade de Ciências e Tecnologia de Birigüi/S) Resumo: Ese rabalho

Leia mais

Módulo 07 Capítulo 06 - Viscosímetro de Cannon-Fensk

Módulo 07 Capítulo 06 - Viscosímetro de Cannon-Fensk Módulo 07 Capíulo 06 - Viscosímero de Cannon-Fensk Inrodução: o mundo cienífico, medições são necessárias, o que sempre é difícil, impreciso, principalmene quando esa é muio grande ou muio pequena. Exemplos;

Leia mais

4 Modelagem e metodologia de pesquisa

4 Modelagem e metodologia de pesquisa 4 Modelagem e meodologia de pesquisa Nese capíulo será apresenada a meodologia adoada nese rabalho para a aplicação e desenvolvimeno de um modelo de programação maemáica linear misa, onde a função-objeivo,

Leia mais

APÊNDICES APÊNDICE A - TEXTO DE INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS LINEARES DE 1ª E 2ª ORDEM COM O SOFTWARE MAPLE

APÊNDICES APÊNDICE A - TEXTO DE INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS LINEARES DE 1ª E 2ª ORDEM COM O SOFTWARE MAPLE 170 APÊNDICES APÊNDICE A - TEXTO DE INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS LINEARES DE 1ª E ª ORDEM COM O SOFTWARE MAPLE PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS PUC MINAS MESTRADO PROFISSIONAL

Leia mais

1 a Questão: (10,0 pontos)

1 a Questão: (10,0 pontos) Ciências da Natureza, e suas Tecnologias 1 a Questão: (10,0 pontos) Suponha que, em certo dia de janeiro de 00, quando 1 dólar americano valia 1 peso argentino e ambos valiam,1 reais, o governo argentino

Leia mais

CAPÍTULO 9. y(t). y Medidor. Figura 9.1: Controlador Analógico

CAPÍTULO 9. y(t). y Medidor. Figura 9.1: Controlador Analógico 146 CAPÍULO 9 Inrodução ao Conrole Discreo 9.1 Inrodução Os sisemas de conrole esudados aé ese pono envolvem conroladores analógicos, que produzem sinais de conrole conínuos no empo a parir de sinais da

Leia mais

DEMANDA BRASILEIRA DE CANA DE AÇÚCAR, AÇÚCAR E ETANOL REVISITADA

DEMANDA BRASILEIRA DE CANA DE AÇÚCAR, AÇÚCAR E ETANOL REVISITADA XXX ENCONTRO NACIONAL DE ENGENHARIA DE PRODUÇÃO Mauridade e desafios da Engenharia de Produção: compeiividade das empresas, condições de rabalho, meio ambiene. São Carlos, SP, Brasil, 12 a15 de ouubro

Leia mais

GFI00157 - Física por Atividades. Caderno de Trabalhos de Casa

GFI00157 - Física por Atividades. Caderno de Trabalhos de Casa GFI00157 - Física por Aiidades Caderno de Trabalhos de Casa Coneúdo 1 Cinemáica 3 1.1 Velocidade.............................. 3 1.2 Represenações do moimeno................... 7 1.3 Aceleração em uma

Leia mais

ANÁLISE DE UMA EQUAÇÃO DIFERENCIAL LINEAR QUE CARACTERIZA A QUANTIDADE DE SAL EM UM RESERVATÓRIO USANDO DILUIÇÃO DE SOLUÇÃO

ANÁLISE DE UMA EQUAÇÃO DIFERENCIAL LINEAR QUE CARACTERIZA A QUANTIDADE DE SAL EM UM RESERVATÓRIO USANDO DILUIÇÃO DE SOLUÇÃO ANÁLSE DE UMA EQUAÇÃO DFERENCAL LNEAR QUE CARACTERZA A QUANTDADE DE SAL EM UM RESERATÓRO USANDO DLUÇÃO DE SOLUÇÃO Alessandro de Melo Omena Ricardo Ferreira Carlos de Amorim 2 RESUMO O presene arigo em

Leia mais

O Fluxo de Caixa Livre para a Empresa e o Fluxo de Caixa Livre para os Sócios

O Fluxo de Caixa Livre para a Empresa e o Fluxo de Caixa Livre para os Sócios O Fluxo de Caixa Livre para a Empresa e o Fluxo de Caixa Livre para os Sócios! Principais diferenças! Como uilizar! Vanagens e desvanagens Francisco Cavalcane (francisco@fcavalcane.com.br) Sócio-Direor

Leia mais

Sistemas não-lineares de 2ª ordem Plano de Fase

Sistemas não-lineares de 2ª ordem Plano de Fase EA93 - Pro. Von Zuben Sisemas não-lineares de ª ordem Plano de Fase Inrodução o esudo de sisemas dinâmicos não-lineares de a ordem baseia-se principalmene na deerminação de rajeórias no plano de esados,

Leia mais

Disciplina Políticas Macroeconômicas A Política Econômica na Prática

Disciplina Políticas Macroeconômicas A Política Econômica na Prática MBA - UFF Disciplina Políicas Macroeconômicas A Políica Econômica na Práica Prof. Anonio Carlos Assumpção Inrodução Professor Anonio Carlos Assumpção Sie acjassumpcao77.webnode.com Bibliografia Bibliografia

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar Progressão Ariméica e Progressão Geomérica. (Pucrj 0) Os números a x, a x e a x esão em PA. A soma dos números é igual a: a) 8 b) c) 7 d) e) 0. (Fuves 0) Dadas as sequências an n n, n n cn an an b, e b

Leia mais

UNIVERSIDADE DE CAXIAS DO SUL PROGRAMA DE PÓS-GRADUAÇÃO EM ADMINISTRAÇÃO PPGA CURSO DE MESTRADO

UNIVERSIDADE DE CAXIAS DO SUL PROGRAMA DE PÓS-GRADUAÇÃO EM ADMINISTRAÇÃO PPGA CURSO DE MESTRADO UNIVERSIDADE DE CAXIAS DO SUL PROGRAMA DE PÓS-GRADUAÇÃO EM ADMINISTRAÇÃO PPGA CURSO DE MESTRADO MODELO INTEGRADO PARA PREVISÃO DE VENDAS COMO UMA FERRAMENTA DE COMPETITIVIDADE: UM ESTUDO DE CASO EM UMA

Leia mais

VALOR DA PRODUÇÃO DE CACAU E ANÁLISE DOS FATORES RESPONSÁVEIS PELA SUA VARIAÇÃO NO ESTADO DA BAHIA. Antônio Carlos de Araújo

VALOR DA PRODUÇÃO DE CACAU E ANÁLISE DOS FATORES RESPONSÁVEIS PELA SUA VARIAÇÃO NO ESTADO DA BAHIA. Antônio Carlos de Araújo 1 VALOR DA PRODUÇÃO DE CACAU E ANÁLISE DOS FATORES RESPONSÁVEIS PELA SUA VARIAÇÃO NO ESTADO DA BAHIA Anônio Carlos de Araújo CPF: 003.261.865-49 Cenro de Pesquisas do Cacau CEPLAC/CEPEC Faculdade de Tecnologia

Leia mais

1 TRANSMISSÃO EM BANDA BASE

1 TRANSMISSÃO EM BANDA BASE Página 1 1 TRNSMISSÃO EM BND BSE ransmissão de um sinal em banda base consise em enviar o sinal de forma digial aravés da linha, ou seja, enviar os bis conforme a necessidade, de acordo com um padrão digial,

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar . (Pucrj 0) Os números a x, a x e a3 x 3 esão em PA. A soma dos 3 números é igual a: é igual a e o raio de cada semicírculo é igual à meade do semicírculo anerior, o comprimeno da espiral é igual a a)

Leia mais

O MECANISMO DE TRANSMISSÃO MONETÁRIA PARA UMA PEQUENA ECONOMIA ABERTA INTEGRADA NUMA UNIÃO MONETÁRIA* 1

O MECANISMO DE TRANSMISSÃO MONETÁRIA PARA UMA PEQUENA ECONOMIA ABERTA INTEGRADA NUMA UNIÃO MONETÁRIA* 1 Arigos Primavera 29 O MECANISMO DE TRANSMISSÃO MONETÁRIA PARA UMA PEQUENA ECONOMIA ABERTA INTEGRADA NUMA UNIÃO MONETÁRIA* Bernardino Adão**. INTRODUÇÃO Nese rabalho é analisado um modelo esilizado de uma

Leia mais

APLICAÇÃO DE SÉRIES TEMPORAIS NA PREVISÃO DA MÉDIA MENSAL DA TAXA DE CÂMBIO DO REAL PARA O DÓLAR COMERCIAL DE COMPRA USANDO O MODELO DE HOLT

APLICAÇÃO DE SÉRIES TEMPORAIS NA PREVISÃO DA MÉDIA MENSAL DA TAXA DE CÂMBIO DO REAL PARA O DÓLAR COMERCIAL DE COMPRA USANDO O MODELO DE HOLT XXX ENCONTRO NACIONAL DE ENGENHARIA DE PRODUÇÃO Mauridade e desafios da Engenharia de Produção: compeiividade das empresas, condições de rabalho, meio ambiene. São Carlos, SP, Brasil, 12 a15 de ouubro

Leia mais

2 Conceitos de transmissão de dados

2 Conceitos de transmissão de dados 2 Conceios de ransmissão de dados 2 Conceios de ransmissão de dados 1/23 2.2.1 Fones de aenuação e disorção de sinal 2.2.1 Fones de aenuação e disorção do sinal (coninuação) 2/23 Imperfeições do canal

Leia mais

Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031

Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031 Universidade Federal do io Grande do Sul Escola de Engenharia de Poro Alegre Deparameno de Engenharia Elérica ANÁLISE DE CICUITOS II - ENG43 Aula 5 - Condições Iniciais e Finais de Carga e Descarga em

Leia mais

CONTRATO N.º 026/2.015

CONTRATO N.º 026/2.015 CLÁUSULA PRIMEIRA - DAS PARTES CONTRATO N.º 026/2.015 Insrumeno paricular de conrao que enre si fazem: de um lado, como conraane, a PREFEITURA MUNICIPAL DE RIO QUENTE, e de ouro, como conraado, e a empresa

Leia mais

MATEMÁTICA APLICADA AO PLANEJAMENTO DA PRODUÇÃO E LOGÍSTICA. Silvio A. de Araujo Socorro Rangel

MATEMÁTICA APLICADA AO PLANEJAMENTO DA PRODUÇÃO E LOGÍSTICA. Silvio A. de Araujo Socorro Rangel MAEMÁICA APLICADA AO PLANEJAMENO DA PRODUÇÃO E LOGÍSICA Silvio A. de Araujo Socorro Rangel saraujo@ibilce.unesp.br, socorro@ibilce.unesp.br Apoio Financeiro: PROGRAMA Inrodução 1. Modelagem maemáica: conceios

Leia mais

Modelos de Previsão. 1. Introdução. 2. Séries Temporais. Modelagem e Simulação - Modelos de Previsão

Modelos de Previsão. 1. Introdução. 2. Séries Temporais. Modelagem e Simulação - Modelos de Previsão Modelos de Previsão Inrodução Em omada de decisão é basane comum raar problemas cujas decisões a serem omadas são funções de faos fuuros Assim, os dados descrevendo a siuação de decisão precisam ser represenaivos

Leia mais

3 PROGRAMAÇÃO DOS MICROCONTROLADORES

3 PROGRAMAÇÃO DOS MICROCONTROLADORES 3 PROGRAMAÇÃO DOS MICROCONTROLADORES Os microconroladores selecionados para o presene rabalho foram os PICs 16F628-A da Microchip. Eses microconroladores êm as vanagens de serem facilmene enconrados no

Leia mais

PREÇOS DE PRODUTO E INSUMO NO MERCADO DE LEITE: UM TESTE DE CAUSALIDADE

PREÇOS DE PRODUTO E INSUMO NO MERCADO DE LEITE: UM TESTE DE CAUSALIDADE PREÇOS DE PRODUTO E INSUMO NO MERCADO DE LEITE: UM TESTE DE CAUSALIDADE Luiz Carlos Takao Yamaguchi Pesquisador Embrapa Gado de Leie e Professor Adjuno da Faculdade de Economia do Insiuo Vianna Júnior.

Leia mais

SIMULAÇÃO DA OPERAÇÃO HIDRÁULICA DE RESERVATÓRIOS

SIMULAÇÃO DA OPERAÇÃO HIDRÁULICA DE RESERVATÓRIOS SIMULAÇÃO DA OPERAÇÃO HIDRÁULICA DE RESERVATÓRIOS Anasácio Sebasian Arce Encina 1, João Eduardo Gonçalves Lopes 2, Marcelo Auguso Cicogna 2, Secundino Soares Filho 2 e Thyago Carvalho Marques 2 RESUMO

Leia mais

DEMOGRAFIA. Assim, no processo de planeamento é muito importante conhecer a POPULAÇÃO porque:

DEMOGRAFIA. Assim, no processo de planeamento é muito importante conhecer a POPULAÇÃO porque: DEMOGRAFIA Fone: Ferreira, J. Anunes Demografia, CESUR, Lisboa Inrodução A imporância da demografia no planeameno regional e urbano O processo de planeameno em como fim úlimo fomenar uma organização das

Leia mais

Guia de Recursos e Atividades

Guia de Recursos e Atividades Guia de Recursos e Aividades girls worldwide say World Associaion of Girl Guides and Girl Scous Associaion mondiale des Guides e des Eclaireuses Asociación Mundial de las Guías Scous Unir as Forças conra

Leia mais

INTRODUÇÃO. 1. MODULAÇÃO POR CÓDIGO DE PULSO - PCM 1.1

INTRODUÇÃO. 1. MODULAÇÃO POR CÓDIGO DE PULSO - PCM 1.1 ETFSC UNED/SJ CURSO DE TELEFONIA DIGITAL CAPÍTULO. MODULAÇÃO POR CÓDIGO DE PULSO - PCM. INTRODUÇÃO. Uma grande pare dos sinais de inormações que são processados em uma rede de elecomunicações são sinais

Leia mais

4 Cenários de estresse

4 Cenários de estresse 4 Cenários de esresse Os cenários de esresse são simulações para avaliar a adequação de capial ao limie de Basiléia numa deerminada daa. Sua finalidade é medir a capacidade de o PR das insiuições bancárias

Leia mais

EXAME NACIONAL DO ENSINO SECUNDÁRIO VERSÃO 1

EXAME NACIONAL DO ENSINO SECUNDÁRIO VERSÃO 1 EXAME NACIONAL DO ENSINO SECUNDÁRIO 11.º ou 12.º Ano de Escolaridade (Decreo-Lei n.º 74/24, de 26 de Março) PROVA 715/16 Págs. Duração da prova: 12 minuos 27 1.ª FASE PROVA ESCRITA DE FÍSICA E QUÍMICA

Leia mais

GUIA DE ADEQUAÇÃO AMBIENTAL PARA DISTRIBUIDORES DE VEÍCULOS. Instruções para a Alta Direção e o Responsável Ambiental (RA)

GUIA DE ADEQUAÇÃO AMBIENTAL PARA DISTRIBUIDORES DE VEÍCULOS. Instruções para a Alta Direção e o Responsável Ambiental (RA) GUIA DE ADEQUAÇÃO AMBIENTAL PARA DISTRIBUIDORES DE VEÍCULOS Insruções para a Ala Direção e o Responsável Ambienal (RA) DIS TR IBU IDO R Adapado de: MANUAL DE ADEQUAÇÃO AMBIENTAL PARA CONCESSIONÁRIAS DE

Leia mais

F B d E) F A. Considere:

F B d E) F A. Considere: 5. Dois corpos, e B, de massas m e m, respecivamene, enconram-se num deerminado insane separados por uma disância d em uma região do espaço em que a ineração ocorre apenas enre eles. onsidere F o módulo

Leia mais