Discussão do Óxido de Níquel em Aproximações L(S)DA e GGA

Tamanho: px
Começar a partir da página:

Download "Discussão do Óxido de Níquel em Aproximações L(S)DA e GGA"

Transcrição

1 SCIENTIA PLENA VOL. 4, NUM Discussão do Óxido d Níqul m Aproximaçõs L(S)DA GGA S. A. d S. Farias 1 ; M. Lalic 1 1 Programa d Pós-graduação m Física, Uivrsidad Fdral d Srgip, , São Cristóvão-SE, Brasil fariassas@gmail.com (Rcbido m 1 d julho d 008; acito m 9 d agosto d 008) Métodos basados a Toria do Fucioal da Dsidad (DFT) têm como objtivo ivstigar várias propridads microscópicas dos sólidos. Hoj, ls são capazs d tratar cristais com dfitos, suprfícis, itrfacs, moléculas biológicas, além do qu, ivstigar fômos como smicodutividad, magtismo, suprcodutividad, itraçõs hiprfias, trasiçõs ópticas, corrlaçõs ltrôicas tr outras. Esss métodos cssitam d algumas aproximaçõs para srm utilizados m cálculos práticos, a mais simpls dstas é a aproximação da dsidad local d spi (LSDA) qu é basada a suposição d qu sistmas ltrôicos podm sr localmt rprstados por um gás d létros uiform. Uma são da dsidad local é a aproximação do gradit gralizado (GGA) qu, m modlagm d itraçõs ltrôicas ftivas, lva m cota sistmas ão homogêos. O prst trabalho discutirá a aplicação das aproximaçõs L(S)DA GGA m sistmas com forts corrlaçõs coulombiaas, mais spcificamt o óxido d íqul (NiO), sdo ralizado pla aális da dsidad d stado ltrôico m ambas as aproximaçõs. Palavras-chav: Toria do Fucioal da Dsidad, óxido d íqul, GGA, LSDA. Mthods basd o th thory of Dsity Fuctioal Thory of (DFT) ar dsigd to ivstigat various proprtis of microscopic solids. Today, thy ar capabl of dalig with crystal dfcts, surfacs, itrfacs, biological molculs, byod that, as ivstigat smicodutividad phoma, magtism, suprcoductivity, hiprfias itractios, trasitios optical, lctroic corrlatios amog othrs. Ths mthods rquir som approachs to b usd i practical calculatios, th simplst of ths is th approach of th local dsity of spi (LSDA), which is basd o th assumptio that lctroic systms ca b locally rprstd by a gas of uiform lctros. A sio of local dsity approximatio of th gradit is widsprad (GGA) which, i modlig of ffctiv lctroic itractios, taks ito accout ot homogous systms. This work discuss th implmtatio of approachs LSDA ad GGA i systms with strog corrlatios th coulomb, mor spcifically th ickl oxid (NiO), big coductd by th aalysis of th lctro dsity of stat i both approachs. Kywords: Dsity Fuctioal Thory, ickl of oxid, GGA, L(S)DA 1.INTRODUÇÃO O poto iicial do problma quâtico d muitos corpos stá o hamiltoiao do sistma d létros úclos itragido ltromagticamt: H = T H (01) H = T V V (0) V

2 S. A. d S. Farias & M. Lalic, Scitia Pla 4, , 008 m (01) T rprsta a rgia ciética d k úclos do sistma, a sguda compot d H é o hamiltoiao ltrôico H, m (0), dscrito pla rgia ciética d -létros ( T ), a itração tr létros úclos ( V ), a itração létro-létro ( V ), o potcial ltrôico úclo-úclo ( V ). O primiro passo para rsolvr ss problma d muitos corpos é dsacoplar os movimtos dos úclos dos létros, isso é ralizado pla aproximação d Bor-Opphimr, qu fatora a fução d oda total Ψ uma fução d oda uclôica Ψ uma fução d oda ltrôica Ψ. a ik Ψ R,..., R ; r σ,..., r σ ) = Ψ ( R,..., R ) Ψ ( R,..., R ; r σ,..., r σ ) (0) a i, k ( 1 k 1 1 N N ik 1 k k 1 k 1 1 N N a última fução d oda dpd das posiçõs uclôicas paramtricamt, d modo a trmos a sguit quação d Schrödigr. A DFT foi formalmt stablcida m 1964 dvido aos dois tormas d Hohbrg Koh [1]. O primiro torma d afirma qu xist uma corrspodêcia biuívoca tr a dsidad ltrôica do stado fudamtal ρ (, o potcial ro ν ( para um sistma d muitos létros. O sgudo torma alga qu a rgia o stado fudamtal é também um fucioal úico d ρ ( atig o valor míimo quado ρ ( é a vrdadira dsidad ltrôica o stado fudamtal do sistma. A rgia fucioal total o stado fudamtal, é da forma : k E [ ρ ] = ψ [ ρ] T W ψ [ ρ] ψ [ ρ] V ψ [ ρ] FHK (04) od [ ρ] [ ] FHK [ ρ] E ρ = d rv (05) F HK é o msmo fucioal dsidad para átomos, moléculas sólidos, dsd qu W, m todos os casos é a rpulsão coulombiaa tr létros, é um fucioal uivrsal ão dpd do potcial ro. Para qu a DFT tha valor prático é prciso implmtar uma aproximação para o fucioal dscohcido: F HK = 0 r r' [ ρ] d rd r' T [ ρ] V [ ρ] (06) o primiro trmo corrspod a rpulsão coulombiaa dos létros (trmo d Hartr). O sgudo, a rgia ciética d um sistma ltrôico ão itragt, o último é domiado potcial d troca corrlação. A part da rgia ciética itragt stá cotida o dscohcido potcial d troca corrlação. O sgudo torma d Hohmbrg Koh idica a possibilidad d dtrmiar a dsidad do stado fudamtal d um sistma d muitas partículas por uma quação variacioal: ( [ ρ] ) = 0 Substituido (06) m (05) aplicado a codição (07), rsulta m: δ E. (07) [ ] [ ] δt0 ρ δv ρ d r V d r' = δρ 0 (08) r r' δ δ

3 S. A. d S. Farias & M. Lalic, Scitia Pla 4, , 008 Os trmos dos potciais tr chavs, a xprssão (08), são aálogos aos da rgia total d um sistma ltrôico ão itragt m qu os létros s movm m um potcial ftivo, V ff Aqui o potcial d troca corrlação stá sdo dfiido por: = V d r' ν. (09) r r' [ ρ] δv ν = (10) δρ É importat rssaltar, qu a aalogia com o sistma d létros ão itragts só foi possívl graças à trasformação scolhida para o trmo d rgia ciética, isto é, dvido à trasfrêcia dos fitos d muitos corpos para o potcial d troca corrlação. O hamiltoiao dss sistma fictício é: () r Domiado por hamiltoiao d Koh Sham. 1 H KS = Vf. (11) m A dsidad ltrôica do stado fudamtal, ρ, pod sr obtida achado-s autovalors autovtors do H KS, isto é, rsolvdo-s formalmt as quaçõs do tipo d Schrödigr: Para, tão, calcular: 1 Vf i i i, m ψ = ε ψ (1) N ρ = ψ i. (1) O potcial ftivo dpd da dsidad, ρ, a qual dpd d i i= 1 ψ qu dvrão sr cotradas. Para rsolvr st problma utiliza-s o procdimto autocosistt qu cosist m costruir dsidads ρ 1, para motar o hamiltoiao H KS []. Rsolvdo o problma d autovalors autovtors, o rsultado é um cojuto d autofuçõs, ψ, do qual a ova dsidad, ρ, pod sr dtrmiada. Como prdomiatmt ρ 1 ρ, a dsidad d carga rcém calculada é misturada com a atrior ssa combiação passa a sr a ova dsidad. Ess procdimto cotiuará até qu a dsidad ão mud d um ciclo para o outro, isto é,. Quado ssa codição for atigida ρ = ρ tmos a dsidad qu miimiza a rgia cosqütmt o problma srá rsolvido. As quaçõs d Koh Sham [] dmostram qu é possívl trasformar um problma d muitos corpos m vários d um úico corpo qu s mov um potcial ftivo, dtrmiado apas a dsidad do stado fudamtal. Com ss squma, têm-s N quaçõs d uma partícula ão mais uma quação d N partículas itragts. A complxidad do problma ral d muitos corpos foi trasfrida para o potcial d troca corrlação, dscohcido.. POTENCIAL DE TROCA E CORRELAÇÃO A aproximação usual para obtr o trmo dscohcido d corrlação troca é o da Dsidad Local (LSDA) ou um aprfiçoamto dss último, domiada Aproximação do Gradit Gralizado (GGA). Elas foram dsvolvidas para um gás d létros homogêo. 1

4 S. A. d S. Farias & M. Lalic, Scitia Pla 4, , Na L(S)DA, divid-s o sistma d létros ral (qu é ão homogêo) m células muito pquas, ρ o potcial ro ν ( o voluma da célula são costats (para as quais, a dsidad r prtct ao volum da célula). Assim, m cada uma dssas células pod-s utilizar a xprssão para o gás d létros homogêos itragts, torado o fito da troca corrlação localizado. O fucioal d troca corrlação smpr pod sr scrito como E = Ex Ec = ρ ( ε x( ) ε c ( ) ) d r, o qual Ex é o fucioal d troca (grado plo pricípio d lusão d Paul) E c é o d corrlação (qu globa o fucioal rgia ciética d corrlação). Usado a L(S)DA o gás d létros, o fucioal d troca pod sr obtido dirtamt; quato o caso do fucioal d corrlação ão s cohc sua forma. Mas, isso é cotorado por cálculos d Mot Carlo Quâtico. A dsidad d um sistma ral é ão homogêa, variado spacialmt. Assim, pod-s propor uma mlhoria ao fucioal d troca corrlação da L(S)DA, ttado rprstar tal variação as adjacêcias do volum. Isso pod sr fito por mio d um fucioal d troca corrlação qu ão dpd apas da dsidad ρ um poto, mas também do módulo do su gradit () () () ρ r, ρ r ρ r tc. Ess é o método GGA qu d forma gral é mais apurado qu a LDA. O fucioal é scrito como: E () r ε ) r, ) r ( ) = ρ d r, o qual ε é a rgia d troca corrlação por volum. Por mio d muitos rsultados para o stado sólido com a L(S)DA as GGA s podm-s tirar as sguits coclusõs []: 1. L(S)DA. GGA i) a rgia total d suprfícis mtálicas é mor qu a xprimtal; ii) a rgia d troca é substimada tr 15 % a 0 % a d corrlação pod sr suprstimada m até 100 %; iii) quas todos íos gativos lvs mostram-s istávis; iv) os óxidos d mtais d trasição os gaps d rgia são da ordm d 100 % mors m rlação aos rsultados xprimtais; i) mlhoram os rsultados para átomos lvs, bm como, sus compostos; ii) as propridads dos mtais d trasição com létros d são aprimoradas; iii) os óxidos d mtais d trasição a LDA prdiz comportamto mtálico, quato o GGA, m algus casos um stado fudamtal isolat. Mas, m gral, as rgias dos gaps são substimadas m rlação aos rsultados xprimtais;. RESULTADOS E DISCUSSÃO Nst studo, costruímos uma suprcélula d óxido d íqul com oito átomos d íqul oito átomos d oxigêio (Ni 8 O 8 ). Os parâmtros d rd foram: a = b = c = 15,854 u.a. 0 α = β = γ = 90, a dscrição cristalográfica: 55_Fm-m, raios d muffi-ti (R MT ) iguais a, u.a. para o Ni 1,65 u.a. para o O, oito potos k s a primira zoa d Brilloui, fator d mistura d 0 % m squma Broyd, R-MT*K-MAX d A dsidad d stados do óxido d Níqul m aproximação do gradit gralizado (GGA) foi obtida com covrgêcia m distâcia d 0, u.a., m rgia d - 556,6084 Ry, m momto magético total d spi por célula d A dsidad d stados do óxido d Níqul m aproximação da dsidad local d spi (LSDA) foi obtida com covrgêcia m distâcia d 0, u.a., m rgia d ,44095 Ry, m momto magético total d spi por célula d 6,1804.

5 S. A. d S. Farias & M. Lalic, Scitia Pla 4, , Figura 1: Dsidad d stados para óxido d íqul m aproximação GGA Figura : Dsidad d stados para óxido d íqul m aproximação LDA Aalisamos as badas d com spis up dow do íqul a bada p do oxigêio. 4. CONCLUSÃO Os rsultados m ambas as aproximaçõs mostram létros dpositados o ívl d Frmi sm gap d bada, stado m dsacordo com rsultados xprimtais qu apota para um gap d 4, V [4], porém a covrgêcia m aproximação GGA atig mor rgia qu m aproximação L(S)DA, sdo portato mais satisfatória. A discrpâcia tr as simulaçõs os rsultados xprimtais é dvido a falha a dscrição d lmtos fortmt corrlacioados, caso do Nd, com as aproximaçõs L(S)DA GGA, justificado a utilização do parâmtros d Hubbard d troca, além do qu, a scolha da rgia d liarização é muito dificultada para lmtos fortmt corrlacioados, dvido ao achatamto dos orbitais. 1. HOHENBERG, P.; KOHN, W. Physical Rviw, v. 16,. B, p. B864-B871, KOHN, W,; SHAM, L. J. Physical Rviw, v. 140,. 4A, p. A11-A118, PERDEW, J.; CHEVARY, J. A.; VOSKO, S. H.; JACKSON, A. K.; PEDERSON, M. R.; SINGH, D. J.; FILHAIS, C.. Physical Rviw B, v. 46,. 11 p , LEE, G.; OH, S. J., Physical Rviw B, v 4, 14674, 1991.

ORBITAIS EM ÁTOMOS E. André Bathista Instituto de Física de São Carlos Universidade de São Paulo

ORBITAIS EM ÁTOMOS E. André Bathista Instituto de Física de São Carlos Universidade de São Paulo ORBITAIS EM ÁTOMOS E MOLÉCULAS Adré Bathista Istituto d Física d São Carlos Uivrsidad d São Paulo Torias º Toria da Coordação d Wrr. É a mais simpls das torias d orbitais atômicos molculars º Toria dos

Leia mais

Estatística Clássica

Estatística Clássica Estatística Clássica As rgias das difrts partículas do sistma (um istat particular s distribum d acordo com uma fução distribuição d probabilidad distribuição d Boltzma qu dpd da tmpratura T. Um xmplo

Leia mais

O He Líquido. e α N V. Caso de 1 mol de He em CNTP:

O He Líquido. e α N V. Caso de 1 mol de He em CNTP: Caso d mol d H m CNTP: α O H Líquido h c N (,4 kv.m) ( ) / mc V ( 4 GV,5 V) 5 (,4 V.m) 6,5 6 / ( 4 V 5 V) /,4 m ( 68) FNC76 - Física Modra / 6,4,5 4,5 cm 6

Leia mais

Boltzmann como boa aproximação das distribuições quânticas = 1. ε 2 ε

Boltzmann como boa aproximação das distribuições quânticas = 1. ε 2 ε oltzma como boa aproximação das distribuiçõs quâticas Fator d oltzma: ( ε ) ( ε ) g g ( ε ) ( ε ) ε ε Podmos usá-lo para dtrmiar a razão d ocupação d stados m um sistma quâtico, quado ε >>. Exmplo: colisõs

Leia mais

XXXI Olimpíada Brasileira de Matemática GABARITO Primeira Fase

XXXI Olimpíada Brasileira de Matemática GABARITO Primeira Fase XXXI Olimpíada Brasilira d Matmática GABARITO Primira Fas Soluçõs Nívl Uivrsitário Primira Fas PROBLEMA ( x) a) A drivada da fução f é f ( x) =, qu s aula apas para x =, sdo gativa para x < positiva para

Leia mais

Em termos da fração da renda total da população recebida por cada pessoa, na distribuição dual temos. pessoas

Em termos da fração da renda total da população recebida por cada pessoa, na distribuição dual temos. pessoas 6. Dual do Ídic d hil Dfiição Gral do Dual: Sja x uma variávl alatória com média µ distribuição tal qu o valor d crta mdida d dsigualdad é M. Chama-s dual a distribuição com as sguits caractrísticas: a.

Leia mais

1 Eliminação gaussiana com pivotamento parcial

1 Eliminação gaussiana com pivotamento parcial 1 Elimiação gaussiaa com pivotamto parcial Exmplo sm pivotamto parcial Costruimos a matriz complta: 0 2 2 1 1 1 6 0 2 2 1 2 1 1 1 1 0 2 2 1 1 1 6 1 2 0 0 2 0 6 x y z = 9 6 0 2 2 0 1 0 3 1 0 0 2 0 2 0 6

Leia mais

Departamento de Matemática e Ciências Experimentais Curso de Educação e Formação Tipo 6 Nível 3

Departamento de Matemática e Ciências Experimentais Curso de Educação e Formação Tipo 6 Nível 3 Dpartamto d Matmática Ciêcias Exprimtais Curso d Educação Formação Tipo 6 Nívl 3 Txto d apoio.º 4 Assuto: Forças d Atrito As forças d atrito são muito importats a vida quotidiaa. S por um lado, provocam

Leia mais

Anexo III Temperatura equivalente de ruído, Figura de ruído e Fator de mérito para estações de recepção (G/T)

Anexo III Temperatura equivalente de ruído, Figura de ruído e Fator de mérito para estações de recepção (G/T) Axo III mpratura quivalt d ruído, igura d ruído ator d mérito para staçõs d rcpção (/) III.. mpratura Equivalt d Ruído A tmpratura quivalt d ruído d um compot pod sr dfiida como sdo o valor d tmpratura

Leia mais

Lista de exercícios sugerida Capítulo 28: 28.4,.12, 13, 14, 15, 16, 19, 20, 21, 33, 35, 38, 42, 43, 52

Lista de exercícios sugerida Capítulo 28: 28.4,.12, 13, 14, 15, 16, 19, 20, 21, 33, 35, 38, 42, 43, 52 CAPÍUO 8 9: Física Quâtica Atôica RSOUÇÃO D XRCÍCIOS RVISÃO SIMUADO PARA A PROVA ista d rcícios sugrida Capítulo 8: 8.,., 3,, 5, 6, 9,,, 33, 35, 38,, 3, 5 ista d rcícios sugrida Capítulo 9: 9.,, 7, 9,,

Leia mais

Copyright LTG 2013 LTG/PTR/EPUSP

Copyright LTG 2013 LTG/PTR/EPUSP 1 Na Godésia a Topografia s ralizam mdiçõs d âgulos, distâcias, tc. Mdir uma gradza sigifica obtr um úmro associado a uma uidad qu rprst o valor dssa gradza. Tudo o qu s pod mdir (obsrvar) é domiado obsrvávl.

Leia mais

5. Elétrons em Sólidos

5. Elétrons em Sólidos 5 Elétros m Sólidos 5- O ás d Elétros Livrs: Estado udamtal A maior part das propridads físicas dos sólidos é, d uma forma ou d outra, dtrmiada plos létros O studo dos létros m sólidos, qu s iicia st capítulo,

Leia mais

sen( x h) sen( x) sen xcos h sen hcos x sen x

sen( x h) sen( x) sen xcos h sen hcos x sen x MAT00 Cálculo Difrcial Itgral I RESUMO DA AULA TEÓRICA Livro do Stwart: Sçõs 3., 3.4 3.8. DEMONSTRAÇÕES Nssa aula srão aprstadas dmostraçõs, ou sboços d dmostraçõs, d algus rsultados importats do cálculo

Leia mais

Regra dos Trapézios Composta i :

Regra dos Trapézios Composta i : FP_Ex1: Calcul um valor aproximado do itgral I = / 0 x si( x) dx com um rro d trucatura, ão suprior, m valor absoluto a 0.01 usado: a) a rgra dos Trapézios a rgra d Simpso (composta) Rgra dos Trapézios

Leia mais

Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I. Ano Lectivo º Semestre

Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I. Ano Lectivo º Semestre Faculdad d Ecoomia Uivrsidad Nova d Lisboa EXAME DE CÁLCULO I Ao Lctivo 8-9 - º Smstr Eam Fial d ª Época m d Jairo 9 Tópicos d Corrcção Duração: horas miutos É proibido usar máquias d calcular ou tlmóvis

Leia mais

Questão (a) 3.(b) 3.(c) 3.(d) 4.(a) 4.(b) 5.(a) 5.(b) 6 Cotação

Questão (a) 3.(b) 3.(c) 3.(d) 4.(a) 4.(b) 5.(a) 5.(b) 6 Cotação Faculdad d Ciêcias Exatas da Egharia PROVA DE AVALIAÇÃO DE CONHECIMENTOS E COMPETÊNCIAS PARA ADMISSÃO AO ENSINO SUPERIOR PARA MAIORES DE ANOS - 07 Matmática - 4/06/07 Atção: Justifiqu os raciocíios utilizados

Leia mais

Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I. Ano Lectivo º Semestre

Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I. Ano Lectivo º Semestre aculdad d Ecoomia Uivrsidad Nova d Lisboa EXAME DE CÁLCULO I Ao Lctivo 009-0 - º Smstr Eam ial d ª Época m d Jairo d 00 Duração: horas 0 miutos É proibido usar máquias d calcular ou tlmóvis Não tha o su

Leia mais

Identifique todas as folhas Folhas não identificadas NÃO SERÃO COTADAS. Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I

Identifique todas as folhas Folhas não identificadas NÃO SERÃO COTADAS. Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I Idtifiqu todas as folhas Folhas ão idtificadas NÃO SERÃO COTADAS Faculdad d Ecoomia Uivrsidad Nova d Lisboa EXAME DE CÁLCULO I Ao Lctivo 8-9 - º Smstr Exam Fial d ª Época m 5 d Maio 9 Duração: horas miutos

Leia mais

TÓPICOS. Sinais contínuos e sinais discretos. Função impulso unitário discreto.

TÓPICOS. Sinais contínuos e sinais discretos. Função impulso unitário discreto. Not bm: a litura dsts apotamtos ão dispsa d modo algum a litura atta da bibliografia pricipal da cadira hama-s a atção para a importâcia do trabalho pssoal a ralizar plo aluo rsolvdo os problmas aprstados

Leia mais

VIBRAÇÕES LIVRES SEM AMORTECIMENTO DE SISTEMAS com 1 GL

VIBRAÇÕES LIVRES SEM AMORTECIMENTO DE SISTEMAS com 1 GL UNIVERSIDADE FEDERA DA PARAÍBA CENTRO DE TECNOOGIA DEPARTAENTO DE ENGENHARIA ECÂNICA VIBRAÇÕES DOS SISTEAS ECÂNICOS VIBRAÇÕES IVRES SE AORTECIENTO DE SISTEAS com G NOTAS DE AUAS Virgílio doça da Costa

Leia mais

MATEMÁTICA. QUESTÃO 1 De quantas maneiras n bolas idênticas podem ser distribuídas em três cestos de cores verde, amarelo e azul?

MATEMÁTICA. QUESTÃO 1 De quantas maneiras n bolas idênticas podem ser distribuídas em três cestos de cores verde, amarelo e azul? (9) - www.litcampias.com.br O ELITE RESOLVE IME 8 TESTES MATEMÁTICA MATEMÁTICA QUESTÃO D quatas mairas bolas idêticas podm sr distribuídas m três cstos d cors vrd, amarlo azul? a) b) d) ( )! ) Rsolução

Leia mais

Não serão feitos esclarecimentos individuais sobre questões durante a prova. Não se esqueça que tudo é para justificar.

Não serão feitos esclarecimentos individuais sobre questões durante a prova. Não se esqueça que tudo é para justificar. Eam m 7 d Jairo d 007 Cálculo ATENÇÃO: FOLHAS DE EXAE NÃO IDENTIFICADAS NÃO SERÃO COTADAS Cálculo / Eam fial ª Época 7 Jairo d 007 Duração: horas 0 miutos Rsolva os grupos do am m folhas sparadas O uso

Leia mais

Dinâmica Estocástica Aula 7 Ifusp, setembro de Tânia - Din Estoc

Dinâmica Estocástica Aula 7 Ifusp, setembro de Tânia - Din Estoc Diâmica Estocástica Aula 7 Iusp, stmbro d 016 Tâia - Di Estoc - 016 1 . Discrtização da quação d Lagvi. Obtção da quação d Fokkr-Plack Tâia - Di Estoc - 016 Discrtização da quação d Lagvi A orma discrtizada

Leia mais

Variáveis aleatórias Conceito de variável aleatória

Variáveis aleatórias Conceito de variável aleatória Variávis alatórias Muitos primtos alatórios produzm rsultados ão-uméricos. Ats d aalisá-los, é covit trasformar sus rsultados m úmros, o qu é fito através da variávl alatória, qu é uma rgra d associação

Leia mais

Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I. Ano Lectivo º Semestre

Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I. Ano Lectivo º Semestre Faculdad d Ecoomia Uivrsidad Nova d Lisboa EXAME DE CÁLCULO I Ao Lctivo 8-9 - º Smstr Eam Fial d ª Época m d Jairo 9 Tópicos d Corrcção Duração: horas miutos É proibido usar máquias d calcular ou tlmóvis

Leia mais

Novo Espaço Matemática A 12.º ano Proposta de Teste [maio 2018]

Novo Espaço Matemática A 12.º ano Proposta de Teste [maio 2018] Novo Espaço Matmática A 1.º ao Proposta d Tst [maio 018] Nom: Ao / Turma: N.º: Data: - - Não é prmitido o uso d corrtor. Dvs riscar aquilo qu prtds qu ão sja classificado. A prova iclui um formulário.

Leia mais

Aplicação de um algoritmo quântico para obtenção de autoenergias de potenciais oscilatórios

Aplicação de um algoritmo quântico para obtenção de autoenergias de potenciais oscilatórios SCIENTIA PLENA VOL. 6, NUM. www.scitiapla.org.br Aplicação d um algoritmo quâtico para obtção d autorgias d potciais oscilatórios José Irailso J. Satos, Clélio B. Goms, Adr M. C. Souza Dpartamto d Física,

Leia mais

Ánálise de Fourier tempo discreto

Ánálise de Fourier tempo discreto Faculdad d Egharia Áális d Fourir tmpo discrto 4 3.5 3.5.5.5.5.5 -.5 -.5 - - -8-6 -4-4 6 8 - - -5 5 5 5 3 SS MIEIC 8/9 Aális d Fourir m tmpo discrto aula d hoj Faculdad d Egharia Rsposta d SLITs discrtos

Leia mais

( C) lim g( x) 2x 4 0 ( D) lim g( x) 2x

( C) lim g( x) 2x 4 0 ( D) lim g( x) 2x AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Ficha d Trabalho º6 - Fuçõs - º ao Eams 0 a 04. Na figura stá rprstada um rfrcial o.. Oy, part do gráfico d uma fução g, d domíio 3,. A rta d quação y 4 é assítota do

Leia mais

Trabalho 3. Gustavo Mello Reis Página 1

Trabalho 3. Gustavo Mello Reis Página 1 Trabalho 3 Gustavo Mllo Ris Págia 1 1. Histograma a) Uma mprsa qu fabrica doc d lit dsja studar a distribuição da quatidad d doc lit por lata (), com o objtivo d visualizar a variação dsta. Para isto foi

Leia mais

Equações Diferenciais Lineares

Equações Diferenciais Lineares Equaçõs Diriais Liars Rordmos a orma gral d uma quação dirial liar d ordm a d d d d a a a, I d d m qu as uçõs a i são idpdts da variávl. S, a quação diz-s liar homogéa. Caso otrário, diz-s liar omplta.

Leia mais

FUNÇÕES DE UMA VARIÁVEL COMPLEXA

FUNÇÕES DE UMA VARIÁVEL COMPLEXA FUNÇÕES DE UMA VARIÁVEL COMPLEXA Ettor A. d Barros 1. INTRODUÇÃO Sja s um númro complxo qualqur prtncnt a um conjunto S d númros complxos. Dizmos qu s é uma variávl complxa. S, para cada valor d s, o valor

Leia mais

Física Tópicos Modernos Difícil [10 Questões]

Física Tópicos Modernos Difícil [10 Questões] Física Tópicos Modros Difícil [1 Qustõs] 1 - (ITA SP) Um átomo d idrogêio tm ívis d rgia discrtos dados pla quação E = 1,6 m qu { Z / 1}. Sabdo qu um fóto d rgia 1,19 V xcitou o átomo do stado fudamtal

Leia mais

Capítulo 5 Transformadas de Fourier

Capítulo 5 Transformadas de Fourier Capítulo 5 Trasformadas d Fourir 5. Aális da composição d sistmas através da rsposta m frquêcia 5.2 Trasformadas d Fourir propridads Capítulo 5 Trasformadas d Fourir 5. Aális da composição d sistmas através

Leia mais

Exercícios de Cálculo Numérico - Erros

Exercícios de Cálculo Numérico - Erros Ercícios d Cálculo Numérico - Erros. Cosidr um computador d bits com pot máimo ( a rprstação m aritmética lutuat a bas. (a Dtrmi o mor úmro positivo rprstávl sta máquia a bas. (b Dtrmi o maior úmro positivo

Leia mais

Proposta de Exame Final de Matemática A

Proposta de Exame Final de Matemática A Proposta d Eam Fial d Matmática. N DE ESCLRIDDE Duração da prova: 50 miutos. Tolrâcia: 30 miutos Data: Grupo I Na rsposta aos its dst grupo, slcio a opção corrta. Escrva, a olha d rspostas, o úmro do itm

Leia mais

Contabilometria. Prof.: Patricia Maria Bortolon, D. Sc.

Contabilometria. Prof.: Patricia Maria Bortolon, D. Sc. Cotabilomtria Prof.: Patricia Maria Bortolo, D. Sc. Dimsioado Amostras Itrvalos d Cofiaça m Auditoria Fot: LEVINE, D. M.; STEPHAN, D. F.; KREHBIEL, T. C.; BERENSON, M. L.; Estatística Toria Aplicaçõs,

Leia mais

Novo Espaço Matemática A 12.º ano Proposta de Teste [maio 2018]

Novo Espaço Matemática A 12.º ano Proposta de Teste [maio 2018] Proposta d Tst [maio 018] Nom: Ao / Turma: Nº: Data: - - Não é prmitido o uso d corrtor Dvs riscar aquilo qu prtds qu ão sja classificado A prova iclui um formulário As cotaçõs dos its cotram-s o fial

Leia mais

Modelos de regressão linear simples: Capítulo 9 - Introdução à regressão linear simples. + β Modelos de regressão. Y = β 0.

Modelos de regressão linear simples: Capítulo 9 - Introdução à regressão linear simples. + β Modelos de regressão. Y = β 0. Aa Pirs, IST, Dzmbro d 000 Aa Pirs, IST, Dzmbro d 000 Capítulo 9 - Itrodução à rgrssão liar simpls 9. Modlos d rgrssão Modlos d rgrssão liar simpls: ou E( Y ) β 0 Y β 0 + ε São modlos utilizados para comprdr

Leia mais

, onde F n é uma força de tracção e d o alongamento correspondente. F n [N] -1000 -2000

, onde F n é uma força de tracção e d o alongamento correspondente. F n [N] -1000 -2000 º Tst d CONTROLO DE SISTEMS (TP E PRO) Licciatura m Eg.ª Mcâica Prof. Rsposávl: Pdro Maul Goçalvs Lourti d bril d 00 º Smstr Duração: hora miutos. Tst com cosulta. Rsolução. Cosidr o sistma rprstado a

Leia mais

( )( ) ( ) 2 2 ( ) ( ) 2. Questões tipo exame. Pág θ =. θ =, logo. Portanto, 1.1. ( ) 2. = θ 4.º Q, ou. = θ, tem-se.

( )( ) ( ) 2 2 ( ) ( ) 2. Questões tipo exame. Pág θ =. θ =, logo. Portanto, 1.1. ( ) 2. = θ 4.º Q, ou. = θ, tem-se. + 8...... Sdo Arg( ) θ, tm-s sja, taθ θ.º quadrat, tão Portato,. Pág. 8 taθ θ.º Q, ou θ. + + b ( + ) + b( + ) + c b c + + + + c + + + b b c b+ b+ c ( b ) b+ c+ b+ c b c + b b c b Portato, b c.. + S Arg(

Leia mais

Momento do dipolo magnetico. Antonio Saraiva = q. e e. e e. e-- Frequencia de Compton; Re-- Raio do electrão.

Momento do dipolo magnetico. Antonio Saraiva = q. e e. e e. e-- Frequencia de Compton; Re-- Raio do electrão. Moto do dipolo agtico toio araiva ajps@otail.co Para o lctrão: p c + µ p-- Moto caóico; -- Massa do lctrão; c Vlocidad da luz; c-- Moto ciético; µ -- Moto potcial (falso oto do dipolo agético). µ q ; c

Leia mais

TÓPICOS DE RESOLUÇÃO DO EXAME DE CÁLCULO I

TÓPICOS DE RESOLUÇÃO DO EXAME DE CÁLCULO I Faculdad d Ecoomia Uivrsidad Nova d Lisboa TÓPICOS DE RESOLUÇÃO DO EXAME DE CÁLCULO I Ao Lctivo 7-8 - º Smstr Eam Fial d 1ª Época m d Juho d 8 Duração: horas 3 miutos É proibido usar máquias d calcular

Leia mais

1 O Pêndulo de Torção

1 O Pêndulo de Torção Figura 1.1: Diagrama squmático rprsntando um pêndulo d torção. 1 O Pêndulo d Torção Essa aula stá basada na obra d Halliday & Rsnick (1997). Considr o sistma físico rprsntado na Figura 1.1. Ess sistma

Leia mais

Laboratório de Dinâmica SEM 545 SISTEMAS MICROELETROMECÂNICOS

Laboratório de Dinâmica SEM 545 SISTEMAS MICROELETROMECÂNICOS UNIVERSIDADE DE SÃO PAULO ESCOLA DE ENGENHARIA DE SÃO CARLOS DEPARTAMENTO DE ENGENHARIA MECÂNICA Laboratório d Diâmica SEM 545 SISTEMAS MICROELETROMECÂNICOS Modlagm d Sistmas Diâmicos - Rvisão Rsp.: Profs.

Leia mais

FÍSICA - ENADE 2005 PADRÃO DE RESPOSTAS - QUESTÕES DISCURSIVAS

FÍSICA - ENADE 2005 PADRÃO DE RESPOSTAS - QUESTÕES DISCURSIVAS FÍSICA - ENADE 5 PADRÃO DE RESPOSTAS - QUESTÕES DISCURSIVAS Qustão 4 a) Plo torma da quipartição da rgia: 3 E c = m v = k T B (valor: 3, potos) E c αk B T, sm mcioar ou rrado o coficit. (valor:, poto)

Leia mais

Soluções de Equações em uma Variável

Soluções de Equações em uma Variável EQE-358 MÉTODOS NUMÉRICOS EM ENGENHARIA QUÍMICA PROFS. EVARISTO E ARGIMIRO Capítulo 4 Soluçõs d Equaçõs m uma Variávl Cosidrado o problma d um rator cotíuo d taqu agitado (CSTR) ãoisotérmico, com propridads

Leia mais

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo Intgração Múltipla Prof. M.Sc. Armando Paulo da Silva UTFP Campus Cornélio Procópio )INTEGAIS DUPLAS: ESUMO Emplo Emplo Calcul 6 Calcul 6 dd dd O fato das intgrais rsolvidas nos mplos srm iguais Não é

Leia mais

AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Ficha de Trabalho nº 7 - Funções - 12º ano Exames 2015 a 2017 k 3 log 3? 9

AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Ficha de Trabalho nº 7 - Funções - 12º ano Exames 2015 a 2017 k 3 log 3? 9 AGRUPAMENTO DE ESCOLAS DE MORTÁGUA Ficha d Trabalho º 7 - Fuçõs - º ao Eams 05 a 07 k 3 log 3? 9. Qual das sguits prssõs é, para qualqur úmro ral k, igual a k k ( A) ( B) k ( C) ( D) k 9 (05-ª) 9. Cosidr

Leia mais

Solução da equação de Poisson 1D com coordenada generalizada

Solução da equação de Poisson 1D com coordenada generalizada Solução da quação d Poisson 1D com coordnada gnralizada Guilhrm Brtoldo 8 d Agosto d 2012 1 Introdução Ao s rsolvr a quação d Poisson unidimnsional d 2 T = fx), 0 x 1, 1) dx2 sujita às condiçõs d contorno

Leia mais

Modelos de regressão linear simples: Capítulo 9 - Introdução à regressão linear simples. + β Modelos de regressão. Y = β 0.

Modelos de regressão linear simples: Capítulo 9 - Introdução à regressão linear simples. + β Modelos de regressão. Y = β 0. Aa Pirs, IST, Dzmbro d Capítulo 9 - Itrodução à rgrssão liar simpls 9. Modlos d rgrssão Aa Pirs, IST, Dzmbro d Modlos d rgrssão liar simpls: ou E( Y ) β Y β + ε São modlos utilizados para comprdr a rlação

Leia mais

Nota 1: Esta questão poderia ser resolvida de outra maneira, usando a seguinte propriedade: RESOLUÇÃO DA PROVA MODELO N.º 14

Nota 1: Esta questão poderia ser resolvida de outra maneira, usando a seguinte propriedade: RESOLUÇÃO DA PROVA MODELO N.º 14 RESLUÇÃ DA PRVA MDEL N.º GRUP I ITENS DE ESCLHA MÚLTIPLA. Cosidrmos o sguit squma: S as duas ltras A ficassm as duas primiras posiçõs a ltra D a trcira posição tmos: As duas ltras A podm ocupar as oito

Leia mais

Análise e Processamento de BioSinais. Mestrado Integrado Engenharia Biomédica. Faculdade de Ciências e Tecnologia. Universidade de Coimbra

Análise e Processamento de BioSinais. Mestrado Integrado Engenharia Biomédica. Faculdade de Ciências e Tecnologia. Universidade de Coimbra Aális Procssamto d BioSiais Mstrado Itgrado Egharia Biomédica Faculdad d Ciêcias cologia Slid Aális Procssamto d BioSiais MIEB Adaptado dos slids S&S d Jorg Dias ópicos: o Aális d Fourir para Siais Sistmas

Leia mais

Novo Espaço Matemática A 12.º ano Proposta de Teste [janeiro ]

Novo Espaço Matemática A 12.º ano Proposta de Teste [janeiro ] Novo Espaço Matmática A.º ao Proposta d Tst [jairo - 08] Nom: Ao / Turma: N.º: Data: / / Não é prmitido o uso d corrtor. Dvs riscar aquilo qu prtds qu ão sja classificado. A prova iclui um formulário.

Leia mais

Light Amplification by Stimulated Emission of Radiation

Light Amplification by Stimulated Emission of Radiation oltzma como boa aproximação das distribuiçõs quâticas Quado o o médio d partículas por stado quâtico é muito mor do qu, as distribuiçõs quâticas s cofudm com a clássica Fator d oltzma: ( ε ) ( ε ) g g

Leia mais

PTC-2433 TEORIA DAS COMUNICAÇÕES II ADENDO SOBRE CÓDIGOS CORRETORES / DETECTORES DE ERRO

PTC-2433 TEORIA DAS COMUNICAÇÕES II ADENDO SOBRE CÓDIGOS CORRETORES / DETECTORES DE ERRO TC-433 TEORIA DAS COMUNICAÇÕES II ADENDO SOBRE CÓDIGOS CORRETORES / DETECTORES DE ERRO Rcordado a visualização gométrica pod-s aida scrvr qu: ara dtctar até l rros por palavra d mi l Corrigir até t rros

Leia mais

TÓPICOS. Vectores livres. Vectores em R 2 e R 3. Vectores em R n. Vectores iguais. Soma de vectores. Notação matricial.

TÓPICOS. Vectores livres. Vectores em R 2 e R 3. Vectores em R n. Vectores iguais. Soma de vectores. Notação matricial. Not bm: a litra dsts apotamtos ão dispsa d modo algm a litra atta da bibliografia pricipal da cadira TÓPICOS Vctors lirs. AULA 09 Chama-s a atção para a importâcia do trabalho pssoal a ralizar plo alo

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adriano Pdrira Cattai apcattai@ahoocombr Univrsidad Fdral da Bahia UFBA, MAT A01, 006 3 Suprfíci Cilíndrica 31 Introdução Dfinição d Suprfíci Podmos obtr suprfícis não somnt por mio d uma quação do tipo

Leia mais

Aula Teórica nº 8 LEM-2006/2007. Trabalho realizado pelo campo electrostático e energia electrostática

Aula Teórica nº 8 LEM-2006/2007. Trabalho realizado pelo campo electrostático e energia electrostática Aula Tórica nº 8 LEM-2006/2007 Trabalho ralizado plo campo lctrostático nrgia lctrostática Considr-s uma carga q 1 no ponto P1 suponha-s qu s trás uma carga q 2 do até ao ponto P 2. Fig. S as cargas form

Leia mais

LEITURA 1: CAMPO ELÁSTICO PRÓXIMO À PONTA DA TRINCA

LEITURA 1: CAMPO ELÁSTICO PRÓXIMO À PONTA DA TRINCA Fadiga dos Matriais Mtálicos Prof. Carlos Baptista Cap. 4 PROPAGAÇÃO DE TRINCAS POR FADIGA LEITURA 1: CAMPO ELÁSTICO PRÓXIMO À PONTA DA TRINCA Qualqur solução do campo d tnsõs para um dado problma m lasticidad

Leia mais

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita:

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita: Máquinas Térmicas Para qu um dado sistma raliz um procsso cíclico no qual rtira crta quantidad d nrgia, por calor, d um rsrvatório térmico cd, por trabalho, outra quantidad d nrgia à vizinhança, são ncssários

Leia mais

A trajetória sob a ação de uma força central inversamente proporcional ao quadrado da distância

A trajetória sob a ação de uma força central inversamente proporcional ao quadrado da distância A trajtória sob a ação d uma força cntral invrsamnt proporcional ao quadrado da distância A força gravitacional a força ltrostática são cntrais proporcionais ao invrso do quadrado da distância ao cntro

Leia mais

3 Modelagem de motores de passo

3 Modelagem de motores de passo 31 3 odlagm d motors d passo Nst capítulo é studado um modlo d motor d passo híbrido. O modlo dsnolido é implmntado no ambint computacional Simulink/TL. Est modlo pod sr utilizado m motors d imã prmannt,

Leia mais

Oscilações amortecidas

Oscilações amortecidas Oscilaçõs amortcidas Uso d variávl complxa para obtr a solução harmônica ral A grand vantagm d podr utilizar númros complxos para rsolvr a quação do oscilador harmônico stá associada com o fato d qu ssa

Leia mais

4.1 Método das Aproximações Sucessivas ou Método de Iteração Linear (MIL)

4.1 Método das Aproximações Sucessivas ou Método de Iteração Linear (MIL) 4. Método das Aproimaçõs Sucssivas ou Método d Itração Linar MIL O método da itração linar é um procsso itrativo qu aprsnta vantagns dsvantagns m rlação ao método da bisscção. Sja uma função f contínua

Leia mais

O raio de um núcleo típico é cerca de dez mil vezes menor que o raio do átomo ao qual pertence, mas contém mais de 99,9% da massa desse átomo.

O raio de um núcleo típico é cerca de dez mil vezes menor que o raio do átomo ao qual pertence, mas contém mais de 99,9% da massa desse átomo. Caractrísticas Grais do Núclo O raio d um núclo típico é crca d dz mil vzs mnor qu o raio do átomo ao qual prtnc, mas contém mais d 99,9% da massa dss átomo. Constituição O núclo atômico é composto d partículas

Leia mais

Externalidades 1 Introdução

Externalidades 1 Introdução Extrnalidads 1 Introdução Há várias maniras altrnativas d s d nir xtrnalidads. Considrmos algumas dlas. D nição 1: Dizmos qu xist xtrnalidad ou fito xtrno quando as açõs d um agnt aftam dirtamnt as possibilidads

Leia mais

Critérios de falha PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL

Critérios de falha PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL PROF. ALEXANDRE A. CURY DEPARTAMENTO DE MECÂNICA APLICADA E COMPUTACIONAL A avaliação das tnsõs dformaçõs smpr é fita m função d crtas propridads do matrial. Entrtanto, não basta apnas calcular ssas grandzas.

Leia mais

Aula 15 O Diodo e a junção pn na condição de polarização direta

Aula 15 O Diodo e a junção pn na condição de polarização direta Aula 15 O iodo a jução a codição d olarização dirta P/EPUP 362 362 P 2223 trodução à Eltrôica Programação ara a Primira Prova P/EPUP 11ª 05/04 12ª 08/04 13ª 12/04 14ª 15/04 15ª 26/04 16ª 29/04 17ª 03/05

Leia mais

CÁLCULO I 2º Semestre 2011/2012. Duração: 2 horas e 15 minutos

CÁLCULO I 2º Semestre 2011/2012. Duração: 2 horas e 15 minutos NOVA SCHOOL OF BSINESS AND ECONOMICS CÁLCLO I º Smstr / CORRECÇÃO DO EXAME ª ÉPOCA Maio Duração: horas miutos Não é prmitido o uso d aluladoras. Não pod dsagraar as olhas do uiado. Rspoda d orma justiiada

Leia mais

J. Ricardo de Sousa 1, Débora Coimbra

J. Ricardo de Sousa 1, Débora Coimbra Rvista Brasilira d sio d Física, v. 26,. 2, p. 29-37, (2004) www.sbfisica.org.br Aális da covrgêcia a Toria da Prturbação stacioária (Covrgc Aalisys i Statioary Prturbatio Thory) J. Ricardo d Sousa, ébora

Leia mais

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P

/ :;7 1 6 < =>6? < 7 A 7 B 5 = CED? = DE:F= 6 < 5 G? DIHJ? KLD M 7FD? :>? A 6? D P 26 a Aula 20065 AMIV 26 Exponncial d matrizs smlhants Proposição 26 S A SJS ntão Dmonstração Tmos A SJS A % SJS SJS SJ % S ond A, S J são matrizs n n ", (com dt S 0), # S $ S, dond ; A & SJ % S SJS SJ

Leia mais

TÓPICOS. ordem; grau; curvas integrais; condições iniciais e fronteira. 1. Equações Diferenciais. Conceitos Gerais.

TÓPICOS. ordem; grau; curvas integrais; condições iniciais e fronteira. 1. Equações Diferenciais. Conceitos Gerais. Not bm, a litura dsts apontamntos não dispnsa d modo algum a litura atnta da bibliografia principal da cadira hama-s à atnção para a importância do trabalho pssoal a ralizar plo aluno rsolvndo os problmas

Leia mais

Análise Matemática IV

Análise Matemática IV Anális Matmática IV Problmas para as Aulas Práticas Smana 7 1. Dtrmin a solução da quação difrncial d y d t = t2 + 3y 2 2ty, t > 0 qu vrifica a condição inicial y(1) = 1 indiqu o intrvalo máximo d dfinição

Leia mais

5.10 EXERCÍCIO pg. 215

5.10 EXERCÍCIO pg. 215 EXERCÍCIO pg Em cada um dos sguints casos, vriicar s o Torma do Valor Médio s aplica Em caso airmativo, achar um númro c m (a, b, tal qu (c ( a - ( a b - a a ( ; a,b A unção ( é contínua m [,] A unção

Leia mais

TÓPICOS. Vectores livres. Vectores em Rn. Produto interno. Norma. Resulta da definição de produto interno entre vectores que:

TÓPICOS. Vectores livres. Vectores em Rn. Produto interno. Norma. Resulta da definição de produto interno entre vectores que: Not bm: a litra dsts apotamtos ão dispsa d modo algm a litra atta da bibliografia pricipal da cadira TÓPICOS Vctors lirs AULA 8 Chama-s a atção para a importâcia do trabalho pssoal a ralizar plo alo rsoldo

Leia mais

Conteúdo. Eduardo Germer Guilherme Bertoldo Jonas Joacir Radtke Setembro de 2012

Conteúdo. Eduardo Germer Guilherme Bertoldo Jonas Joacir Radtke Setembro de 2012 Documtação do código Mach-D. scoamto bidimsioal xtro sobr a part frotal d um corpo d simtria plaa ou axial. ulr Vrsão: 5.8.. Rvisão - 00; Brach: -Factor duardo Grmr Guilhrm Brtoldo Joas Joacir Radtk Stmbro

Leia mais

Programa de Pós-Graduação Processo de Seleção 2 0 Semestre 2008 Exame de Conhecimento em Física

Programa de Pós-Graduação Processo de Seleção 2 0 Semestre 2008 Exame de Conhecimento em Física UNIVERSIDADE FEDERAL DE GOIAS INSTITUTO DE FÍSICA C.P. 131, CEP 74001-970, Goiânia - Goiás - Brazil. Fon/Fax: +55 62 521-1029 Programa d Pós-Graduação Procsso d Slção 2 0 Smstr 2008 Exam d Conhcimnto m

Leia mais

ONDAS ELETROMAGNÉTICAS EM MEIOS CONDUTORES

ONDAS ELETROMAGNÉTICAS EM MEIOS CONDUTORES LTROMAGNTISMO II 3 ONDAS LTROMAGNÉTICAS M MIOS CONDUTORS A quação d onda dduida no capítulo antrior é para mios sm prdas ( = ). Vamos agora ncontrar a quação da onda m um mio qu aprsnta condutividad não

Leia mais

Definição clássica de probabilidade. Seja S finito e S, o número de elementos de S, por exemplo, quaisquer!,! 0 2 S. Então

Definição clássica de probabilidade. Seja S finito e S, o número de elementos de S, por exemplo, quaisquer!,! 0 2 S. Então Dfiição clássica probabili Dfiição Sja S fiito S o úmro lmtos S por xmplo S {a b c S 3 Supoha P({) P({ 0 )para quaisr 0 2 S Etão P({) /S Dmostração Como S é do tipo S { 2 o S sgu S { [ { 2 [ [ { portato

Leia mais

Campo Gravítico da Terra

Campo Gravítico da Terra 3.9 Camada d G Toma d Stoks Toma d Stoks: sdo S uma supf íci quipotcial d um campo Nwtoiao, cotdo o su itio todas as massas atats, s s modifica a distibuição das massas, sm alta a sua totalidad, po foma

Leia mais

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período

Resolução da Prova 1 de Física Teórica Turma C2 de Engenharia Civil Período Rsolução da Prova d Física Tórica Turma C2 d Engnharia Civil Príodo 2005. Problma : Qustõs Dados do problma: m = 500 kg ; v i = 4; 0 m=s ;! a = 5! g d = 2 m. Trabalho ralizado por uma força constant: W

Leia mais

Jason Alfredo Carlson Gallas

Jason Alfredo Carlson Gallas 11 d Dzmbro d 24, às 6:22 p.m. Exrcícios Rsolidos d Toria Eltromagética Jaso Alfrdo Carlso Gallas Profssor Titular d Física Tórica Doutor m Física pla Uirsidad Ludwig Maximilia d Muiqu, Almaha Uirsidad

Leia mais

estados. Os estados são influenciados por seus próprios valores passados x

estados. Os estados são influenciados por seus próprios valores passados x 3 Filtro d Kalman Criado por Rudolph E. Kalman [BROWN97] m 1960, o filtro d Kalman (FK) foi dsnvolvido inicialmnt como uma solução rcursiva para filtragm linar d dados discrtos. Para isto, utiliza quaçõs

Leia mais

Funções Polinomiais e o Mundo Digital

Funções Polinomiais e o Mundo Digital Fuçõs Poliomiais o Mudo Digital Wadrly Moura Rzd Istituto d Matmática Estatística Uivrsidad Fdral Flumis 1 Itrodução Uma fução ral poliomial é uma fução f d IR m IR qu a cada úmro ral associa o 1 úmro

Leia mais

Conteúdo. Eduardo Germer Guilherme Bertoldo Jonas Joacir Radtke Outubro de 2012

Conteúdo. Eduardo Germer Guilherme Bertoldo Jonas Joacir Radtke Outubro de 2012 Documtação do código Mach-D. Escoamto bidimsioal xtro sobr a part frotal d cos cuhas. Eulr Vrsão: 5.8.. Rvisão - 00, Brach: Co_Wdg Eduardo Grmr Guilhrm Brtoldo Joas Joacir Radtk Outubro d 0 Cotúdo Dscrição

Leia mais

Conteúdo. Eduardo Germer Guilherme Bertoldo Jonas Joacir Radtke Outubro de 2012

Conteúdo. Eduardo Germer Guilherme Bertoldo Jonas Joacir Radtke Outubro de 2012 Documtação do código Mach-D. Escoamto bidimsioal xtro sobr a part frotal d um corpo d simtria plaa ou axial. Eulr Vrsão: 5.8.. Rvisão - 00; Brach: trasit Eduardo Grmr Guilhrm Brtoldo Joas Joacir Radtk

Leia mais

CADERNO 1 (É permitido o uso de calculadora gráfica.)

CADERNO 1 (É permitido o uso de calculadora gráfica.) Nom: Ao / Trma: Nº: Data: - - Não é prmitido o so d corrtor Dvs riscar aqilo q prtds q ão sja classificado A prova icli m formlário As cotaçõs dos its cotram-s o fial do ciado da prova CADERNO 1 (É prmitido

Leia mais

PGF MECÂNICA QUÂNTICA I (2010) Resolução Comentada da Lista de Problemas 1 Eduardo T. D. Matsushita

PGF MECÂNICA QUÂNTICA I (2010) Resolução Comentada da Lista de Problemas 1 Eduardo T. D. Matsushita PGF500 - MECÂNICA QUÂNTICA I 00 Rsolução Comntada da Lista d Problmas Eduardo T. D. Matsushita. a Qurmos dtrminar os autovalors os autostados do oprador Ŝ n para uma partícula d spin /, ond a dirção n

Leia mais

λ, para x 0. Outras Distribuições de Probabilidade Contínuas

λ, para x 0. Outras Distribuições de Probabilidade Contínuas abilidad Estatística I Antonio Roqu Aula 3 Outras Distribuiçõs d abilidad Contínuas Vamos agora studar mais algumas distribuiçõs d probabilidads para variávis contínuas. Distribuição Eponncial Uma variávl

Leia mais

Modelagem Matemática em Membranas Biológicas

Modelagem Matemática em Membranas Biológicas Modlagm Matmática m Mmbranas Biológicas Marco A. P. Cabral Dpto d Matmática Aplicada, UFRJ Ilha do Fundão, Rio d Janiro, RJ -mail : mcabral@labma.ufrj.br Nathan B. Viana Instituto d Física Laboratório

Leia mais

Capitulo 4 Resolução de Exercícios

Capitulo 4 Resolução de Exercícios FORMULÁRIO i Taxa Proporcioal ou quivalt (juros simpls) i k Taxas Equivalts (juros compostos) 3 i i i i i i i 4 6 360 a s q t b m d Taxa Eftiva Nomial k i i p ao príodo d capitalização ; i k Taxa Ral Taxa

Leia mais

Novo Espaço Matemática A 11.º ano Proposta de teste de avaliação [janeiro 2019]

Novo Espaço Matemática A 11.º ano Proposta de teste de avaliação [janeiro 2019] Novo Espaço Matmática A 11.º ao Nom: Ao / Trma: N.º: Data: - - Não é prmitido o so d corrtor. Dvs riscar aqilo q prtds q ão sja classificado. A prova icli m formlário. As cotaçõs dos its cotram-s o fial

Leia mais

Escola Politécnica da Universidade de São Paulo. Departamento de Engenharia de Estruturas e Fundações

Escola Politécnica da Universidade de São Paulo. Departamento de Engenharia de Estruturas e Fundações Escola Politécnica da Univrsidad d São Paulo Dpartamnto d Engnharia d Estruturas Fundaçõs Laboratório d Estruturas Matriais Estruturais Extnsomtria létrica III Notas d aula Dr. Pdro Afonso d Olivira Almida

Leia mais

Linhas de Retardo de RF Baseadas em Cavidades Ópticas em Anel Integradas

Linhas de Retardo de RF Baseadas em Cavidades Ópticas em Anel Integradas Lihas d tardo d F Basadas m Cavidads Ópticas m Al Itgradas *Olympio L Coutiho, **Vilso. Almida *Div. d gharia ltrôica Istituto Tcológico d Aroáutica ITA ça. Mal. duardo Goms, 5 Vila das Acácias, C.8.9,

Leia mais

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia UNIVERSIDADE DE SÃO PAULO Faculdad d Economia, Administração Contabilidad d Ribirão Prto Dpartamnto d Economia Nom: Númro: REC200 MICROECONOMIA II PRIMEIRA PROVA (20) () Para cada uma das funçõs d produção

Leia mais

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia

UNIVERSIDADE DE SÃO PAULO Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Departamento de Economia UNIVERSIDADE DE SÃO PAULO Faculdad d Economia, Administração Contabilidad d Ribirão Prto Dpartamnto d Economia Nom: Númro: REC00 MICROECONOMIA II PRIMEIRA PROVA (0) () Para cada uma das funçõs d produção

Leia mais