Cap. 25. Capacitância. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

Tamanho: px
Começar a partir da página:

Download "Cap. 25. Capacitância. Copyright 2014 John Wiley & Sons, Inc. All rights reserved."

Transcrição

1 Cap. 25 Capacitância Copyright

2 25-1 Capacitância Um capacitor é constituído por dois condutores isolados (as placas), que podem receber cargas +q e q. A capacitância C é definida pela equação onde V é a diferença de potencial entre as placas. Linhas de campo elétrico A face inferior da placa de cima tem carga +q A face superior da placa de baixo tem carga -q Um capacitor de placas paralelas, feito de duas placas de área A separadas por uma distância d. As cargas da superfície interna das placas têm o mesmo valor absoluto q e sinais opostos Como mostram as linhas de campo, o campo elétrico produzido pelas placas carregadas é uniforme na região central entre as placas. Nas bordas das placas, o campo não é uniforme.

3 25-1 Capacitância Carga de um Capacitor Quando um circuito com uma bateria, uma chave aberta e um capacitor descarregado é acionado ao ligarmos a chave, os elétrons de condução começam a circular, deixando as placas do capacitor com cargas de sinais opostos. Na Fig. (a), um circuito é formado por uma bateria B, uma chave S, um capacitor descarregado C e fios de ligação. O mesmo circuito é mostrado no diagrama esquemático da Fig. (b), no qual os símbolos de bateria, chave e capacitor representam esses dispositivos. A bateria mantém uma diferença de potencial V entre os terminais. O terminal de maior potencial é indicado pelo símbolo + e chamado de terminal positivo; o terminal de menor potencial é indicado pelo símbolo e chamado de terminal negativo.

4 25-2 Calculando a Capacitância Cálculo do campo elétrico e da dif. de potencial Para relacionar o campo elétrico E entre as placas de um capacitor à carga q de uma das placas, usamos a lei de Gauss: A diferença de potencial entre as placas de um capacitor está relacionada ao campo E pela equação Chamando de V a diferença V f V i, a equação acima se torna: Usamos a Lei de Gauss para relacionar q e E. Então integramos em E para obter a diferença de potencial Trajetória de integração Superfície Gaussiana Um capacitor de placas paralelas carregado. Uma superfície Gaussiana envolve a carga na placa positiva. A integração é executada ao longo de uma trajetória que vai da placa negativa para a placa positiva.

5 25-2 Calculando a Capacitância Capacitor de Placas Paralelas Vamos supor, como sugere a Figura, que a placas do nosso capacitor de placas paralelas são tão extensas e tão próximas que podemos desprezar o efeito das bordas e supor que E é constante em toda a região entre as placas. Escolhemos uma superfície Gaussiana que envolve apenas a carga q na placa positiva Usamos a Lei de Gauss para relacionar q e E. Então integramos em E para obter a diferença de potencial Onde A é a área da placa. E portanto, Agora se nós substituímos q nas equações acima para q=cv, obtemos, (Capacitor de placas paralelas) Trajetória de integração Superfície Gaussiana Um capacitor de placas paralelas carregado. Uma superfície Gaussiana envolve a carga na placa positiva. A integração é executada ao longo de uma trajetória que vai da placa negativa para a placa positiva.

6 25-2 Calculando a Capacitância Capacitor Cilíndrico A Figura mostra uma vista em seção reta de um capacitor cilíndrico de comprimento L formado por dois cilindros coaxiais de raios a e b. Vamos supor que L >> b para que os efeitos das bordas sobre o campo elétrico possam ser desprezados. As duas placas contêm cargas de valor absoluto q. Aqui, carga e campo elétrico E estão relacionados como Carga total +q Carga total -q Resolvendo para o campo E: Da relação C= q/v, então temos (Capacitor cilíndrico) Trajetória de integração Superfície Gaussiana Vista em seção reta de um capacitor cilíndrico longo, mostrando uma superfície gaussiana cilíndrica de raio r (que envolve a placa positiva) e uma trajetória de integração radial. A figura também pode representar uma vista em seção reta de um capacitor esférico, passando pelo centro.

7 25-2 Calculando a Capacitância Outros Para um capacitor esférico a capacitância é: Carga total +q Carga total -q (Capacitor esférico) Capacitância de uma esfera isolada: (Esfera isolada) No caso de capacitores carregados pela mesma bateria, a carga armazenada pelo capacitor aumenta, diminui ou permanece a mesma nas situações a seguir? (a) A distância entre as placas de um capacitor de placas paralelas aumenta. (b) O raio do cilindro interno de um capacitor cilíndrico aumenta. (c) O raio da casca externa de um capacitor esférico aumenta juntamente com o da casca interna. Answer: (a) decreases (b) increases (c) increases Trajetória de integração Superfície Gaussiana Vista em seção reta de um capacitor cilíndrico longo, mostrando uma superfície gaussiana cilíndrica de raio r (que envolve a placa positiva) e uma trajetória de integração radial. A figura também pode representar uma vista em seção reta de um capacitor esférico, passando pelo centro.

8 25-3 Capacitores em Paralelo e em Série Capacitores em Paralelo Quando uma diferença de potencial V é aplicada a vários capacitores ligados em paralelo, a diferença de potencial V é a mesma entre as placas de todos os capacitores, e a carga total q armazenada nos capacitores é a soma das cargas armazenadas individualmente nos capacitores. A carga total na combinação em paralelo da figura ao lado é então A capacitância equivalente, com a mesma carga total q e diferença de potencial V, é então Um resultado que podemos facilmente estender para qualquer número n de capacitores: Capacitores em paralelo tem o mesmo valor de V. (n capacitores em paralelo) Capacitores ligados em paralelo podem ser substituídos por um capacitor equivalente com a mesma carga total q e a mesma diferença de potencial V que os capacitores originais.

9 25-3 Capacitores em Paralelo e em Série Capacitores em Série Quando uma diferença de potencial V é aplicada a vários capacitores ligados em série, a carga q armazenada é a mesma em todos os capacitores, e a soma das diferenças de potencial entre as placas dos capacitores é igual à diferença de potencial aplicada V. A diferença de potencial total V devido à bateria é a soma A capacitância equivalente é então ou Capacitores em série têm o mesmo valor de q. (n capacitores em série) Capacitores ligados em série podem ser substituídos por um capacitor equivalente com a mesma carga q e a mesma diferença de potencial total V que os capacitores originais.

10 25-4 Energia Armazenada em um Campo Elétrico A energia potencial elétrica U de um capacitor carregado, e, (energia potencial) (energia potencial) é igual ao trabalho realizado para carregar o capacitor. Esta energia pode estar associada com o campo elétrico E do capacitor. A energia potencial armazenada em um capacitor carregado está associada ao campo elétrico que existe entre as placas. Todo campo elétrico, num capacitor ou de outra fonte, tem associado a ele uma energia armazenada. No vácuo, a densidade de energia u (energia potencial por unidade de volume) em um campo com módulo E é (densidade de energia)

11 25-5 Capacitor com um Dielétrico Quando preenchemos o espaço entre as placas de um capacitor com um material dielétrico, a capacitância C no vácuo é multiplicada pela constante dielétrica κ, (letra grega kappa) do material, a qual é um número maior que 1. Em uma região totalmente preenchida por um material dielétrico de constante dielétrica κ, a constante elétrica ε 0 deve ser substituída por κε 0 em todas as equações. V = uma constante q = uma constante (a) Se a diferença de potencial entre as placas de um capacitor é mantida por uma bateria B, o efeito de um dielétrico é aumentar a carga das placas. (b) Se a carga das placas é mantida, o efeito do dielétrico é reduzir a diferença de potencial entre as placas. O mostrador visto na figura é o de um potenciômetro, instrumento usado para medir diferenças de potencial (no caso, entre as placas do capacitor). Um capacitor não pode se descarregar por meio de um potenciômetro

12 25-5 Capacitor com um Dielétrico Uma Visão Atômica Dielétrico Polar (b) Quando um campo elétrico é aplicado, os dipolos elétricos se alinham parcialmente. O alinhamento não é completo por causa da agitação térmica. (a) Moléculas com um momento dipolar permanente, orientadas aleatoriamente na ausência de um campo elétrico externo. O campo elétrico inicial no interior deste dielétrico apolar é zero O campo aplicado alinha os momentos de dipolo atômicos O campo dos átomos alinhados se opõe ao campo aplicado Dielétrico Apolar

13 25-6 Dielétricos e a Lei de Gauss Quando um dielétrico é introduzido no espaço entre as placas de um capacitor, é induzida uma carga nas superfícies do dielétrico que reduz o campo elétrico na região entre as placas A carga induzida é menor que a carga livre das placas. Na presença de um dielétrico, a Lei de Gauss pode ser generalizada para (Lei de Gauss com dielétrico) onde q é a carga livre. Qualquer carga superficial induzida é levada em consideração ao incluir a constante dielétrica k na integral. Nota: A integral do fluxo agora envolve κe, não apenas E. O vetor ε 0 κe recebe o nome de deslocamento elétrico D, assim a equação acima pode ser escrita na forma Capacitor de placas paralelas (a) sem e (b) com um dielétrico entre as placas. A carga q das placas é tomada como a mesma nos dois casos.

14 25 Sumário Capacitor e Capacitância A capacitância de um capacitor é definida como: Determinando a Capacitância Capacitor de placas paralelas: Capacitor cilíndrico: Eq Eq Eq Capacitor em paralelo e em série Em paralelo: Em série Eq Eq Energia Potencial e Densidade de Energia Energia Potencial Elétrica (U): Capacitor esférico: Esfera isolada: Eq Densidade de Energia (u) Eq &22 Eq Eq

15 25 Sumário Capacitância com um Dielétrico Se o espaço entre as placas de um capacitor é completamente preenchido com um material dielétrico, a capacitância C é aumentada por um fator κ, chamado de constante dielétrica, a qual é característica do material. Lei de Gauss com um Dielétrico Quando um dielétrico está presente, A Lei de Gauss torna-se: Eq

16 25 Exercícios Halliday 10ª. Edição Cap. 25: Problemas 2; 6; 14; 18; 20; 32; 36; 44; 48; 74

17 25 Problema 25-2 O capacitor da Figura abaixo possui uma capacitância de 25 μf e está inicialmente descarregado. A bateria produz uma diferença de potencial de 120 V. Quando a chave S é fechada, qual é a carga total que passa por ela?

18 25 Problema 25-6 Pretende-se usar duas placas de metal com 1,00 m 2 de área para construir um capacitor de placas paralelas. (a) Qual deve ser a distância entre as placas para que a capacitância do dispositivo seja 1,00 F? (b) O dispositivo é fisicamente viável?

19 25 Problema Na Figura abaixo, a bateria tem uma diferença de potencial V = 10,0 V e os cinco capacitores têm uma capacitância de 10,0 μf cada um. Determine a carga (a) do capacitor e (b) do capacitor 2.

20 25 Problema A Fig mostra quatro capacitores, cujo dielétrico é o ar, ligados em um circuito que faz parte de um circuito maior. O gráfico a seguir do circuito mostra o potencial elétrico V(x) em função da posição x no ramo inferior do circuito, que contém o capacitor 4. O gráfico acima do circuito mostra o potencial elétrico V(x) em função da posição x no ramo superior do circuito, que contém os capacitores 1, 2 e 3. O capacitor 3 tem uma capacitância de 0,80 μf. Determine a capacitância (a) do capacitor 1 e (b) do capacitor 2.

21 25 Problema A Figura abaixo mostra um capacitor variável com dielétrico de ar do tipo usado para sintonizar manualmente receptores de rádio. O capacitor é formado por dois conjuntos de placas intercaladas, um grupo de placas fixas, ligadas entre si, e um grupo de placas móveis, também ligadas entre si. Considere um capacitor com 4 placas de cada tipo, todas com uma área A = 1,25 cm 2 ; a distância entre placas vizinhas é d = 3,40 mm. Qual é a capacitância máxima do conjunto?

22 25 Problema Um capacitor de placas paralelas cujo dielétrico é o ar é carregado com uma diferença de potencial de 600 V. A área das placas é 40 cm 2 e a distância entre as placas é 1,0 mm. Determine (a) a capacitância, (b) o valor absoluto da carga em uma das placas, (c) a energia armazenada, (d) o campo elétrico na região entre as placas e (e) a densidade de energia na região entre as placas.

23 25 Problema Como engenheiro de segurança, o leitor precisa emitir um parecer a respeito da prática de armazenar líquidos condutores inflamáveis em recipientes feitos de material isolante. A companhia que fornece certo líquido vem usando um recipiente cilíndrico, feito de plástico, de raio r = 0,20 m, que está cheio até uma altura h = 10 cm, menor que a altura interna do recipiente (Figura). A investigação do leitor revela que, durante o transporte, a superfície externa no recipiente adquire uma densidade de carga negativa de 2,0 μc/m2 (aproximadamente uniforme). Como o líquido é um bom condutor de eletricidade, a carga do recipiente faz com que as cargas do líquido se separem. (a) Qual é a carga negativa induzida no centro do líquido? (b) Suponha que a capacitância da parte central do líquido em relação à terra seja 35 pf. Qual é a energia potencial associada à carga negativa desse capacitor efetivo? (c) Se ocorre uma centelha entre a terra e a parte central do líquido (através do respiradouro), a energia potencial pode alimentar a centelha. A energia mínima necessária para inflamar o líquido é 10 mj. Nessa situação, o líquido pode pegar fogo por causa de uma centelha?

24 25 Problema Você está interessado em construir um capacitor com uma capacitância de aproximadamente 1 nf e um potencial de ruptura de mais de V e pensa em usar as superfícies laterais de um copo de pirex como dielétrico, revestindo as faces interna e externa com folha de alumínio para fazer as placas. O copo tem 15 cm de altura, um raio interno de 3,6 cm e um raio externo de 3,8 cm. Determine (a) a capacitância e (b) o potencial de ruptura do capacitor.

25 25 Problema A Figura mostra um capacitor de placas paralelas com uma área das placas A = 5,56 cm 2 e uma distância entre as placas d = 5,56 mm. A parte esquerda do espaço entre as placas é preenchida por um material de constante dielétrica κ 1 = 7,00; a parte direita é preenchida por um material de constante dielétrica κ 2 = 12,0. Qual é a capacitância?

26 25 Problema O leitor dispõe de duas placas de cobre, uma folha de mica (espessura = 0,10 mm, κ = 5,4), um pedaço de vidro (espessura = 2,0 mm, κ = 7,0) e um bloco de parafina (espessura = 1,0 cm, κ = 2,0). Para fabricar um capacitor de placas paralelas com o maior valor possível de C, que material você deve colocar entre as placas de cobre?

Halliday & Resnick Fundamentos de Física

Halliday & Resnick Fundamentos de Física Halliday & Resnick Fundamentos de Física Eletromagnetismo Volume 3 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC

Leia mais

Cap. 25. Capacitância. Prof. Oscar Rodrigues dos Santos Capacitância 1

Cap. 25. Capacitância. Prof. Oscar Rodrigues dos Santos Capacitância 1 Cap. 25 Capacitância Prof. Oscar Rodrigues dos Santos oscarsantos@utfpr.edu.br Capacitância 1 Capacitor Capacitor é um dispositivo que serve para armazenar energia elétrica. Tem a função de armazenar cargas

Leia mais

Um capacitor é constituído por dois condutores isolados (as placas), que podem receber cargas +q e q. A capacitância C é definida pela equação

Um capacitor é constituído por dois condutores isolados (as placas), que podem receber cargas +q e q. A capacitância C é definida pela equação CAPÍTULO 25 Capacitância 25-1 CAPACITÂNCIA Objetivos do Aprendizado Depois de ler este módulo, você será capaz de... 25.01 Desenhar um diagrama esquemático de um circuito com um capacitor de placas paralelas,

Leia mais

Halliday Fundamentos de Física Volume 3

Halliday Fundamentos de Física Volume 3 Halliday Fundamentos de Física Volume 3 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica, LTC, Forense,

Leia mais

25-1 Capacitância. Figura 25-1 Vários tipos de capacitores. Fonte: PLT 709. Me. Leandro B. Holanda,

25-1 Capacitância. Figura 25-1 Vários tipos de capacitores. Fonte: PLT 709. Me. Leandro B. Holanda, 25-1 Capacitância Capacitor é um dispositivo usado para armazenar energia elétrica. As pilhas de uma máquina fotográfica, por exemplo, armazenam a energia necessária para disparar um flash, carregando

Leia mais

Cap. 4 - Capacitância e Dielétricos

Cap. 4 - Capacitância e Dielétricos Universidade Federal do Rio de Janeiro Instituto de Física Física III 2014/2 Cap. 4 - Capacitância e Dielétricos Prof. Elvis Soares Nesse capítulo, estudaremos o conceito de capacitância, aplicações de

Leia mais

Capacitância. Q e V são proporcionais em capacitor. A constante de proporcionalidade é denominada capacitância.

Capacitância. Q e V são proporcionais em capacitor. A constante de proporcionalidade é denominada capacitância. apacitância Dois condutores (chamados de armaduras) carregados formam um capacitor ue, uando carregado, faz com ue os condutores tenham cargas iguais em módulo e sinais contrários. Q e V são proporcionais

Leia mais

Exercícios extraídos do livro Fundamentos de Física volume 3: Eletromagnetismo 9ª. edição - Autores: Halliday, Resnick & Walker

Exercícios extraídos do livro Fundamentos de Física volume 3: Eletromagnetismo 9ª. edição - Autores: Halliday, Resnick & Walker 14 de dezembro de 016 EXERCÍCIOS CAPACITORES Exercícios extraídos do livro Fundamentos de Física volume 3: Eletromagnetismo 9ª. edição - Autores: Halliday, Resnick & Walker Capacitância 1 Os dois objetos

Leia mais

Capacitores. - 3) A experiência mostra que a carga acumulada é diretamente proporcional a diferença de potencial aplicada nas placas, ou seja

Capacitores. - 3) A experiência mostra que a carga acumulada é diretamente proporcional a diferença de potencial aplicada nas placas, ou seja Capacitores - 1) Capacitores são dispositivos utilizados para armazenar cargas elétricas. Como a energia potencial é proporcional ao número de cargas elétricas, estes dispositivos também são reservatórios

Leia mais

Cap. 23. Lei de Gauss. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

Cap. 23. Lei de Gauss. Copyright 2014 John Wiley & Sons, Inc. All rights reserved. Cap. 23 Lei de Gauss Copyright 23-1 Fluxo Elétrico A lei de Gauss relaciona os campos elétricos nos pontos de uma superfície gaussiana (fechada) à carga total envolvida pela superfície. Superfície Gaussiana

Leia mais

Capacitância e Dielétricos

Capacitância e Dielétricos Capacitância e Dielétricos 1 Um capacitor é um sistema constituído por dois condutores separados por um isolante (ou imersos no vácuo). Placas condutoras Carga elétrica Isolante (ou vácuo) Símbolos Em

Leia mais

Lista 02 Parte I. Capacitores (capítulos 29 e 30)

Lista 02 Parte I. Capacitores (capítulos 29 e 30) Lista 02 Parte I Capacitores (capítulos 29 e 30) 01) Em um capacitor de placas planas e paralelas, a área de cada placa é 2,0m 2 e a distância de separação entre elas é de 1,0mm. O capacitor é carregado

Leia mais

Eletromagnetismo - Instituto de Pesquisas Científicas AULA 06 - CAPACITÂNCIA

Eletromagnetismo - Instituto de Pesquisas Científicas AULA 06 - CAPACITÂNCIA ELETROMAGNETISMO AULA 06 - CAPACITÂNCIA Vamos supor que temos duas placas paralelas. Uma das placas está carregada positivamente enquanto que a outra está carregada negativamente. Essas placas estão isoladas

Leia mais

Dois condutores carregados com cargas +Q e Q e isolados, de formatos arbitrários, formam o que chamamos de um capacitor.

Dois condutores carregados com cargas +Q e Q e isolados, de formatos arbitrários, formam o que chamamos de um capacitor. Aula-5 Capacitância Capacitores Dois condutores carregados com cargas Q e Q e isolados, de formatos arbitrários, formam o que chamamos de um capacitor. A sua utilidade é armazenar energia potencial no

Leia mais

Capacitância Neste capítulo serão abordados os seguintes tópicos:

Capacitância Neste capítulo serão abordados os seguintes tópicos: Capacitância Neste capítulo serão abordados os seguintes tópicos: - Capacitância C de um sistema de dois condutores isolados. - Cálculo da capacitância para algumas geometrias simples. - Métodos para conectar

Leia mais

Quarta Lista - Capacitores e Dielétricos

Quarta Lista - Capacitores e Dielétricos Quarta Lista - Capacitores e Dielétricos FGE211 - Física III Sumário Um capacitor é um dispositivo que armazena carga elétrica e, consequentemente, energia potencial eletrostática. A capacitância C de

Leia mais

Halliday & Resnick Fundamentos de Física

Halliday & Resnick Fundamentos de Física Halliday & Resnick Fundamentos de Física Eletromagnetismo Volume 3 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC

Leia mais

F-328 Física Geral III

F-328 Física Geral III F-8 Física Geral III Aula exploratória- 5 UNIAMP IFGW username@ifi.unicamp.br F8 S4 apacitância apacitores O capacitor mais convencional é o de placas paralelas. Em geral, dá-se o nome de placas do capacitor

Leia mais

Letras em Negrito representam vetores e as letras i, j, k são vetores unitários.

Letras em Negrito representam vetores e as letras i, j, k são vetores unitários. Lista de exercício 3 - Fluxo elétrico e Lei de Gauss Letras em Negrito representam vetores e as letras i, j, k são vetores unitários. 1. A superfície quadrada da Figura tem 3,2 mm de lado e está imersa

Leia mais

Lista de Exercícios 2 Potencial Elétrico e Capacitância

Lista de Exercícios 2 Potencial Elétrico e Capacitância Lista de Exercícios 2 Potencial Elétrico e Capacitância Exercícios Sugeridos (14 de março de 2007) A numeração corresponde ao Livros Textos A e B. B25.10 Considere dois pontos numa região onde há um campo

Leia mais

Lista de Exercícios 1: Eletrostática

Lista de Exercícios 1: Eletrostática Lista de Exercícios 1: Eletrostática 1. Uma carga Q é distribuída uniformemente sobre um fio semicircular de raio a, que está no plano xy. Calcule a força F com que atua sobre uma carga de sinal oposto

Leia mais

Capacitores Prof. Dr. Gustavo Lanfranchi

Capacitores Prof. Dr. Gustavo Lanfranchi Capacitores Prof. Dr. Gustavo Lanfranchi Física Geral e Experimental 2, Eng. Civil 2018 Capacitores Definição O que é um capacitor? Quais são suas propriedades? O que é capacitância, como é calculada?

Leia mais

1) Um fio fino, isolante e muito longo, tem comprimento L e é carregado com uma carga Q distribuída homogeneamente. a) Calcule o campo elétrico numa

1) Um fio fino, isolante e muito longo, tem comprimento L e é carregado com uma carga Q distribuída homogeneamente. a) Calcule o campo elétrico numa 1) Um fio fino, isolante e muito longo, tem comprimento L e é carregado com uma carga Q distribuída homogeneamente. a) Calcule o campo elétrico numa região próxima ao centro do fio, a uma distância r

Leia mais

Capacitância. Prof. Fernando G. Pilotto UERGS

Capacitância. Prof. Fernando G. Pilotto UERGS Capacitância Prof. Fernando G. Pilotto UERGS Capacitores O capacitor é um dispositivo prático para o armazenamento de energia elétrica. Os flashs de máuinas fotográficas e os desfibriladores médicos usam

Leia mais

Capacitância Objetivos:

Capacitância Objetivos: Capacitância Objetivos: A natureza dos capacitores e como determinar a quantidade que mede sua habilidade de armazenar carga? Com os capacitores de comportam em circuitos? Como determinar a quantidade

Leia mais

1ª LISTA DE FÍSICA 1º BIMESTRE

1ª LISTA DE FÍSICA 1º BIMESTRE Professor (a): PAULO Disciplina FÍSICA Aluno (a): Série: 3ª Data: / / 2015 1ª LISTA DE FÍSICA 1º BIMESTRE 1) Uma descarga elétrica ocorre entre uma nuvem que está a 2.000 m de altura do solo. Isso acontece

Leia mais

Cap. 24. Potencial Elétrico. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

Cap. 24. Potencial Elétrico. Copyright 2014 John Wiley & Sons, Inc. All rights reserved. Cap. 24 Potencial Elétrico Copyright 24-1 Potencial Elétrico O potencial elétrico V em um ponto P devido ao campo elétrico produzido por um objeto carregado é dado por Carga de prova q 0 no ponto P onde

Leia mais

Capacitância C = Q / V [F]

Capacitância C = Q / V [F] Capacitância Na figura abaixo, como exemplo, tem-se duas placas paralelas, feitas de um material condutor e separadas por um espaço vazio. Essas placas estão ligadas a uma fonte de tensão contínua através

Leia mais

Lista de Exercícios 1 Forças e Campos Elétricos

Lista de Exercícios 1 Forças e Campos Elétricos Lista de Exercícios 1 Forças e Campos Elétricos Exercícios Sugeridos (21/03/2007) A numeração corresponde ao Livros Textos A e B. A19.1 (a) Calcule o número de elétrons em um pequeno alfinete de prata

Leia mais

Eletricidade Aula 8. Componentes Reativos

Eletricidade Aula 8. Componentes Reativos Eletricidade Aula 8 Componentes Reativos Campo Elétrico Consideremos uma diferença de potencial V entre duas chapas condutoras. Em todo ponto entre essas duas chapas, passa uma linha invisível chamada

Leia mais

Lei de Gauss. O produto escalar entre dois vetores a e b, escrito como a. b, é definido como

Lei de Gauss. O produto escalar entre dois vetores a e b, escrito como a. b, é definido como Lei de Gauss REVISÃO DE PRODUTO ESCALAR Antes de iniciarmos o estudo do nosso próximo assunto (lei de Gauss), consideramos importante uma revisão sobre o produto escalar entre dois vetores. O produto escalar

Leia mais

Fundamentos do Eletromagnetismo - Aula IX

Fundamentos do Eletromagnetismo - Aula IX Fundamentos do Eletromagnetismo - Aula IX Prof. Dr. Vicente Barros Conteúdo 11 - Energia eletrostática e capacitância. Conteúdo 12- Capacitores. Antes uma revisão Existe o famoso triângulo das equações

Leia mais

Princípios de Eletricidade Magnetismo

Princípios de Eletricidade Magnetismo Princípios de Eletricidade Magnetismo Corrente Elétrica e Circuitos de Corrente Contínua Professor: Cristiano Faria Corrente e Movimento de Cargas Elétricas Embora uma corrente seja um movimento de partícula

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho Eletromagnetismo I Prof. Daniel Orquiza Eletromagnetismo I Prof. Daniel Orquiza de Carvalo Equação de Laplace (Capítulo 6 Páginas 160 a 172) Eq. de Laplace Solução numérica da Eq. de Laplace Eletromagnetismo

Leia mais

GERADORES E RECEPTORES:

GERADORES E RECEPTORES: COLÉGIO ESTADUAL JOSUÉ BRANDÃO 3º Ano de Formação Geral Física IV Unidade_2009. Professor Alfredo Coelho Resumo Teórico/Exercícios GERADORES E RECEPTORES: Anteriormente estudamos os circuitos sem considerar

Leia mais

CAPACITORES. Prof. Patricia Caldana

CAPACITORES. Prof. Patricia Caldana CAPACITORES Prof. Patricia Caldana Em vários aparelhos elétricos existem dispositivos cuja função é armazenar cargas elétricas. Um exemplo simples é o flash de uma máquina fotográfica. Na figura abaixo,

Leia mais

Garrafa de Leyden Dielétricos

Garrafa de Leyden Dielétricos Garrafa de Leyden A garrafa de Leyden foi a invenção precursora de uma das mais importantes peças utilizadas nos circuitos atuais: o capacitor. A sua função é armazenar cargas. Como a garrafa de Leyden,

Leia mais

Prof. Fábio de Oliveira Borges

Prof. Fábio de Oliveira Borges Capacitância Prof. Fábio de Oliveira Borges Curso de Física II Instituto de Física, Universidade Federal Fluminense Niterói, Rio de Janeiro, Brasil https://cursos.if.uff.br/!fisica2-0117/doku.php Garrafa

Leia mais

5. ISOLANTES OU DIELÉTRICOS

5. ISOLANTES OU DIELÉTRICOS 5. ISOLANTES OU DIELÉTRICOS 5.1 Definição Material Isolante (Dielétricos): materiais isolantes são substâncias em que os elétrons e íons não podem se mover em distâncias macroscópicas como os condutores

Leia mais

CAPITULO 1 0 CAPACITORES Campo Elétrico:

CAPITULO 1 0 CAPACITORES Campo Elétrico: CAPITULO 10 CAPACITORES O capacitor, assim como o indutor, são componentes que exibem seu comportamento característico quando ocorrem variações de tensão ou corrente no circuito em que se encontram. Alem

Leia mais

(d) E = Eŷ e V = 0. (b) (c) (f) E = Eˆx e V = (f)

(d) E = Eŷ e V = 0. (b) (c) (f) E = Eˆx e V = (f) 1 Universidade Federal do Rio de Janeiro Instituto de Física Física III 01/ Primeira Prova: 10/1/01 Versão: A F e = q E, E = V, E = k0 q r ˆr Seção 1 Múltipla escolha 10 0,5 = 5,0 pontos) Formulário onde

Leia mais

Fichas de electromagnetismo

Fichas de electromagnetismo Capítulo 3 Fichas de electromagnetismo básico Electrostática - Noções básicas 1. Enuncie as principais diferenças e semelhanças entre a lei da a atracção gravitacional e a lei da interacção eléctrica.

Leia mais

Cap. 5. Capacitores e Dielétricos

Cap. 5. Capacitores e Dielétricos Cap. 5. Capacitores e Dielétricos 1 5.1. Definição de Capacitância Um capacitor consiste de dois condutores em oposição, separados por um meio isolante (dielétrico) e possuindo cargas de mesmo módulo mas

Leia mais

Primeira Prova 2. semestre de /10/2013 TURMA PROF.

Primeira Prova 2. semestre de /10/2013 TURMA PROF. D Física Teórica II Primeira Prova 2. semestre de 2013 19/10/2013 ALUNO TURMA PROF. ATENÇÃO LEIA ANTES DE FAZER A PROVA 1 Assine todas as folhas das questões antes de começar a prova. 2 - Os professores

Leia mais

LISTA 3 - Prof. Jason Gallas, DF UFPB 10 de Junho de 2013, às 17:40. Jason Alfredo Carlson Gallas, professor titular de física teórica,

LISTA 3 - Prof. Jason Gallas, DF UFPB 10 de Junho de 2013, às 17:40. Jason Alfredo Carlson Gallas, professor titular de física teórica, Exercícios Resolvidos de Física Básica Jason Alfredo Carlson Gallas, professor titular de física teórica, Doutor em Física pela Universidade Ludwig Maximilian de Munique, Alemanha Universidade Federal

Leia mais

Cap. 22. Campo Elétrico. Prof. Oscar Rodrigues dos Santos Potencial elétrico 1

Cap. 22. Campo Elétrico. Prof. Oscar Rodrigues dos Santos Potencial elétrico 1 Cap. 22 Campo létrico Prof. Oscar Rodrigues dos Santos oscarsantos@utfpr.edu.br Potencial elétrico 1 Quando ocorre a interação no vácuo entre duas partículas que possuem cargas elétricas, como é possível

Leia mais

Teo. 9 - Capacitância

Teo. 9 - Capacitância Teo. 9 - apacitância 9. Introdução Uma das importantes aplicações da Eletrostática é a possibilidade de construir dispositivos que permitem o armazenamento de cargas elétricas. Esses dispositivos são chamados

Leia mais

FIS1053 Projeto de Apoio Eletromagnetismo 09-Setembro Lista de Problemas 15 ant Revisão G4. Temas: Toda Matéria.

FIS1053 Projeto de Apoio Eletromagnetismo 09-Setembro Lista de Problemas 15 ant Revisão G4. Temas: Toda Matéria. FIS153 Projeto de Apoio Eletromagnetismo 9-Setembro-11. Lista de Problemas 15 ant Revisão G4. Temas: Toda Matéria. 1ª Questão (,): A superfície fechada mostrada na figura é constituída por uma casca esférica

Leia mais

Letras em Negrito representam vetores e as letras i, j, k são vetores unitários.

Letras em Negrito representam vetores e as letras i, j, k são vetores unitários. Lista de exercícios 4 Potencial Elétrico Letras em Negrito representam vetores e as letras i, j, k são vetores unitários. 1. Boa parte do material dos anéis de Saturno está na forma de pequenos grãos de

Leia mais

Aula 4_1. Capacitores. Física Geral e Experimental III Prof. Cláudio Graça Capítulo 4

Aula 4_1. Capacitores. Física Geral e Experimental III Prof. Cláudio Graça Capítulo 4 Aula 4_1 Capacitores Física Geral e Experimental III Prof. Cláudio Graça Capítulo 4 Capacitores Definição da Capacitância: capacitor e sua capacitância Carga de um capacitor Exemplos de Cálculo da Capacitância

Leia mais

Lista 02 Parte II Capítulo 32

Lista 02 Parte II Capítulo 32 Lista 02 Parte II Capítulo 32 01) Dada uma bateria de fem ε e resistência interna r, que valor deve ter a resistência de um resistor, R, ligado em série com a bateria para que o efeito joule no resistor

Leia mais

Física III Escola Politécnica GABARITO DA PS 30 de junho de 2011

Física III Escola Politécnica GABARITO DA PS 30 de junho de 2011 Física - 4320301 Escola Politécnica - 2011 GABARTO DA PS 30 de junho de 2011 Questão 1 No modelo de Rutherford o átomo é considerado como uma esfera de raio R com toda a carga positiva dos prótons, Ze,

Leia mais

Eletricidade e Magnetismo. Fluxo Elétrico Lei De Gauss

Eletricidade e Magnetismo. Fluxo Elétrico Lei De Gauss Eletricidade e Magnetismo Fluxo Elétrico Lei De Gauss 1. A figura seguinte mostra uma seção de uma barra cilíndrica de plástico infinitamente longo, com uma densidade linear de carga positiva uniforme.

Leia mais

Independentemente do formato destes condutores, os chamamos de placas.

Independentemente do formato destes condutores, os chamamos de placas. Após a introdução dos conceitos básicos de Força Eletrostática, Campo Elétrico e Potencial Elétrico, damos início ao estudo das aplicações elétricas e eletrônicas, começando com as mais simples. Qualquer

Leia mais

And« Física 12. São dispositivos para armazenar energia. Os condensadores são usados, por exemplo, em:

And« Física 12. São dispositivos para armazenar energia. Os condensadores são usados, por exemplo, em: 25042016 CAPACDADE E CONDENSADORES And«CONDENSADORES São dispositivos para armazenar energia. Os condensadores são usados, por exemplo, em: Recetores de radio Dispositivos de armazenamento com flash Desfibrilhadores,

Leia mais

Potencial elétrico e capacitores. Baseado no 8.02T MIT-opencourse

Potencial elétrico e capacitores. Baseado no 8.02T MIT-opencourse Potencial elétrico e capacitores Baseado no 8.02T MIT-opencourse 1 Gravidade x eletricidade Massa M Carga(+/-q) Campos g = G M r 2 ˆr E = k e q r 2 ˆr Forças F g = m g F e = q E 2 Energia potencial x potencial

Leia mais

Aula 10. Eletromagnetismo I. Campo Elétrico na Matéria. Prof. Dr. R.M.O Galvão - 2 Semestre 2014 Preparo: Diego Oliveira

Aula 10. Eletromagnetismo I. Campo Elétrico na Matéria. Prof. Dr. R.M.O Galvão - 2 Semestre 2014 Preparo: Diego Oliveira Eletromagnetismo I Prof. Dr. R.M.O Galvão - 2 Semestre 2014 Preparo: Diego Oliveira Aula 10 Campo Elétrico na Matéria Até agora discutimos eletrostática no vácuo, ou na presença de condutores perfeitos,

Leia mais

ELETROMAGNETISMO SEL Professor: Luís Fernando Costa Alberto

ELETROMAGNETISMO SEL Professor: Luís Fernando Costa Alberto ELETROMAGNETISMO SEL 0309 LISTA ADICIONAL DE EXERCÍCIOS SOBRE CAMPOS ELÉTRICOS E MAGNÉTICOS EM MATERIAIS Professor: Luís Fernando Costa Alberto Campo elétrico 1) O campo elétrico na passagem de um meio

Leia mais

FÍSICA. Capacitância

FÍSICA. Capacitância FÍSICA Capacitância Definição de capacitância Sejam dois condutores a e b com cargas +Q e Q, respectivamente, conforme figura ao lado. Assumiremos que ambos tratamse de condutores perfeitos (ideais) e,

Leia mais

Universidade Federal do Rio de Janeiro Instituto de Física Primeira Prova (Diurno) Disciplina: Física III-A /2 Data: 17/09/2018

Universidade Federal do Rio de Janeiro Instituto de Física Primeira Prova (Diurno) Disciplina: Física III-A /2 Data: 17/09/2018 Universidade Federal do Rio de Janeiro Instituto de Física Primeira Prova (Diurno) Disciplina: Física III-A - 2018/2 Data: 17/09/2018 Seção 1: Múltipla Escolha (7 0,8 = 5,6 pontos) 3. O campo elétrico

Leia mais

Escola Politécnica FGE GABARITO DA P2 17 de maio de 2007

Escola Politécnica FGE GABARITO DA P2 17 de maio de 2007 P2 Física III Escola Politécnica - 2007 FGE 2203 - GABARITO DA P2 17 de maio de 2007 Questão 1 Um capacitor plano é constituido por duas placas planas paralelas de área A, separadas por uma distância d.

Leia mais

( 1) FIS Projeto de Apoio Eletromagnetismo. 5ª Lista de Problemas Tema: Capacitores. Ceq. = k. ΔV é igual para os dois capacitores e sendo.

( 1) FIS Projeto de Apoio Eletromagnetismo. 5ª Lista de Problemas Tema: Capacitores. Ceq. = k. ΔV é igual para os dois capacitores e sendo. FIS1053 - Projeto de Apoio Eletromagnetismo 5ª Lista de Problemas Tema: Capacitores 1ª Questão: Dois capacitores, de capacitância C1=4μF e C=1 μf, estão ligados em série a uma bateria de 1 V. Os capacitores

Leia mais

PUC-RIO CB-CTC. P2 DE ELETROMAGNETISMO quarta-feira. Nome : Assinatura: Matrícula: Turma:

PUC-RIO CB-CTC. P2 DE ELETROMAGNETISMO quarta-feira. Nome : Assinatura: Matrícula: Turma: PUC-RIO CB-CTC P DE ELETROMAGNETISMO 3.10.13 quarta-feira Nome : Assinatura: Matrícula: Turma: NÃO SERÃO ACEITAS RESPOSTAS SEM JUSTIFICATIVAS E CÁLCULOS EXPLÍCITOS. Não é permitido destacar folhas da prova

Leia mais

Capítulo 21: Cargas Elétricas

Capítulo 21: Cargas Elétricas 1 Carga Elétrica Capítulo 21: Cargas Elétricas Carga Elétrica: propriedade intrínseca das partículas fundamentais que compõem a matéria. As cargas elétricas podem ser positivas ou negativas. Corpos que

Leia mais

23/5/2010 CAPACITORES

23/5/2010 CAPACITORES CAPACITORES O capacitor é um componente, que tem como finalidade, armazenar energia elétrica. São formados por duas placas condutoras, também denominadas armaduras, separadas por um material isolante ou

Leia mais

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho

Eletromagnetismo I. Prof. Daniel Orquiza. Eletromagnetismo I. Prof. Daniel Orquiza de Carvalho letromagnetismo I letromagnetismo I de Carvalho letromagnetismo I - letrostática Polarização, Permissividade e Densidade de Fluxo létrico (Capítulo 5 Páginas 127 a 133) Resposta de materiais dielétricos

Leia mais

Corrente elétrica. Corrente contínua e condição de existência da corrente elétrica:

Corrente elétrica. Corrente contínua e condição de existência da corrente elétrica: Corrente elétrica Corrente contínua e condição de existência da corrente elétrica: Sobre qualquer partícula com carga na presença de um campo elétrico vai atuar uma força igual a F=qE onde q é a carga

Leia mais

Lista 01 Parte II. Capítulo 28

Lista 01 Parte II. Capítulo 28 Lista 01 Parte II Capítulo 28 01) Qual é o fluxo elétrico através de cada uma das superfícies (a), (b), (c) e (d) presentes na figura abaixo? 02) Uma carga positiva Q está localizada no centro de um cilindro

Leia mais

Lecture notes Prof. Cristiano

Lecture notes Prof. Cristiano Eletricidade e Magnetismo IG apacitância e Dielétricos Oliveira Ed. Basilio Jafet sala crislpo@if.usp.r APAITORES Definição de apacitância apacitor: ominação de dois condutores carregados com mesma carga

Leia mais

( ) r. (b) (c) (d) ( ) 2a. (f) Gabarito Pág. 1

( ) r. (b) (c) (d) ( ) 2a. (f) Gabarito Pág. 1 Universidade Federal do Rio de Janeiro Instituto de Física Primeira Prova (Diurno) Disciplina: Física III-A - 017/ Data: 11/09/017 do campo elétrico externo. Assinale a alternativa que melhor descreve

Leia mais

FÍSICA (ELETROMAGNETISMO) LEI DE GAUSS

FÍSICA (ELETROMAGNETISMO) LEI DE GAUSS FÍSICA (ELETROMAGNETISMO) LEI DE GAUSS Carl Friedrich Gauss (1777 1855) foi um matemático, astrônomo e físico alemão que contribuiu significativamente em vários campos da ciência, incluindo a teoria dos

Leia mais

Potencial Elétrico 1

Potencial Elétrico 1 Potencial Elétrico 1 Vamos começar com uma revisão: Quando uma força atua sobre uma partícula que se move de um ponto a até um ponto b, o trabalho W realizado pela força é dado pela integral de linha:

Leia mais

Física Teórica II. Prova 2 1º. semestre de /05/2018

Física Teórica II. Prova 2 1º. semestre de /05/2018 Física Teórica II Prova 2 1º. semestre de 2018 26/05/2018 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas 2- Analise sua resposta. Ela faz sentido? Isso poderá ajudá-lo a encontrar

Leia mais

PUC-RIO CB-CTC. P2 DE FIS1051 ELETROMAGNETISMO terça-feira. Nome : Assinatura: Matrícula: Turma:

PUC-RIO CB-CTC. P2 DE FIS1051 ELETROMAGNETISMO terça-feira. Nome : Assinatura: Matrícula: Turma: PUC-RIO CB-CTC P2 DE FIS1051 ELETROMAGNETISMO 18.10.11 terça-feira Nome : Assinatura: Matrícula: Turma: NÃO SERÃO ACEITAS RESPOSTAS SEM JUSTIFICATIVAS E CÁLCULOS EXPLÍCITOS. Não é permitido destacar folhas

Leia mais

-s Determine a capacitância equivalente do circuito da Fig Os três capacitares da Fig estão inicialmente descarregados

-s Determine a capacitância equivalente do circuito da Fig Os três capacitares da Fig estão inicialmente descarregados Problemas - o número de pontos indica a dificuldade Seção 25-2 Capacitância do problema. -1 O capacitor da Fig. 25-24 possui uma capacitância de 25 JLF e está inicialmente descarregado. A bateria produz

Leia mais

Lista de Exercícios de Capacitores

Lista de Exercícios de Capacitores Disciplina: Física 3 Professor: Joniel Alves Lista de Exercícios de Capacitores 1) A unidade de capacitância é equivalente a: A. J/C B. V/C C. J 2 /C D. C/J E. C 2 /J 2) Um farad é o mesmo que: A. J/V

Leia mais

Cap. 22. Campos Elétricos. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

Cap. 22. Campos Elétricos. Copyright 2014 John Wiley & Sons, Inc. All rights reserved. Cap. 22 Campos Elétricos Copyright 22-1 O Campo Elétrico? Como a partícula 1 sabe da presença da partícula 2? Isto é, uma vez que as partículas não se tocam, como pode a partícula 2 empurrar a partícula

Leia mais

Apostila de Física 36 Capacitores

Apostila de Física 36 Capacitores Apostila de Física 36 Capacitores 1.0 Definições Na presença de um condutor neutro, um condutor eletrizado pode armazenar mais cargas elétricas com o mesmo potencial elétrico. Capacitor ou condensador

Leia mais

de x = decosθ = k λdθ R cosθ, de y = desenθ = k λdθ R senθ, em que já substituímos dq e simplificamos. Agora podemos integrar, cosθdθ = k λ R,

de x = decosθ = k λdθ R cosθ, de y = desenθ = k λdθ R senθ, em que já substituímos dq e simplificamos. Agora podemos integrar, cosθdθ = k λ R, FÍSICA BÁSICA III - LISTA 2 1 A figura 1 mostra um semicírculo carregado uniformemente na metade superior com carga +Q e na metade inferior com carga Q Calcule o campo elétrico na origem (E = Qĵ/π2 R 2

Leia mais

Lei de Gauss Φ = A (1) E da = q int

Lei de Gauss Φ = A (1) E da = q int Lei de Gauss Lei de Gauss: A lei de Gauss nos diz que o fluxo total do campo elétrico através de uma superfície fechada A é proporcional à carga elétrica contida no interior do volume delimitado por essa

Leia mais

Capítulo 25: Capacitância

Capítulo 25: Capacitância apítulo 5: apacitância ap. 5: apacitância Índice apacitor apacitância alculo da capacitância apacitores em paralelo e em série Energia armazenada em um campo elétrico apacitor com dielétrico Dielétricos:

Leia mais

Instituto Montessori - Ponte Nova

Instituto Montessori - Ponte Nova Instituto Montessori - Ponte Nova Estudos Orientados para a Avaliação II 1) No campo elétrico criado por uma carga Q puntiforme de 4x10-6 C, determine: a) o potencial elétrico situado a 1m da carga Q.

Leia mais

Aula 5: Lei de Gauss. Referências bibliográficas: H. 25-2, 25-3, 25-4, 25-5, 25-6, 25-7 S. 23-2, 23-3, 23-4, 23-6 T. 19-2, 19-4

Aula 5: Lei de Gauss. Referências bibliográficas: H. 25-2, 25-3, 25-4, 25-5, 25-6, 25-7 S. 23-2, 23-3, 23-4, 23-6 T. 19-2, 19-4 Universidade Federal do Paraná etor de Ciências Exatas Departamento de Física Física III Prof. Dr. Ricardo Luiz Viana Referências bibliográficas: H. 25-2, 25-3, 25-4, 25-5, 25-6, 25-7. 23-2, 23-3, 23-4,

Leia mais

Capacitores e Indutores (Aula 7) Prof. Daniel Dotta

Capacitores e Indutores (Aula 7) Prof. Daniel Dotta Capacitores e Indutores (Aula 7) Prof. Daniel Dotta 1 Sumário Capacitor Indutor 2 Capacitor Componente passivo de circuito. Consiste de duas superfícies condutoras separadas por um material não condutor

Leia mais

Eletrostática. Antonio Carlos Siqueira de Lima. Universidade Federal do Rio de Janeiro Escola Politécnica Departamento de Engenharia Elétrica

Eletrostática. Antonio Carlos Siqueira de Lima. Universidade Federal do Rio de Janeiro Escola Politécnica Departamento de Engenharia Elétrica Eletrostática Antonio Carlos Siqueira de Lima Universidade Federal do Rio de Janeiro Escola Politécnica Departamento de Engenharia Elétrica Agosto 2008 1 Campo Elétrico Campo Elétrico Devido a Distribuições

Leia mais

Física 3. Resumo e Exercícios P1

Física 3. Resumo e Exercícios P1 Física 3 Resumo e Exercícios P1 Resuminho Teórico e Fórmulas Parte 1 Cargas Elétricas Distribuição Contínua de Cargas 1. Linear Q = dq = λ dl 2. Superficial Q = dq = σ. da 3. Volumétrica Q = dq = ρ. dv

Leia mais

Princípios de Circuitos Elétricos. Prof. Me. Luciane Agnoletti dos Santos Pedotti

Princípios de Circuitos Elétricos. Prof. Me. Luciane Agnoletti dos Santos Pedotti Princípios de Circuitos Elétricos Prof. Me. Luciane Agnoletti dos Santos Pedotti Resistência, Indutância e Capacitância Resistor: permite variações bruscas de corrente e tensão Dissipa energia Capacitor:

Leia mais

Cronograma de 2017/1 de Física III-A

Cronograma de 2017/1 de Física III-A Cronograma de 2017/1 de Física III-A Mês Seg Ter Qua Qui Sex Sab 6 7 8 9 10 11 1 - Cap 21 2 - Cap 21 13 14 15 16 17 18 Março 20 21 22 3 - Cap 21 23 24 4 - Cap 22 25 Atividade 1 5 - Cap 22 6 - Cap 23 27

Leia mais

Elementos de Circuitos Elétricos

Elementos de Circuitos Elétricos Elementos de Circuitos Elétricos Corrente e Lei de Ohm Consideremos um condutor cilíndrico de seção reta de área S. Quando uma corrente flui pelo condutor, cargas se movem e existe um campo elétrico. A

Leia mais

1 a PROVA Gabarito. Solução:

1 a PROVA Gabarito. Solução: INSTITUTO DE FÍSICA DA UFBA DEPARTAMENTO DE FÍSICA DO ESTADO SÓLIDO DISCIPLINA: FÍSICA GERAL E EXPERIMENTAL III FIS 123) TURMA: T02 SEMESTRE: 2 o /2012 1 a PROVA Gabarito 1. Três partículas carregadas

Leia mais

Campos Magnéticos Produzidos por Correntes

Campos Magnéticos Produzidos por Correntes Cap. 29 Campos Magnéticos Produzidos por Correntes Prof. Oscar Rodrigues dos Santos oscarsantos@utfpr.edu.br Campos Magnéticos Produzidos por Correntes 1 Campos Magnéticos Produzidos por Correntes Campos

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA III CAMPO ELÉTRICO. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA III CAMPO ELÉTRICO. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA III CAMPO ELÉTRICO Prof. Bruno Farias Campo Elétrico A força elétrica exercida por uma carga

Leia mais

Física Teórica II. Formulário. Prova 1 1º. semestre de /04/2018

Física Teórica II. Formulário. Prova 1 1º. semestre de /04/2018 Física Teórica II Prova 1 1º. semestre de 2018 14/04/2018 1- Assine seu nome de forma LEGÍVEL na folha do cartão de respostas 2- Analise sua resposta. Ela faz sentido? Isso poderá ajudá-lo a encontrar

Leia mais

Física III Escola Politécnica GABARITO DA P1 31 de março de 2016

Física III Escola Politécnica GABARITO DA P1 31 de março de 2016 Física III - 43303 Escola olitécnica - 06 GABARITO DA 3 de março de 06 Questão Quatro cargas puntiformes são colocadas nos vértices,, 3 e 4 de um retângulo, de acordo com a figura abaio. O retângulo tem

Leia mais

Resumo e exercícios sobre capacitores Sex, 06 de Agosto de :26 - Última atualização Seg, 15 de Junho de :04

Resumo e exercícios sobre capacitores Sex, 06 de Agosto de :26 - Última atualização Seg, 15 de Junho de :04 CAPACITORES I) RESUMO DO ESTUDO DE CAPACITORES OU CONDENSADORES São dispositivos que tem a função de armazenar cargas elétricas. Nos circuitos os capacitores quando estão carregados não passam correntes.

Leia mais

Lei de Gauss. Objetivos: Calcular o Campo Elétrico para diferentes distribuições de cargas explorando sua simetria com a Lei de Gauss.

Lei de Gauss. Objetivos: Calcular o Campo Elétrico para diferentes distribuições de cargas explorando sua simetria com a Lei de Gauss. Lei de Gauss Objetivos: Calcular o Campo Elétrico para diferentes distribuições de cargas explorando sua simetria com a Lei de Gauss. Sobre a Apresentação Todas as gravuras, senão a maioria, são dos livros:

Leia mais

Cap. 2 - Lei de Gauss

Cap. 2 - Lei de Gauss Universidade Federal do Rio de Janeiro Instituto de Física Física III 2014/2 Cap. 2 - Lei de Gauss Prof. Elvis Soares Nesse capítulo, descreveremos a Lei de Gauss e um procedimento alternativo para cálculo

Leia mais