Duração da Prova: 150 minutos. Tolerância: 30 minutos. Na folha de respostas, indique de forma legível a versão da prova.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Duração da Prova: 150 minutos. Tolerância: 30 minutos. Na folha de respostas, indique de forma legível a versão da prova."

Transcrição

1 EXAME NACIONAL DO ENSINO SECUNDÁRIO Decreto-Lei.º 74/2004, de 26 de Março Prova Escrita de Matemática A 2.º ao de Escolaridade Prova 65/2.ª Fase Págias Dração da Prova: 50 mitos. Tolerâcia: 0 mitos 2008 VERSÃO Na folha de respostas, idiqe de forma legível a versão da prova. A asêcia dessa idicação implica a classificação com zero potos das respostas aos ites do Grpo I. Prova 65.V Págia /

2 Utilize apeas caeta o esferográfica de tita idelével azl o preta, ecepto as respostas qe impliqem a elaboração de costrções, desehos o otras represetações, qe podem ser primeiramete elaboradas a lápis, sedo, a segir, passadas a tita. Utilize a réga, o compasso, o esqadro, o trasferidor e a calcladora gráfica sempre qe ecessário. Não é permitido o so de corrector. Em caso de egao, deve riscar, de forma ieqívoca, aqilo qe pretede qe ão seja classificado. Escreva de forma legível a meração dos grpos e/o dos ites, bem como as respectivas respostas. Para cada item, apresete apeas ma resposta. Se escrever mais do qe ma resposta a m mesmo item, apeas é classificada a resposta apresetada em primeiro lgar. Prova 65.V Págia 2/

3 Para respoder aos ites de escolha múltipla, escreva, a folha de respostas, o úmero do item; a letra idetificativa da alterativa correcta. Não apresete cálclos, em jstificações. Nos ites de resposta aberta com cotação igal o sperior a 5 potos e qe impliqem a prodção de m teto, o domíio da comicação escrita em líga portgesa represeta cerca de 0% da cotação. As cotações dos ites ecotram-se a págia. A prova icli m Formlário a págia 4. Prova 65.V Págia /

4 Formlário Comprimeto de m arco de circferêcia α r (α amplitde, em radiaos, do âglo ao cetro; r raio) Áreas de figras plaas Losago: Trapézio: Altra Polígoo reglar: Semiperímetro Apótema Sector circlar: Áreas de sperfícies Área lateral de m coe: r g (r raio da base; g geratriz) (α amplitde, em radiaos, do âglo ao cetro; r raio) Área de ma sperfície esférica: 4 r 2 (r raio) Volmes Pirâmide: Coe: Esfera: 4 r (r raio) Trigoometria Área da base Altra Área da base Altra se (a + b) = se a. cos b + se b. cos a cos (a + b) = cos a. cos b se a. se b tg a + tg b tg (a + b) = tg a. tg b Compleos (ρcis θ) = ρ cis (θ) Diagoal maior Diagoal meor 2 Base maior + Base meor 2 α r 2 2 θ+2k ρ cis θ= ρ cis, k { 0,..., } Probabilidades µ = p + + p lim + = e se lim = 0 l( + ) lim = 0 l lim = 0 + lim + e lim = 0 e p 2 2 σ = ( µ ) p + + ( µ ) p Se X é N( µσ, ), etão: P( µ σ < X < µ + σ) 0, 6827 P( µ 2σ < X < µ + 2 σ) 0, 9545 P( µ σ < X < µ + σ) 0, 997 Regras de derivação ( + v) = + v ( v) = v+ v v v = 2 v v ( ) = ( R) (se ) = cos (cos ) = se (tg ) = 2 cos ( e ) = e + ( a ) = a l a ( a R \{} ) (l ) = + (log a ) = ( a R \ {} ) la Limites otáveis =+ ( p R) Prova 65.V Págia 4/

5 GRUPO I Os oito ites deste grpo são de escolha múltipla. Em cada m deles, são idicadas qatro alterativas de resposta, das qais só ma está correcta. Se apresetar mais do qe ma alterativa, a resposta será classificada com zero potos, o mesmo acotecedo se a letra trascrita for ilegível.. Ao disptar m toreio de tiro ao alvo, o João tem de atirar sobre o alvo qatro vezes. Sabe-se qe, em cada tiro, a probabilidade de o João acertar o alvo é 0,8. Qal é a probabilidade de o João acertar sempre o alvo, as qatro vezes em qe tem de atirar? (A) 0,006 (B) 0,0064 (C) 0,089 (D) 0, Uma caia A cotém das bolas verdes e ma bola amarela. Otra caia B cotém ma bola verde e três bolas amarelas. As bolas colocadas as caias A e B são idistigíveis ao tacto. Laça-se m dado cúbico perfeito, com as faces meradas de a 6. Se sair o úmero 5, tira-se ma bola da caia A; caso cotrário, tira-se ma bola da caia B. Qal é a probabilidade de a bola retirada ser verde, sabedo qe sai o úmero 5 o laçameto do dado? (A) (B) (C) (D) Uma liha do Triâglo de Pascal tem qize elemetos. Qatos elemetos dessa liha são iferiores a 00? (A) (B) 4 (C) 6 (D) 8 a 4. Sabe-se qe o poto P(, ) pertece ao gráfico da fção f ()=2, a R. Qal é o valor de a? (A) 2 (B) (C) 0 (D) 2 Prova 65.V Págia 5/

6 5. Na figra está represetada parte do gráfico de ma fção g, de domíio R e cotía em R \ { 2}. As rectas de eqações = 2 e y = são as úicas assimptotas do gráfico de g. Seja ( ) ma scessão tal qe lim g ( )= +. + Fig. Qal das epressões segites pode ser o termo geral da scessão ( )? 2 (A) 2 + (B) 2 (C) + (D) 6. Na figra 2 está represetada parte do gráfico de ma fção f, de domíio R, sedo y = a úica assimptota do se gráfico. Fig. 2 Qal é o valor do lim? f () (A) (B) (C) (D) Prova 65.V Págia 6/

7 7. Seja z m úmero compleo de argmeto. 6 Qal dos segites valores é m argmeto de ( z)? (A) 5 (B) (C) (D) Cosidere a figra, represetada o plao compleo. Fig. Qal é a codição, em C, qe defie a região sombreada da figra, iclido a froteira? (A) Re() z arg() 0 z 4 (B) Re() 0 z arg() z 4 (C) Im() z arg() 0 z (D) Re() z arg() 0 z 4 4 Prova 65.V Págia 7/

8 GRUPO II Na resposta a ites deste grpo, apresete o se raciocíio de forma clara, idicado todos os cálclos qe tiver de efectar e todas as jstificações ecessárias. Ateção: qado, para m resltado, ão é pedida a aproimação, apresete sempre o valor eacto.. Em C, cojto dos úmeros compleos, cosidere z i = (i desiga a idade imagiária). 8 2z i.. Sem recorrer à calcladora, determie o valor de. 2i Apresete o resltado a forma algébrica..2. Cosidere z ma das raízes qartas de m certo úmero compleo z. Determie ma otra raiz qarta de z, cja imagem geométrica é m poto pertecete ao.º qadrate. Apresete o resltado a forma trigoométrica Seja Ω o espaço de resltados associado a ma eperiêcia aleatória. Sejam A e B dois acotecimetos possíveis ( A Ωe B Ω). Prove qe: PA ( B)= PA ( ) PB ( )+ PA ( B) (P desiga a probabilidade, A desiga o acotecimeto cotrário de A e B desiga o acotecimeto cotrário de B.) 2.2. Nma determiada cidade, das 60 raparigas qe fizeram o eame acioal de Matemática, 65% tiveram classificação positiva, e, dos 20 rapazes qe fizeram o mesmo eame, 60% também tiveram classificação positiva. Escolhedo, ao acaso, m dos estdates qe realizaram o eame, qal é a probabilidade de o estdate escolhido ão ser rapaz o ão ter tido classificação positiva? Apresete o resltado em forma de dízima, com aproimação às cetésimas. Nota: Se o desejar, tilize a igaldade referida em 2.. Neste caso, deverá começar por caracterizar claramete os acotecimetos A e B, o coteto da sitação apresetada; o etato, pode optar por resolver o problema por otro processo.. Nma caia temos três fichas com o úmero e qatro fichas com o úmero 2, idistigíveis ao tacto. Retiram-se, ao acaso e de ma só vez, das fichas. Seja X a variável aleatória: «a soma dos úmeros iscritos as das fichas». Costra a tabela de distribição de probabilidades da variável X. Idiqe, jstificado, o valor mais provável da variável X. Apresete as probabilidades a forma de fracção irredtível. Prova 65.V Págia 8/

9 ) l(2 + ) 4. Cosidere a fção f, de domíio, +, defiida por f, e a fção g, de ( )= domíio R, defiida por g ( )= 2 (l desiga logaritmo de base e ). Idiqe as solções iteiras da ieqação calcladora. f ( )> g ( ), recorredo às capacidades gráficas da sa Para resolver esta ieqação, percorra os segites passos: visalize as crvas represetativas dos gráficos das das fções; reprodza, a sa folha de respostas, o referecial e as crvas visalizadas a calcladora; assiale, aida, os potos A e B, de itersecção dos gráficos das das fções, idicado as sas coordeadas, com aproimação às décimas. 5. Na figra 4 estão represetadas das rectas paralelas, a recta AB (em qe A e B são potos fios) e a recta s. O poto S é m poto móvel, deslocado-se ao logo de toda a recta s. Para cada posição do poto S, seja a amplitde, em radiaos, do âglo BAS e seja a() a área do triâglo [ABS ]. s S B Apeas m dos segites gráficos pode represetar a fção a. Nma composição, epliqe por qe razão cada m dos otros três gráficos ão pode represetar a fção a. A Fig. 4 Gráfico Gráfico 2 a a O p/2 O p Gráfico Gráfico 4 a a O p O p Prova 65.V Págia 9/

10 6. A massa de ma sbstâcia radioactiva dimii com a passagem do tempo. Spõe-se qe, para ma amostra de ma determiada sbstâcia, a massa, em gramas, ao fim de t horas de observação, é dada 0, 02 t pelo modelo matemático Mt ()=5 e, t 0. Resolva, sado métodos aalíticos, os dois ites qe se segem. Nota: A calcladora pode ser tilizada em evetais cálclos itermédios; sempre qe proceder a arredodametos, se três casas decimais. 6.. Ao fim de qato tempo se redz a metade a massa iicial da amostra da sbstâcia radioactiva? Apresete o resltado em horas e mitos, estes arredodados às idades Utilize o Teorema de Bolzao para jstificar qe hove, pelo meos, m istate, etre as 2 horas e 0 mitos e as 4 horas após o iício da observação, em qe a massa da amostra da sbstâcia radioactiva atigi os 4 gramas. 7. Cosidere a fção g, de domíio R, defiida por g ( )=2+ se(4 ). Resolva, sado métodos aalíticos, os dois ites segites. Nota: A calcladora pode ser tilizada em evetais cálclos itermédios; sempre qe proceder a arredodametos, se das casas decimais. 7.. Determie g '(0), recorredo à defiição de derivada de ma fção m poto Estde a mootoia da fção g, o itervalo 0,, idicado o valor dos etremos relativos, 2 caso eistam, e os itervalos de mootoia. FIM Prova 65.V Págia 0/

11 COTAÇÕES GRUPO I... (8 5 potos) potos GRUPO II potos potos potos potos potos potos potos potos potos potos potos potos potos potos potos potos TOTAL potos Prova 65.V Págia /

Escola Básica e Secundária Dr. Ângelo Augusto da Silva

Escola Básica e Secundária Dr. Ângelo Augusto da Silva Escola Básica e Secdária Dr. Âgelo Agsto da Silva Teste de MATEMÁTIA A º Ao Dração: 9 mitos Dezembro/ lassificação Nome Nº T: O Prof. (Lís Abre) ª PARTE Para cada ma das segites qestões de escolha múltipla,

Leia mais

Escola Básica e Secundária Dr. Ângelo Augusto da Silva. Teste de MATEMÁTICA A 12º Ano. Duração: 90 minutos Março/ Nome Nº T:

Escola Básica e Secundária Dr. Ângelo Augusto da Silva. Teste de MATEMÁTICA A 12º Ano. Duração: 90 minutos Março/ Nome Nº T: Escola Básica e Secdária Dr. Âgelo Agsto da Silva Teste de MATEMÁTICA A º Ao Dração: 9 mitos Março/ Nome Nº T: Classificação O Prof. (Lís Abre) ª PARTE Para cada ma das segites qestões de escolha múltipla,

Leia mais

Prova Escrita de Matemática A

Prova Escrita de Matemática A EXAME NACIONAL DO ENSINO SECUNDÁRIO Decreto-Lei º 74/004, de 6 de Março Prova Escrita de Matemática A 1º Ao de Escolaridade Prova 65/Época Especial 1 Págias Dração da Prova: 150 mitos Tolerâcia: 0 mitos

Leia mais

Duração da Prova: 150 minutos. Tolerância: 30 minutos. Na folha de respostas, indique de forma legível a versão da prova.

Duração da Prova: 150 minutos. Tolerância: 30 minutos. Na folha de respostas, indique de forma legível a versão da prova. EXAME NACIONAL DO ENSINO SECUNDÁRIO Decreto-Lei.º 74/004, de de Março Prova Escrita de Matemática A 1.º Ao de Escolaridade Prova 5/1.ª Fase 11 Págias Dração da Prova: 150 mitos. Tolerâcia: 0 mitos. 009

Leia mais

Escola Básica e Secundária Dr. Ângelo Augusto da Silva

Escola Básica e Secundária Dr. Ângelo Augusto da Silva Escola Básica e Secdária Dr. Âgelo Agsto da Silva Teste de MATEMÁTICA A º Ao Dração: 9 mitos Maio/ Nome Nº T: Classificação O Prof. (Lís Abre) ª PARTE Para cada ma das segites qestões de escolha múltipla,

Leia mais

Escola Básica e Secundária Dr. Ângelo Augusto da Silva

Escola Básica e Secundária Dr. Ângelo Augusto da Silva Escola Básica e Secdária Dr. Âgelo Agsto da Silva Teste de MATEMÁTICA A.º Ao Dração: 9 mitos Jho/ 4 Nome N.º T: Classificação O Prof. (Lís Abre).ª PARTE Para cada ma das segites qestões de escolha múltipla,

Leia mais

Escola Básica e Secundária Dr. Ângelo Augusto da Silva

Escola Básica e Secundária Dr. Ângelo Augusto da Silva Escola Básica e Secdária Dr. Âgelo Agsto da Silva Teste de MATEMÁTICA A.º Ao Dração: 90 mitos Março/ 05 Nome N.º T:.ª PARTE Para cada ma das segites qestões de escolha múltipla, selecioe a resposta correta

Leia mais

Escola Básica e Secundária Dr. Ângelo Augusto da Silva

Escola Básica e Secundária Dr. Ângelo Augusto da Silva Escola Básica e Secdária Dr. Âgelo Agsto da Silva Teste de MATEMÁTICA A º Ao Dração: 9 mitos Maio/ 9 Nome Nº T: Classificação O Prof. (Lís Abre) ª PARTE Para cada ma das segites qestões de escolha múltipla,

Leia mais

Matemática A. Versão 1. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A.

Matemática A. Versão 1. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A. Teste Itermédio de Matemática A Versão 1 Teste Itermédio Matemática A Versão 1 Dração do Teste: 90 mitos 1.0.01 1.º Ao de Escolaridade Decreto-Lei.º 74/004, de 6 de março Na sa folha de respostas, idiqe

Leia mais

Matemática A. Versão 2. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A.

Matemática A. Versão 2. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A. Teste Itermédio de Matemática A Versão Teste Itermédio Matemática A Versão Dração do Teste: 90 mitos 1.0.01 1.º Ao de Escolaridade Decreto-Lei.º 74/004, de 6 de março Na sa folha de respostas, idiqe de

Leia mais

Escola Básica e Secundária Dr. Ângelo Augusto da Silva

Escola Básica e Secundária Dr. Ângelo Augusto da Silva Escola Básica e Secdária Dr. Âgelo Agsto da Silva Teste de MATEMÁTICA A 1º Ao Dração: 9 mitos Dezembro/ 1 Nome Nº T: 1.ª PARTE Para cada ma das segites qestões de escolha múltipla, selecioe a resposta

Leia mais

Matemática A. Versão 1. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A.

Matemática A. Versão 1. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A. Teste Itermédio de Matemática A Versão Teste Itermédio Matemática A Versão Duração do Teste: 90 miutos 6.05.0.º Ao de Escolaridade Decreto-Lei.º 74/004, de 6 de Março Na sua folha de respostas, idique

Leia mais

Escola Básica e Secundária Dr. Ângelo Augusto da Silva Teste de MATEMÁTICA A 12º Ano

Escola Básica e Secundária Dr. Ângelo Augusto da Silva Teste de MATEMÁTICA A 12º Ano Escola Básica e Secdária Dr. Âgelo Agsto da Silva Teste de MATEMÁTICA A º Ao Dração: 9 mitos Março/ Nome Nº T: Classificação O Prof. (Lís Abre) ª PARTE Para cada ma das segites qestões de escolha múltipla,

Leia mais

MATEMÁTICA A - 12o Ano Funções - Limite segundo Heine

MATEMÁTICA A - 12o Ano Funções - Limite segundo Heine MATEMÁTICA A - o Ao Fuções - Limite segudo Heie Eercícios de eames e testes itermédios. Seja f a fução, de domíio R \ {}, defiida por f) = e Cosidere a sucessão de úmeros reais ) tal que = Qual é o valor

Leia mais

( ) 4. Novo Espaço Matemática A 12.º ano Proposta de Teste de Avaliação [maio 2015] GRUPO I. f x

( ) 4. Novo Espaço Matemática A 12.º ano Proposta de Teste de Avaliação [maio 2015] GRUPO I. f x Novo Espaço Matemática A º ao Proposta de Teste de Avaliação [maio 05] Nome: Ao / Turma: Nº: Data: - - GRUPO I Os sete ites deste grupo são de escolha múltipla Em cada um deles, são idicadas quatro opções,

Leia mais

Matemática A. Versão 1. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A.

Matemática A. Versão 1. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A. Teste Intermédio de Matemática A Versão Teste Intermédio Matemática A Versão Dração do Teste: 90 mintos 9.0.0.º Ano de Escolaridade Decreto-Lei n.º 74/004, de 6 de Março Na sa folha de respostas, indiqe

Leia mais

somente um valor da variável y para cada valor de variável x.

somente um valor da variável y para cada valor de variável x. Notas de Aula: Revisão de fuções e geometria aalítica REVISÃO DE FUNÇÕES Fução como regra ou correspodêcia Defiição : Uma fução f é uma regra ou uma correspodêcia que faz associar um e somete um valor

Leia mais

EXAME NACIONAL DO ENSINO SECUNDÁRIO VERSÃO 1

EXAME NACIONAL DO ENSINO SECUNDÁRIO VERSÃO 1 EXAME NACIONAL DO ENSINO SECUNDÁRIO 12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto Programas novos e Decreto-Lei n.º 74/2004, de 26 de Março) PROVA 635/11 Págs. Duração da prova: 150

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 1o Ao 00 - a Fase Proposta de resolução GRUPO I 1. Como a probabilidade do João acertar em cada tetativa é 0,, a probabilidade do João acertar as tetativas é 0, 0, 0, 0,

Leia mais

Prova Escrita de Matemática A

Prova Escrita de Matemática A EXAME NACIONAL DO ENSINO SECUNDÁRIO Decreto-Lei n.º 39/0, de 5 de julho Prova Escrita de Matemática A.º Ano de Escolaridade Prova 635/Época Especial 5 Páginas Duração da Prova: 50 minutos. Tolerância:

Leia mais

EXAME NACIONAL DO ENSINO SECUNDÁRIO VERSÃO 1

EXAME NACIONAL DO ENSINO SECUNDÁRIO VERSÃO 1 EXAME NACIONAL DO ENSINO SECUNDÁRIO 12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto Programas novos e Decreto-Lei n.º 74/2004, de 26 de Março) PROVA 635/12 Págs. Duração da prova: 150

Leia mais

No arquivo Exames e Provas podem ser consultados itens e critérios de classificação de provas e de testes intermédios desta disciplina.

No arquivo Exames e Provas podem ser consultados itens e critérios de classificação de provas e de testes intermédios desta disciplina. INFORMAÇÃO-PROVA MATEMÁTICA A 016 Prova 635 1.º ao de Escolaridade (Decreto-Lei.º 139/01, de 5 de jlho) O presete docmeto divlga iformação relativa à prova de eame fial acioal do esio secdário da disciplia

Leia mais

Matemática A. Versão 2. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A.

Matemática A. Versão 2. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A. Teste Intermédio de Matemática A Versão 2 Teste Intermédio Matemática A Versão 2 Duração do Teste: 90 minutos 24.05.2013 12.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de março????????????? Na

Leia mais

Escola Básica e Secundária Dr. Ângelo Augusto da Silva Teste de MATEMÁTICA A 12º Ano

Escola Básica e Secundária Dr. Ângelo Augusto da Silva Teste de MATEMÁTICA A 12º Ano Escola Básica Scdária Dr. Âglo Agsto da Silva Tst d MATEMÁTICA A º Ao Dração: 9 mitos Maio/ Nom Nº T: ª PARTE Para cada ma das sgits qstõs d scolha múltipla, slccio a rsposta corrcta d tr as altrativas

Leia mais

Lista 9 - Introdução à Probabilidade e Estatística

Lista 9 - Introdução à Probabilidade e Estatística UNIVERSIDADE FEDERAL DO ABC Lista 9 - Itrodução à Probabilidade e Estatística Desigualdades e Teoremas Limites 1 Um ariro apota a um alvo de 20 cm de raio. Seus disparos atigem o alvo, em média, a 5 cm

Leia mais

CPV seu Pé Direito no INSPER

CPV seu Pé Direito no INSPER CPV seu Pé Direito o INSPE INSPE esolvida /ovembro/0 Prova A (Marrom) MATEMÁTICA 7. Cosidere o quadrilátero coveo ABCD mostrado a figura, em que AB = cm, AD = cm e m(^a) = 90º. 8. No plao cartesiao da

Leia mais

Prova 3 Matemática ... GABARITO 1 NOME DO CANDIDATO:

Prova 3 Matemática ... GABARITO 1 NOME DO CANDIDATO: Prova 3 QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Cofira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que costam da etiqueta fixada

Leia mais

Duração: 90 minutos 5º Teste, Junho Nome Nº T:

Duração: 90 minutos 5º Teste, Junho Nome Nº T: Escola Secudária Dr. Âgelo Augusto da Silva Teste de MATEMÁTICA A 11º Ao Duração: 90 miutos 5º Teste, Juho 006 Nome Nº T: Classificação O Prof. (Luís Abreu) 1ª PARTE Para cada uma das seguites questões

Leia mais

Apoio às aulas MAT II INSTITUTO SUPERIOR DE CONTABILIDADE E ADMINISTRAÇÃO DE LISBOA LICENCIATURA EM GESTÃO MATEMÁTICA II

Apoio às aulas MAT II INSTITUTO SUPERIOR DE CONTABILIDADE E ADMINISTRAÇÃO DE LISBOA LICENCIATURA EM GESTÃO MATEMÁTICA II Apoio às alas MAT II 8-5-6 INSTITTO SPERIOR DE CONTABILIDADE E ADMINISTRAÇÃO DE LISBOA LICENCIATRA EM GESTÃO MATEMÁTICA II APOIO ÀS ALAS DE 5/6 Mael Martis Carla Martiho Aa Jorge Defiições Defie-se scessão

Leia mais

Lista 2 - Introdução à Probabilidade e Estatística

Lista 2 - Introdução à Probabilidade e Estatística UNIVERSIDADE FEDERAL DO ABC Lista - Itrodução à Probabilidade e Estatística Modelo Probabilístico experimeto. Que eveto represeta ( =1 E )? 1 Uma ura cotém 3 bolas, uma vermelha, uma verde e uma azul.

Leia mais

Utilize apenas caneta ou esferográfica, de tinta azul ou preta.

Utilize apenas caneta ou esferográfica, de tinta azul ou preta. Teste Itermédio Mtemátic A Versão Drção do Teste: 90 mitos 30.04.04.º Ao de Escolridde Idiqe de form legível versão do teste. Utilize pes cet o esferográfic, de tit zl o pret. É permitido o so de mteril

Leia mais

CAP. I ERROS EM CÁLCULO NUMÉRICO

CAP. I ERROS EM CÁLCULO NUMÉRICO CAP I ERROS EM CÁLCULO NUMÉRICO 0 Itrodução Por método umérico etede-se um método para calcular a solução de um problema realizado apeas uma sequêcia fiita de operações aritméticas A obteção de uma solução

Leia mais

Exercícios de Matemática Polinômios

Exercícios de Matemática Polinômios Exercícios de Matemática Poliômios ) (ITA-977) Se P(x) é um poliômio do 5º grau que satisfaz as codições = P() = P() = P(3) = P(4) = P(5) e P(6) = 0, etão temos: a) P(0) = 4 b) P(0) = 3 c) P(0) = 9 d)

Leia mais

Faculdade Campo Limpo Paulista Mestrado em Ciência da Computação Complexidade de Algoritmos Avaliação 2

Faculdade Campo Limpo Paulista Mestrado em Ciência da Computação Complexidade de Algoritmos Avaliação 2 Faculdade Campo Limpo Paulista Mestrado em Ciêcia da Computação Complexidade de Algoritmos Avaliação 2. (2,0): Resolva a seguite relação de recorrêcia. T() = T( ) + 3 T() = 3 Pelo método iterativo progressivo.

Leia mais

UNIVERSIDADE DA MADEIRA

UNIVERSIDADE DA MADEIRA Biofísica UNIVERSIDADE DA MADEIRA P9:Lei de Sell. Objetivos Verificar o deslocameto lateral de um feixe de luz LASER uma lâmia de faces paralelas. Verificação do âgulo critico e reflexão total. Determiação

Leia mais

Informação n.º Data: Para: Inspeção-Geral de Educação. Direções Regionais de Educação. Escolas com ensino secundário CIREP FERLAP

Informação n.º Data: Para: Inspeção-Geral de Educação. Direções Regionais de Educação. Escolas com ensino secundário CIREP FERLAP Prova de Eame Nacioal de Matemática A Prova 635 01 1.º Ao de Escolaridade Decreto-Lei.º 74/004, de 6 de março Para: Direção-Geral de Iovação e de Desevolvimeto Crriclar Ispeção-Geral de Edcação Direções

Leia mais

Matemática A. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A. Versão 2.

Matemática A. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A. Versão 2. Teste Intermédio de Matemática A Versão Teste Intermédio Matemática A Versão Dração do Teste: 90 mintos 4.05.01 1.º Ano de Escolaridade Decreto-Lei n.º 74/004, de 6 de março Na sa folha de respostas, indiqe

Leia mais

Determinante Introdução. Algumas Propriedades Definição Algébrica Equivalências Propriedades Fórmula Matriz

Determinante Introdução. Algumas Propriedades Definição Algébrica Equivalências Propriedades Fórmula Matriz ao erminante Área e em R 2 O qe é? Qais são sas propriedades? Como se calcla (Qal é a fórmla o algoritmo para o cálclo)? Para qe sere? A = matriz. P paralelogramo com arestas e. + A é a área (com sinal)

Leia mais

Apoio às aulas MAT II INSTITUTO SUPERIOR DE CONTABILIDADE E ADMINISTRAÇÃO DE LISBOA LICENCIATURA EM GESTÃO MATEMÁTICA II

Apoio às aulas MAT II INSTITUTO SUPERIOR DE CONTABILIDADE E ADMINISTRAÇÃO DE LISBOA LICENCIATURA EM GESTÃO MATEMÁTICA II Apoio às alas MAT II 8-05-06 INSTITUTO SUPERIOR DE CONTABILIDADE E ADMINISTRAÇÃO DE LISBOA LICENCIATURA EM GESTÃO MATEMÁTICA II APOIO ÀS AULAS DE 05/06 Mael Martis Carla Martiho Aa Jorge Defiições Chama-se

Leia mais

EXAME NACIONAL DO ENSINO SECUNDÁRIO VERSÃO 1

EXAME NACIONAL DO ENSINO SECUNDÁRIO VERSÃO 1 EXAME NACIONAL DO ENSINO SECUNDÁRIO 12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) Cursos Gerais e Cursos Tecnológicos PROVA 435/9 Págs. Duração da prova: 120 minutos 2005 1.ª FASE

Leia mais

+... + a k. Observação: Os sistemas de coordenadas considerados são cartesianos retangulares.

+... + a k. Observação: Os sistemas de coordenadas considerados são cartesianos retangulares. MATEMÁTICA NOTAÇÕES : cojuto dos úmeros aturais; = {,,, } : cojuto dos úmeros iteiros : cojuto dos úmeros racioais : cojuto dos úmeros reais : cojuto dos úmeros complexos i: uidade imagiária, i = z: módulo

Leia mais

EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM N

EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM N EQUAÇÕES DIFERENCIAIS LINEARES DE ORDEM N Estudaremos este capítulo as equações diereciais lieares de ordem, que são de suma importâcia como suporte matemático para vários ramos da egeharia e das ciêcias.

Leia mais

Exercícios de exames e provas oficiais

Exercícios de exames e provas oficiais Eercícios de eames e provas oficiais. Cosidere as fuções f e g, de domíio,0, defiidas por l e g f f Recorredo a processos eclusivamete aalíticos, mostre que a codição pelo meos, uma solução em e, f e tem,

Leia mais

NEVES, Maria, GUERREIRO, Luís, et. al, Matemática A 10 Caderno de Actividades, Porto Editora, Porto, 2007

NEVES, Maria, GUERREIRO, Luís, et. al, Matemática A 10 Caderno de Actividades, Porto Editora, Porto, 2007 EXAME DO ENSINO SECUNDÁRIO DE RESUMOS.TK Prova Escrita de Matemática A 10.ºAno de Escolaridade Prova MAT10 14 páginas Duração da Prova: 120 minutos. Tolerância: 30 minutos. Autor: Francisco Cubal, como

Leia mais

Departamento de Matemática - Universidade de Coimbra. Mestrado Integrado em Engenharia Civil. Capítulo 1: Sucessões e séries

Departamento de Matemática - Universidade de Coimbra. Mestrado Integrado em Engenharia Civil. Capítulo 1: Sucessões e séries Departameto de Matemática - Uiversidade de Coimbra Mestrado Itegrado em Egeharia Civil Exercícios Teórico-Práticos 200/20 Capítulo : Sucessões e séries. Liste os primeiros cico termos de cada uma das sucessões

Leia mais

Demonstrações especiais

Demonstrações especiais Os fudametos da Física Volume 3 Meu Demostrações especiais a ) RLAÇÃO NTR próx. e sup. osidere um codutor eletrizado e em equilíbrio eletrostático. Seja P sup. um poto da superfície e P próx. um poto extero

Leia mais

Questão 11. Questão 13. Questão 12. Questão 14. alternativa B. alternativa E. alternativa A

Questão 11. Questão 13. Questão 12. Questão 14. alternativa B. alternativa E. alternativa A Questão Em uma pesquisa, foram cosultados 00 cosumidores sobre sua satisfação em relação a uma certa marca de sabão em pó. Cada cosumidor deu uma ota de 0 a 0 para o produto, e a média fial das otas foi

Leia mais

RENDIMENTO DE MODO ÚNICO EM DÍODOS LASER DE RETROACÇÃO DISTRIBUÍDA COM FACES REFLECTORAS

RENDIMENTO DE MODO ÚNICO EM DÍODOS LASER DE RETROACÇÃO DISTRIBUÍDA COM FACES REFLECTORAS Cogreso de étodos Nméricos e Igeiería 005 Graada, 4 a 7 de Jlio, 005 SNI, spaña 005 RNINTO OO ÚNICO ÍOOS LASR RTROACÇÃO ISTRIBUÍA CO FACS RFLCTORAS Carlos Alberto Ferreira Ferades Istitto de Telecomicações

Leia mais

Matemática. Resolução das atividades complementares. M10 Progressões. 1 (UFBA) A soma dos 3 o e 4 o termos da seqüência abaixo é:

Matemática. Resolução das atividades complementares. M10 Progressões. 1 (UFBA) A soma dos 3 o e 4 o termos da seqüência abaixo é: Resolução das atividades complemetares Matemática M0 Progressões p. 46 (UFBA) A soma dos o e 4 o termos da seqüêcia abaio é: a 8 * a 8 ( )? a, IN a) 6 c) 0 e) 6 b) 8 d) 8 a 8 * a 8 ( )? a, IN a 8 ()? a

Leia mais

Definição 1.1: Uma equação diferencial ordinária é uma. y ) = 0, envolvendo uma função incógnita y = y( x) e algumas das suas derivadas em ordem a x.

Definição 1.1: Uma equação diferencial ordinária é uma. y ) = 0, envolvendo uma função incógnita y = y( x) e algumas das suas derivadas em ordem a x. 4. EQUAÇÕES DIFERENCIAIS 4.: Defiição e coceitos básicos Defiição.: Uma equação diferecial ordiária é uma dy d y equação da forma f,,,, y = 0 ou d d ( ) f (, y, y,, y ) = 0, evolvedo uma fução icógita

Leia mais

INTRODUÇÃO A TEORIA DE CONJUNTOS

INTRODUÇÃO A TEORIA DE CONJUNTOS INTRODUÇÃO TEORI DE CONJUNTOS Professora Laura guiar Cojuto dmitiremos que um cojuto seja uma coleção de ojetos chamados elemetos e que cada elemeto é um dos compoetes do cojuto. Geralmete, para dar ome

Leia mais

COLÉGIO ANCHIETA-BA. ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. RESOLUÇÃO: PROFA, MARIA ANTÔNIA C. GOUVEIA

COLÉGIO ANCHIETA-BA. ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. RESOLUÇÃO: PROFA, MARIA ANTÔNIA C. GOUVEIA Questão 0. (UDESC) A AVALIAÇÃO DE MATEMÁTICA DA UNIDADE I-0 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA, MARIA ANTÔNIA C. GOUVEIA Um professor de matemática, após corrigir

Leia mais

Exercícios de exames e provas oficiais

Exercícios de exames e provas oficiais limites, cotiuidade, Teorema de Bolzao Eercícios de eames e provas oficiais. Cosidere as sucessões covergetes a e a b de termos gerais e b l e Sejam a e b os úmeros reais tais que a lima e b limb Qual

Leia mais

(Testes intermédios e exames 2007/2008)

(Testes intermédios e exames 2007/2008) (Testes intermédios e exames 2007/2008) 14. Uma caixa 1 tem uma bola verde e três bolas amarelas. Uma caixa 2 tem apenas uma bola verde. Considere a experiência que consiste em tirar, simultaneamente e

Leia mais

UFRGS 2007 - MATEMÁTICA

UFRGS 2007 - MATEMÁTICA - MATEMÁTICA 01) Em 2006, segudo otícias veiculadas a impresa, a dívida itera brasileira superou um trilhão de reais. Em otas de R$ 50, um trilhão de reais tem massa de 20.000 toeladas. Com base essas

Leia mais

Informação n.º Data: Para: Inspecção-Geral de Educação. Direcções Regionais de Educação. Escolas com Ensino Secundário CIREP

Informação n.º Data: Para: Inspecção-Geral de Educação. Direcções Regionais de Educação. Escolas com Ensino Secundário CIREP Prova de Eame Nacional de Matemática A Prova 635 20 2.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março Para: Direcção-Geral de Inovação e de Desenvolvimento Crriclar Inspecção-Geral de Edcação

Leia mais

Propostas de Resolução

Propostas de Resolução Propostas de Resolução Eercícios de MATEMÁTICA A. ao Como utilizar este ficheiro e localizar rapidamete a resolução pretedida? Verifique se a Barra de Ferrametas deste documeto eiste a caia de pesquisa

Leia mais

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 4

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 4 Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado MATEMÁTICA 0 Seja f ( ) log ( ) + log uma fução

Leia mais

EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO

EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO Prova Escrita de Matemática A.º Ao de Escolaridade Decreto-Lei.º 39/0, de 5 de julho Prova 635/.ª Fase 4 Págias Duração da Prova: 50 miutos. Tolerâcia: 30 miutos.

Leia mais

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 2

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 2 Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado GABARITO MATEMÁTICA 0 Na figura a seguir, esboçamos

Leia mais

Versão 1. Identifica, claramente, na folha de respostas, a versão do teste (1 ou 2) a que respondes.

Versão 1. Identifica, claramente, na folha de respostas, a versão do teste (1 ou 2) a que respondes. Teste Intermédio de Matemática Versão 1 Teste Intermédio Matemática Versão 1 Duração do Teste: 90 minutos 11.05.2010 3.º iclo do Ensino ásico 9.º ano de Escolaridade Decreto-Lei n.º 6/2001, de 18 de Janeiro

Leia mais

Escola Básica e Secundária Dr. Ângelo Augusto da Silva

Escola Básica e Secundária Dr. Ângelo Augusto da Silva Escola Básica e Secdária Dr. Âgelo Agsto da Silva Teste de MATEMÁTICA A 1º Ao Dração: 9 mitos Dezembro/ 9 Nome Nº T: Classificação O Prof. (Lís Abre) 1ª PARTE Para cada ma das segites qestões de escolha

Leia mais

Duração da Prova: 150 minutos. Tolerância: 30 minutos. Na folha de respostas, indique de forma legível a versão da prova.

Duração da Prova: 150 minutos. Tolerância: 30 minutos. Na folha de respostas, indique de forma legível a versão da prova. EXAME NACIONAL DO ENSINO SECUNDÁRIO Decreto-Lei n.º 74/004, de 6 de Março Prova Escrita de Matemática A 1.º ano de Escolaridade Prova 635/.ª Fase 11 Páginas Duração da Prova: 150 minutos. Tolerância: 30

Leia mais

Resposta: L π 4 L π 8

Resposta: L π 4 L π 8 . A figura a seguir ilustra as três primeiras etapas da divisão de um quadrado de lado L em quadrados meores, com um círculo iscrito em cada um deles. Sabedo-se que o úmero de círculos em cada etapa cresce

Leia mais

Capitulo 6 Resolução de Exercícios

Capitulo 6 Resolução de Exercícios FORMULÁRIO Cojutos Equivaletes o Regime de Juros Simples./Vecimeto Comum. Descoto Racioal ou Por Detro C1 C2 Cm C1 C2 C...... 1 i 1 i 1 i 1 i 1 i 1 i 1 2 m 1 2 m C Ck 1 i 1 i k1 Descoto Por Fora ou Comercial

Leia mais

Probabilidades. José Viegas

Probabilidades. José Viegas Probabilidades José Viegas Lisboa 001 1 Teoria das probabilidades Coceito geral de probabilidade Supoha-se que o eveto A pode ocorrer x vezes em, igualmete possíveis. Etão a probabilidade de ocorrêcia

Leia mais

Escola Básica e Secundária Dr. Ângelo Augusto da Silva

Escola Básica e Secundária Dr. Ângelo Augusto da Silva Escola Básica Scdária Dr. Âglo Agsto da Silva Tst d MATEMÁTICA A º Ao Dração: 9 mitos Fvriro/ Nom Nº T: Classificação O Prof. (Lís Abr) ª PARTE Para cada ma das sgits qstõs d scolha múltipla, slccio a

Leia mais

TEMA 2 FUNÇÕES FICHAS DE TRABALHO 12.º ANO COMPILAÇÃO TEMA 2 FUNÇÕES. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess

TEMA 2 FUNÇÕES FICHAS DE TRABALHO 12.º ANO COMPILAÇÃO TEMA 2 FUNÇÕES. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess Jorge Pealva José Carlos Pereira Vítor Pereira MathSuccess FICHAS DE TRABALHO 1.º ANO COMPILAÇÃO TEMA FUNÇÕES Site: http://www.mathsuccess.pt Facebook: https://www.facebook.com/mathsuccess TEMA FUNÇÕES

Leia mais

2ª fase. 19 de Julho de 2010

2ª fase. 19 de Julho de 2010 Proposta de resolução da Prova de Matemática A (código 635) ª fase 19 de Julho de 010 Grupo I 1. Como só existem bolas de dois tipos na caixa e a probabilidade de sair bola azul é 1, existem tantas bolas

Leia mais

Escola Básica e Secundária Dr. Ângelo Augusto da Silva

Escola Básica e Secundária Dr. Ângelo Augusto da Silva Escla Básica Scdária Dr. Âgl Agst da Silva Tst d MATEMÁTIA A º A Draçã: 9 mits Març/ 3 Nm Nº T: lassificaçã O Prf. (Lís Abr) ª PARTE Para cada ma das sgits qstõs d sclha múltipla, slci a rspsta crrta d

Leia mais

Prova-Modelo de Matemática

Prova-Modelo de Matemática Prova-Modelo de Matemática PROVA Págias Esio Secudário DURAÇÃO DA PROVA: miutos TOLERÂNCIA: miutos Cotações GRUPO I O quarto úmero de uma certa liha do triâgulo de Pascal é. A soma dos quatro primeiros

Leia mais

Em certas situações particulares é possível operar com raízes quadradas, raízes cúbicas,...

Em certas situações particulares é possível operar com raízes quadradas, raízes cúbicas,... Escola Secudária/, da Sé-Lamego Ficha de Trabalho de Matemática A Ao Lectivo 000/0 Cojuto IR - Operações com radicais, racioalização de deomiadores e equadrametos 0º Ao Nome: Nº: Turma: NÚMEROS IRRACIONAIS

Leia mais

ERROS ERRO DE ARREDONDAMENTO

ERROS ERRO DE ARREDONDAMENTO ERROS Seja o valor aproimado do valor eacto. O erro de deie-se por ε ε erro absoluto de Aálise N um érica 4 ERRO DE ARREDONDAENTO Seja o valor aproimado do valor eacto tedo eactamete k dígitos após o poto

Leia mais

Prova Escrita de Matemática A

Prova Escrita de Matemática A EXAME NACIONAL DO ENSINO SECUNDÁRIO Decreto-Lei n.º 74/004, de 6 de Março Prova Escrita de Matemática A 1.º Ano de Escolaridade Prova 635/Época Especial 14 Páginas Duração da Prova: 150 minutos. Tolerância:

Leia mais

VERSÃO 1. Prova Escrita de Matemática A. 12.º Ano de Escolaridade. Prova 635/1.ª Fase. Duração da Prova: 150 minutos. Tolerância: 30 minutos.

VERSÃO 1. Prova Escrita de Matemática A. 12.º Ano de Escolaridade. Prova 635/1.ª Fase. Duração da Prova: 150 minutos. Tolerância: 30 minutos. Eame Nacional do Ensino Secundário Decreto-Lei n.º 74/2004, de 26 de Março Prova Escrita de Matemática A 12.º Ano de Escolaridade Prova 635/1.ª Fase 15 Páginas Duração da Prova: 150 minutos. Tolerância:

Leia mais

Matemática. Resolução das atividades complementares. M5 Análise combinatória

Matemática. Resolução das atividades complementares. M5 Análise combinatória Resolução das atividades complemetares Matemática M Aálise combiatória p. 6 Ao laçarmos um dado duas vezes, quatas e quais são as possibilidades de ocorrêcia dos úmeros? Ao laçarmos um dado duas vezes,

Leia mais

MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais Propostas de resolução

MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais Propostas de resolução MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais Propostas de resolução Exercícios de exames e testes intermédios 1. Como o zero é o elemento neutro da multiplicação, o produto dos números saídos

Leia mais

Aula 2 - POT - Teoria dos Números - Fabio E. Brochero Martinez Carlos Gustavo T. de A. Moreira Nicolau C. Saldanha Eduardo Tengan

Aula 2 - POT - Teoria dos Números - Fabio E. Brochero Martinez Carlos Gustavo T. de A. Moreira Nicolau C. Saldanha Eduardo Tengan Aula - POT - Teoria dos Números - Nível III - Pricípios Fabio E. Brochero Martiez Carlos Gustavo T. de A. Moreira Nicolau C. Saldaha Eduardo Tega de Julho de 01 Pricípios Nesta aula apresetaremos algus

Leia mais

Faculdade de Engenharia Investigação Operacional. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Investigação Operacional. Prof. Doutor Engº Jorge Nhambiu Programação Diâmica Aula 3: Programação Diâmica Programação Diâmica Determiística; e Programação Diâmica Probabilística. Programação Diâmica O que é a Programação Diâmica? A Programação Diâmica é uma técica

Leia mais

Computação Científica - Departamento de Informática Folha Prática 1

Computação Científica - Departamento de Informática Folha Prática 1 1. Costrua os algoritmos para resolver os problemas que se seguem e determie as respetivas ordes de complexidade. a) Elaborar um algoritmo para determiar o maior elemeto em cada liha de uma matriz A de

Leia mais

VII Equações Diferenciais Ordinárias de Primeira Ordem

VII Equações Diferenciais Ordinárias de Primeira Ordem VII Equações Difereciais Ordiárias de Primeira Ordem Itrodução As equações difereciais ordiárias são istrumetos esseciais para a modelação de muitos feómeos proveietes de várias áreas como a física, química,

Leia mais

Prova Escrita de Matemática A

Prova Escrita de Matemática A EXAME NACIONAL DO ENSINO SECUNDÁRIO Decreto-Lei n.º 74/2004, de 26 de Março Prova Escrita de Matemática A 12.º Ano de Escolaridade Prova 635/2.ª Fase 11 Páginas Duração da Prova: 150 minutos. Tolerância:

Leia mais

Lista 2.1 Breves Revisões de Lógica; Noção de Norma e Distância; Breves Noções Topológicas em R n

Lista 2.1 Breves Revisões de Lógica; Noção de Norma e Distância; Breves Noções Topológicas em R n Faculdade de Ecoomia da Uiversidade Nova de Lisboa Apotametos Cálculo II Lista 2.1 Breves Revisões de Lógica; Noção de Norma e Distâcia; Breves Noções Topológicas em R 1. Símbolos e operadores lógicos:

Leia mais

Teste Intermédio Matemática. 9.º Ano de Escolaridade. Versão 1. Duração do Teste: 30 min (Caderno 1) + 60 min (Caderno 2) 21.03.

Teste Intermédio Matemática. 9.º Ano de Escolaridade. Versão 1. Duração do Teste: 30 min (Caderno 1) + 60 min (Caderno 2) 21.03. Teste Intermédio Matemática Versão 1 Duração do Teste: 30 min (Caderno 1) + 60 min (Caderno 2) 21.03.2014 9.º Ano de Escolaridade Indica de forma legível a versão do teste. O teste é constituído por dois

Leia mais

Não é permitido o uso de corrector. Em caso de engano, deve riscar, de forma inequívoca, aquilo que pretende que não seja classificado.

Não é permitido o uso de corrector. Em caso de engano, deve riscar, de forma inequívoca, aquilo que pretende que não seja classificado. Teste Intermédio de Matemática B 2010 Teste Intermédio Matemática B Duração do Teste: 90 minutos 13.04.2010 10.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março Utilize apenas caneta ou esferográfica

Leia mais

Séries de Potências AULA LIVRO

Séries de Potências AULA LIVRO LIVRO Séries de Potêcias META Apresetar os coceitos e as pricipais propriedades de Séries de Potêcias. Além disso, itroduziremos as primeiras maeiras de escrever uma fução dada como uma série de potêcias.

Leia mais

A soma dos perímetros dos triângulos dessa sequência infinita é a) 9 b) 12 c) 15 d) 18 e) 21

A soma dos perímetros dos triângulos dessa sequência infinita é a) 9 b) 12 c) 15 d) 18 e) 21 Nome: ºANO / CURSO TURMA: DATA: 0 / 0 / 05 Professor: Paulo. (Pucrj 0) Vamos empilhar 5 caixas em ordem crescete de altura. A primeira caixa tem m de altura, cada caixa seguite tem o triplo da altura da

Leia mais

Prova Final de Matemática

Prova Final de Matemática PROVA FINAL DO 3.º CICLO do Ensino BÁSICO Decreto-Lei n.º 139/01, de 5 de julho Prova Final de Matemática 3.º Ciclo do Ensino Básico Prova 9/1.ª Chamada 8 Páginas Duração da Prova: 90 minutos. Tolerância:

Leia mais

Problema de Fluxo de Custo Mínimo

Problema de Fluxo de Custo Mínimo Problema de Fluo de Custo Míimo The Miimum Cost Flow Problem Ferado Nogueira Fluo de Custo Míimo O Problema de Fluo de Custo Míimo (The Miimum Cost Flow Problem) Este problema possui papel pricipal etre

Leia mais

[65, 187, 188, 189, 190]

[65, 187, 188, 189, 190] Anexo 12 Estimativa de Incertezas [65, 187, 188, 189, 190] 1. Introdção A estimativa da incerteza associada ao resltado de ma medição envolve vários passos: a especificação da grandeza em casa, a identificação

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A. TESTE Nº 2 Grupo I

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A. TESTE Nº 2 Grupo I ESCOLA SECUNDÁRIA COM º CICLO D. DINIS º ANO DE ESCOLARIDADE DE MATEMÁTICA A TESTE Nº Grupo I As cinco questões deste grupo são de escolha múltipla. Para cada uma delas são indicadas quatro alternativas,

Leia mais

5- CÁLCULO APROXIMADO DE INTEGRAIS 5.1- INTEGRAÇÃO NUMÉRICA

5- CÁLCULO APROXIMADO DE INTEGRAIS 5.1- INTEGRAÇÃO NUMÉRICA 5- CÁLCULO APROXIMADO DE INTEGRAIS 5.- INTEGRAÇÃO NUMÉRICA Itegrar umericamete uma fução y f() um dado itervalo [a, b] é itegrar um poliômio P () que aproime f() o dado itervalo. Em particular, se y f()

Leia mais

A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse: www.pagina10.com.br

A seguir, uma demonstração do livro. Para adquirir a versão completa em papel, acesse: www.pagina10.com.br A seguir, uma demostração do livro. Para adquirir a versão completa em papel, acesse: www.pagia10.com.br Matemática comercial & fiaceira - 2 4 Juros Compostos Iiciamos o capítulo discorredo sobre como

Leia mais

ActivALEA. ative e atualize a sua literacia

ActivALEA. ative e atualize a sua literacia ActivALEA ative e atualize a sua literacia N.º 29 O QUE É UMA SONDAGEM? COMO É TRANSMIITIIDO O RESULTADO DE UMA SONDAGEM? O QUE É UM IINTERVALO DE CONFIIANÇA? Por: Maria Eugéia Graça Martis Departameto

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 12º ANO DE ESCOLARIDADE MATEMÁTICA A FICHA DE AVALIAÇÃO 12º A1. Grupo I

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 12º ANO DE ESCOLARIDADE MATEMÁTICA A FICHA DE AVALIAÇÃO 12º A1. Grupo I ESCOLA SECUNDÁRIA COM º CICLO D. DINIS COIMBRA º ANO DE ESCOLARIDADE MATEMÁTICA A FICHA DE AVALIAÇÃO º A Grupo I As três questões deste grupo são de escolha múltipla. Para cada uma delas são idicadas quatro

Leia mais

MATEMÁTICA APLICADA À GESTÃO I

MATEMÁTICA APLICADA À GESTÃO I 00 MATEMÁTICA APLICADA À GESTÃO I TEXTO DE APOIO MARIA ALICE FILIPE ÍNDICE NOTAS PRÉVIAS ALGUNS CONCEITOS SOBRE SÉRIES6 NOTAS PRÉVIAS As otas seguites referem-se ao maual adoptado: Cálculo, Vol I James

Leia mais

Duração da Prova: 150 minutos. Tolerância: 30 minutos. Na folha de respostas, indique, de forma legível, a versão da prova.

Duração da Prova: 150 minutos. Tolerância: 30 minutos. Na folha de respostas, indique, de forma legível, a versão da prova. EXAME NACINAL D ENSIN SECUNDÁRI Decreto-Lei n.º 74/004, de 6 de Março Prova Escrita de Matemática A.º Ano de Escolaridade Prova 635/.ª Fase 3 Páginas Dração da Prova: 50 mintos. Tolerância: 30 mintos.

Leia mais

Apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efectuar e todas as justificações necessárias.

Apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efectuar e todas as justificações necessárias. Curso de Artes Visuais Matemática B 11º ao Ficha de Avaliação 1 Abril 2011 Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efectuar e todas as justificações ecessárias.

Leia mais

Módulo 4 Matemática Financeira

Módulo 4 Matemática Financeira Módulo 4 Matemática Fiaceira I Coceitos Iiciais 1 Juros Juro é a remueração ou aluguel por um capital aplicado ou emprestado, o valor é obtido pela difereça etre dois pagametos, um em cada tempo, de modo

Leia mais