No último problema mostrámos que os potenciais dos dois condutores estão relacionados com as cargas através das seguintes relações lineares:
|
|
- Fernanda Pinheiro Chaves
- 2 Há anos
- Visualizações:
Transcrição
1 Aula Teórica nº 14 LEM-2006/2007 Prof. responsável: Mário Pinheiro Problema Fundamental da Electrostática (condutores sob influência mútua) No último problema mostrámos que os potenciais dos dois condutores estão relacionados com as cargas através das seguintes relações lineares: V q1 + 4π ε 0 R1 R2 4π ε 0 R3 1 1 V2 ( q1 + q2 ) 4π ε 0 R3 ( q + q ) 1 2 Podendo-se escrever na forma geral n Vk Skiqi i 1 onde S11 + 4π ε 0 R1 R2 R3 e 1 1 S12 S21 S22 4π ε 0 R3 Estes coeficientes, chamados de coeficientes de potencial, são independentes do estado de electrização dos condutores e só dependem da geometria dos mesmos e do meio que neste caso é o vácuo. Existindo uma relação linear entre os V k e os q i, existe também a relação inversa [1] Sendo oc Cik chamados agora de coeficientes de capacidade e tal como os anteriores também são independentes do estado de electrização dos condutores. O Problema Fundamental da Electrostática Consiste em dadas as cargas qi de um conjunto de condutores, sob influência eléctrica mútua, determinar os seus potenciais V k ; ou então, dados os potenciais determinar as cargas. 34
2 [2] Este problema tem sempre solução e esta é única. Aqui não foi provado de forma geral mas foi verificado através do exemplo anterior com os dois condutores esféricos. Em resumo, as cargas dos diferentes condutores estão relacionadas com os potenciais de todos e vice-versa, através de relações lineares do tipo [3] com os C ik e S ki independentes das cargas e dos potnciais. Condensador Chama-se condensador a um sistema de dois condutores em presença. [4] Repare bem que no caso de se verificar V 1 > V2 > 0, a configuração de linhas de força é a assinalada na figura (sempre dirigida no sentido dos potenciais decrescentes pelo que as cargas nos condutores só podem ter os sinais indicados). A carga no condutor (1) tem uma parte que trocas linhas de força com o condutor (2) e uma parte que troca linhas de força com o. Podemos designar da forma seguintes essas contribuições: q 1 q12 + q1. Define-se capacidade de um condensador, como o quociente entre a carga positiva que é trocada entre os dois condutores e a diferença de potencial entre eles: [5] É fácil de provar que a carga no condutor (2) que recebe as l. de f. que vêm de (1) têm de ser simétricas, q21 q12. 35
3 Teorema dos Elementos Correspondentes [6] Considere-se dois condutores (1) e (2), com V 1 > V2, e um tubo de l. de f. que parte de (1) e chega a (2). Seja agora uma superfície fechada constituída pela superfície lateral do tubo de l. de f. e por duas superfícies escavadas no interior dos dois condutores. Aplicando o Teorema de Gauss, tem-se [7] O primeiro e terceiro integrais são nulos, porque as superfícies são escavadas no interior dos condutores e aí o campo eléctrico é nulo. Por outro lado, o segundo integral é também nulo porque a normal à superfície do tubo de l. de f. é perpendicular ao campo. Tem-se assim que q int 0 e dentro do tubo apenas existe q 12 e q 21. Tem-se portanto, q 12 + q21 0. A este resultado chama-se Teorema dos Elementos Correspondentes. Voltemos agora de novo ao problema dos dois condutores esféricos a fim de determinarmos a capacidade do condensador. [8] Neste caso q 1 q 12, visto que não há troca de l. de f. entre o condutor (1) e o, q 1. Por outro lado, [9] Como se verifica C é uma grandeza que só depende da geometria dos condutores e do meio entre os condutores (também chamados de armaduras do condensador) e é independente do estado de electrização. 36
4 Energia Electrostática de um sistema de condutores Seja um sistema de n condutores em presença: [10] A energia electrostática pode ser calculada usando a expressão para distribuições em superfície (visto ser ρ 0 num condutor em equilíbrio electrostático): [11] Esta expressão é formalmente idêntica à expressão encontrada para um sistema de cargas pontuais. Contudo, num sistema de cargas pontuais a energia intrínseca de cada carga não era contabilizada, apenas o era a energia de interacção. Energia de um condensador [12] Seja um condensador constituído por um condutor com uma cavidade, com um outro no seu interior. [13] O primeiro termo representa a energia armazenada entre as armaduras do condensador (é aquilo que se chama vulgarmente energia do condensador). 37
5 O segundo termo representa a energia armazenada no espaço exterior (equivalente a um condensador carregado com q 1 +q 2, estando a outra armadura no ). [14] 38
C mp m o p o Eléctr t ico o Un U i n fo f r o me
Campo Eléctrico Uniforme Tal como o campo gravítico pode ser considerado uniforme numa estreita região perto da superfície da Terra, também o campo eléctrico pode ser uniforme numa determinada região do
Física II Eng. Química + Eng. Materiais
Física II Eng. Química + Eng. Materiais Carga Eléctrica e Campo Eléctrico Lei de Gauss Potencial Eléctrico Condensadores 1. Nos vértices de um quadrado ABCD, com 10 cm de lado, estão colocadas cargas pontuais
Sistemas eléctricos e magnéticos
Sistemas eléctricos e magnéticos A corrente eléctrica como forma de transferência de energia Prof. Luís Perna 2010/11 Geradores de corrente eléctrica Um gerador eléctrico é um dispositivo que converte
IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 8
Exemplos de Cálculo do Potencial Elétrico Vimos na aula passada que há duas maneiras de se calcular o potencial elétrico. Quando se conhece a distribuição de cargas (discreta ou contínua), usa-se as equações
FÍSICA DAS RADIAÇÕES
FÍSICA DAS RADIAÇÕES Curso de Radiologia Escola Superior de Saúde de Faro 2008/2009 1º semestre Docente (aulas teóricas): Carla Quintão Silva DEPARTAMENTO DE FÍSICAF DA FACULDADE DE CIÊNCIAS E TECNOLOGIA
COLÉGIO SANTA MARIA 2009 RUMO AOS 70 ANOS AVALIAÇÃO 2ª ETAPA 1º BLOCO ENSINO MÉDIO
OLÉGIO SANTA MAIA 009 UMO AOS 0 ANOS AALIAÇÃO ª TAPA 1º BLOO NSINO MÉDIO NOTA: POFSSO:TADU DISIPLINA: FÍSIA II DATA: / / 3º MÉDIO: ALUNO(A): N Atenção! É importante a escrita legível. Não serão aceitas
Índice de matérias. Aula
de matérias Capítulo 0 : Introdução 0.1 Interacções fundamentais. 0.2 Interacção Electromagnética. 0.3 Grandezas Físicas do Electromagnetismo. Capítulo 1 : Electrostática 1.1. Carga e interacção eléctrica
Lei de Gauss Origem: Wikipédia, a enciclopédia livre.
Lei de Gauss Origem: Wikipédia, a enciclopédia livre. A lei de Gauss é a lei que estabelece a relação entre o fluxo de campo elétrico que passa através de uma superfície fechada com a carga elétrica que
Um capacitor é um sistema elétrico formado por dois condutores separados por um material isolante, ou pelo vácuo.
Capacitores e Dielétricos Um capacitor é um sistema elétrico formado por dois condutores separados por um material isolante, ou pelo vácuo. Imaginemos uma configuração como a de um capacitor em que os
Lista de Eletrostática da UFPE e UPE
Lista de Eletrostática da UFPE e UPE 1. (Ufpe 1996) Duas pequenas esferas carregadas repelem-se mutuamente com uma força de 1 N quando separadas por 40 cm. Qual o valor em Newtons da força elétrica repulsiva
Análise Matemática III - Turma Especial
Análise Matemática III - Turma Especial Ficha Extra 6 - Equações de Maxwell Não precisam de entregar esta ficha omo com todas as equações básicas da Física, não é possível deduzir as equações de Maxwell;
Saber calcular o fluxo elétrico e o campo elétrico através de uma superfície de contorno bem definida.
Aula 5 LEI DE GAUSS META Mostrar a fundamental importância da lei de Gauss para a compreensão do campo elétrico e como essa lei facilita o desenvolvimento matemático de problemas complexos de eletricidade.
Microfone e altifalante. Conversão de um sinal sonoro num sinal elétrico. sinal elétrico num sinal sonoro.
Microfone e altifalante Conversão de um sinal sonoro num sinal elétrico. Conversão de um sinal elétrico num sinal sonoro. O funcionamento dos microfones e dos altifalantes baseia-se na: - acústica; - no
ɸ E = ΣE.A (5) 14/04/2015. Bacharelado em Engenharia Civil. Física III
Bacharelado em Engenharia Civil Física III Prof a.: M.Sc. Mariana de Faria Gardingo Diniz FLUXO DE CAMPO ELÉTRICO Imagine que as linhas de campo da figura abaixo representem um campo elétrico de cargas
Capítulo V Capacitância e Dieléctricos
ELECTROMAGNETISMO Curso de Electrotecnia e de Computadores º Ano 2º Semestre 200-20 5. Capacitância 5.. Condensador Capítulo V Capacitância e Dieléctricos Um condensador é um sistema formado por dois condutores
Programa de Unidade Curricular
Programa de Unidade Curricular Faculdade Faculdade de Engenharia Licenciatura Engenharia Electrónica e Informática Unidade Curricular Teoria da Electricidade Semestre: 2 Nº ECTS: 6,0 Regente Rui Manuel
POTENCIAL ELÉTRICO. por unidade de carga
POTENCIAL ELÉTRICO A lei de Newton da Gravitação e a lei de Coulomb da eletrostática são matematicamente idênticas, então os aspectos gerais discutidos para a força gravitacional podem ser aplicadas para
Um capacitor não armazena apenas carga, mas também energia.
Capacitores e Dielétricos (continuação) Energia armazenada num capacitor Um capacitor não armazena apenas carga, mas também energia. A energia armazenada num capacitor é igual ao trabalho necessário para
ELETROSTÁTICA 3ª SÉRIE
ELETROSTÁTICA 3ª SÉRIE 1. (Pucrj 013) Duas cargas pontuais q1 3,0 μc e q 6,0 μc são colocadas a uma distância de 1,0 m entre si. Calcule a distância, em metros, entre a carga q 1 e a posição, situada entre
AGRUPAMENTO DE CLARA DE RESENDE COD. 346 779 COD. 152 870
CRITÉRIOS ESPECÍFICOS DE AVALIAÇÃO ( Aprovados em Conselho Pedagógico de 21 de Outubro de 2014) No caso específico da disciplina de FÍsica, do 12ºano de escolaridade, a avaliação incidirá ainda ao nível
1 P r o j e t o F u t u r o M i l i t a r w w w. f u t u r o m i l i t a r. c o m. b r
Exercícios Capacitores e) 12,5 J 1-Capacitores são elementos de circuito destinados a: a) armazenar corrente elétrica. b) permitir a passagem de corrente elétrica de intensidade constante. c) corrigir
Capítulo 11 MOTORES ELÉTRICOS DE CORRENTE CONTÍNUA E UNIVERSAL. Introdução
Capítulo 11 MOTORES ELÉTRICOS DE CORRENTE CONTÍNUA E UNIVERSAL Esta aula apresenta o princípio de funcionamento dos motores elétricos de corrente contínua, o papel do comutador, as características e relações
A lei de Gauss é uma lei geral. Ela vale para qualquer distribuição de cargas e qualquer superfície fechada.
Aplicações da lei de Gauss A lei de Gauss é uma lei geral. Ela vale para qualquer distribuição de cargas e qualquer superfície fechada. De maneira genérica, a lei de Gauss diz que: Fluxo elétrico sobre
Lei de Gauss da Eletricidade. Prof. Rudi Gaelzer IFM/UFPel (Física Básica III )
Lei de Gauss da Eletricidade Objetivos iremos aprender: O que significa fluxo elétrico e como é possível calcular o mesmo. Como é possível determinar a carga elétrica delimitada por uma superfície fechada
PLANIFICAÇÃO DA DISCIPLINA DE FÍSICA 12º ANO Ano lectivo 2015/2016
AGRUPAMENTO DE ESCOLAS JOSÉ BELCHIOR VIEGAS PLANIFICAÇÃO DA DISCIPLINA DE FÍSICA 12º ANO Ano lectivo 2015/2016 Competências Gerais Conteúdos programáticos /Temas Objectivos Gerais Aulas Previstas (blocos
Aula 2_1. Lei de Gauss I. Física Geral e Experimental III Prof. Cláudio Graça Capítulo 3
Aula 2_1 Lei de Gauss I Física Geral e xperimental III Prof. Cláudio Graça Capítulo 3 Conceito de Fluxo do campo elétrico Fluxo do campo elétrico num campo uniforme Suponhamos uma superfície plana de área
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.1. Função do 1 Grau. Isabelle Araujo 5º período de Engenharia de Produção
CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.1 Função do 1 Grau Isabelle Araujo 5º período de Engenharia de Produção Funções Na linguagem do dia a dia é comum ouvirmos frases como: Uma coisa depende
Expansão linear e geradores
Espaços Vectoriais - ALGA - 004/05 4 Expansão linear e geradores Se u ; u ; :::; u n são vectores de um espaço vectorial V; como foi visto atrás, alguns vectores de V são combinação linear de u ; u ; :::;
Potencial Elétrico. e dividindo-se pela carga de prova q 0 temos o campo elétrico E:
Potencial Elétrico Quando estudamos campo elétrico nas aulas passadas, vimos que ele pode ser definido em termos da força elétrica F que uma carga q exerce sobre uma carga de prova q 0. Essa força é, pela
capacitores antes de estudar o capítulo PARTE I
PARTE I Unidade B capítulo 12 capacitores seções: 121 Capacitor 122 Associação de capacitores 123 Energia potencial elétrica armazenada por um capacitor 124 Carga e descarga de um capacitor 125 Dielétricos
CAPACIDADE ELÉTRICA. Unidade de capacitância
CAPACIDADE ELÉTRICA Como vimos, a energia elétrica pode ser armazenada e isso se faz através do armazenamento de cargas elétricas. Essas cargas podem ser armazenadas em objetos condutores. A capacidade
www.e-lee.net Temática Circuitos Eléctricos Capítulo Teoria dos Circuitos COMPONENTES INTRODUÇÃO
Temática Circuitos Eléctricos Capítulo Teoria dos Circuitos COMPONENTES INTRODUÇÃO Nesta secção, estuda-se o comportamento ideal de alguns dos dipolos que mais frequentemente se podem encontrar nos circuitos
Valores eternos. MATÉRIA. PROFESSOR(A) Hermann ---- ---- 1. Para a associação da figura, a resistência equivalente entre os terminais A e B é igual a:
Valores eternos. TD Recuperação ALUNO(A) MATÉRIA Física III PROFESSOR(A) Hermann ANO SEMESTRE DATA 3º 1º Julho/2013 TOTAL DE ESCORES ESCORES OBTIDOS ---- ---- 1. Para a associação da figura, a resistência
Preparação para o teste intermédio de Matemática 8º ano
Preparação para o teste intermédio de Matemática 8º ano Conteúdos do 7º ano Conteúdos do 8º ano Conteúdos do 8º Ano Teorema de Pitágoras Funções Semelhança de triângulos Ainda os números Lugares geométricos
IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 4
Lei de Gauss Considere uma distribuição arbitrária de cargas ou um corpo carregado no espaço. Imagine agora uma superfície fechada qualquer envolvendo essa distribuição ou corpo. A superfície é imaginária,
IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = =
Energia Potencial Elétrica Física I revisitada 1 Seja um corpo de massa m que se move em linha reta sob ação de uma força F que atua ao longo da linha. O trabalho feito pela força para deslocar o corpo
Interbits SuperPro Web
1. (Upe 2013) Considere a Terra como uma esfera condutora, carregada uniformemente, cuja carga total é 6,0 μ C, e a distância entre o centro da Terra e um ponto P na superfície da Lua é de aproximadamente
POTENCIAL ELÉTRICO. Seção 30-2 Energia Potencial Elétrica
POTENCIAL ELÉTRICO Seção 30-2 Energia Potencial Elétrica 1. No modelo de quarks das partículas fundamentais, um próton é composto de três quarks: dois quarks "up", cada um tendo carga +(2/3)e, e um quark
1] Dada a associação de resistores abaixo, calcule a resistência total.
ª ANO 1] Dada a associação de resistores abaixo, calcule a resistência total. Onde: O circuito A é uma associação de resitores em série, pois há apenas um caminho para que a corrente passe de uma extremidade
CAPACITORES. Vestibular1 A melhor ajuda ao vestibulando na Internet Acesse Agora! www.vestibular1.com.br
CAPACITORES DEFINIÇÕES Quando as placas do capacitor estão carregadas com cargas iguais e de sinais diferentes, estabelece-se entre as placas uma diferença de potencial V que é proporcional à carga. Q
Aula 5: Capacitância. Curso de Física Geral III F-328 1º semestre, 2014 F328 1S2014 1
Aula 5: Capacitância Curso de Física Geral III F-38 º semestre, 4 F38 S4 Capacitância Capacitores Dois condutores carregados com cargas Q e Q e isolados, de formatos arbitrários, formam o ue chamamos de
Bacharelado em Engenharia Civil
Bacharelado em Engenharia Civil Disciplina: Física III Profa.: Drd. Mariana de F. G. Diniz CAPACITÂNCIA É a propriedade que têm os corpos de manter uma carga elétrica. Portanto a capacitância corresponde
Introdução ao Estudo da Corrente Eléctrica
Introdução ao Estudo da Corrente Eléctrica Num metal os electrões de condução estão dissociados dos seus átomos de origem passando a ser partilhados por todos os iões positivos do sólido, e constituem
TD DE FÍSICA 2 Questões de Potencial elétrico e Trabalho da Força Elétrica PROF.: João Vitor
1. (Ita) Considere as afirmações a seguir: I. Em equilíbrio eletrostático, uma superfície metálica é equipotencial. II. Um objeto eletrostaticamente carregado induz uma carga uniformemente distribuída
Análise de Arredondamento em Ponto Flutuante
Capítulo 2 Análise de Arredondamento em Ponto Flutuante 2.1 Introdução Neste capítulo, chamamos atenção para o fato de que o conjunto dos números representáveis em qualquer máquina é finito, e portanto
22-05-2015. Sumário. Energia em movimentos. A Energia de Sistemas em Mov. de Translação 20/05/2015
Sumário Unidade temática 2 A energia de sistemas em movimento de translação. - Teorema da energia cinética. A força com que a Terra atrai os corpos realiza trabalho. - Trabalho realizado pelo peso dum
Circuitos Elétricos 1 - Análise Senoidal e Propriedades Gerais dos Circuitos em C.A. Impedância Elétrica
Circuitos Elétricos 1 - Análise Senoidal e Propriedades Gerais dos Circuitos em C.A. Impedância Elétrica Na disciplina de Eletricidade constatou-se que a análise no tempo de um circuito com condensadores
O que você deve saber sobre
O que você deve saber sobre Além de resistores, os circuitos elétricos apresentam dispositivos para gerar energia potencial elétrica a partir de outros componentes (geradores), armazenar cargas, interromper
Lei de Gauss. Fluxo do campo elétrico. Enunciado da Lei de Gauss. Aplicações. Cálculo de campos elétricos. Condutores. Blindagem eletrostática.
Lei de Gauss Fluxo do campo elétrico. Enunciado da Lei de Gauss. Aplicações. Cálculo de campos elétricos. Condutores. Blindagem eletrostática. Campos em condutores elétricos Fluxo do campo elétrico Fluxo
Ondas Eletromagnéticas. E=0, 1 B=0, 2 E= B t, 3 E
Ondas Eletromagnéticas. (a) Ondas Planas: - Tendo introduzido dinâmica no sistema, podemos nos perguntar se isto converte o campo eletromagnético de Maxwell em uma entidade com existência própria. Em outras
Ivan Guilhon Mitoso Rocha. As grandezas fundamentais que serão adotadas por nós daqui em frente:
Rumo ao ITA Física Análise Dimensional Ivan Guilhon Mitoso Rocha A análise dimensional é um assunto básico que estuda as grandezas físicas em geral, com respeito a suas unidades de medida. Como as grandezas
ELETROSTÁTICA. Ramo da Física que estuda as cargas elétricas em repouso. www.ideiasnacaixa.com
ELETROSTÁTICA Ramo da Física que estuda as cargas elétricas em repouso. www.ideiasnacaixa.com Quantidade de carga elétrica Q = n. e Q = quantidade de carga elétrica n = nº de elétrons ou de prótons e =
Departamento de Física da Faculdade de Ciências da Universidade de Lisboa Física Experimental (Engenharia Informática)-1º.
Trabalho 8 - Estudo da propagação de ondas electromagnéticas num cabo coaxial 1. Objectivos: Compreender o funcionamento de um cabo coaxial como um guia de ondas electromagnéticas; Reconhecer a importância
Nome Nº turma Data / /
Ciências Físico-Químicas 9º Ano Corrente Eléctrica FICHA DE TRABALHO Nome Nº turma Data / / Produção de energia eléctrica À escala industrial, a corrente eléctrica (corrente alternada) produz-se, principalmente,
FÍSICA 3ª Série LISTA DE EXERCÍCIOS/ELETROSTÁTICA Data: 20/03/07
1. O campo elétrico de uma carga puntiforme em repouso tem, nos pontos A e B, as direções e sentidos indicados pelas flechas na figura a seguir. O módulo do campo elétrico no ponto B vale 24V/m. O módulo
CÁLCULO VECTORIAL. 2. Um campo vectorial é definido pela seguinte expressão
CÁLCULO VECTORIAL 1. Dados três pontos, A=(2,-3,1), B=(-4,-2,6) e C=(1,5,-3) determine: a) O vector que se estende de A até C. b) O vector unitário dirigido de B para A. c) A distância entre B e C. 2.
UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE MATEMÁTICA, ESTATÍSTICA E COMPUTAÇÃO CIENTÍFICA Matemática Licenciatura. (Números Complexos)
UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE MATEMÁTICA, ESTATÍSTICA E COMPUTAÇÃO CIENTÍFICA Matemática Licenciatura (Números Complexos) Jéssica Roldão de Oliveira Assis RA 160332 Campinas 2014 1 HISTÓRIA
CIRCUITOS DE CORRENTE CONTÍNUA
Departamento de Física da Faculdade de iências da Universidade de Lisboa Electromagnetismo 2007/08 IRUITOS DE ORRENTE ONTÍNU 1. Objectivo Verificar as leis fundamentais de conservação da energia e da carga
UNIVERSIDADE CATÓLICA DE GOIÁS. DEPARTAMENTO DE MATEMÁTICA E FÍSICA Disciplina: FÍSICA GERAL E EXPERIMENTAL I (MAF 2201) Prof.
01 UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA Disciplina: FÍSICA GERAL E EXPERIMENTAL I (MAF 2201) Prof. EDSON VAZ NOTA DE AULA III (Capítulo 7 e 8) CAPÍTULO 7 ENERGIA CINÉTICA
Conjuntos numéricos. Notasdeaula. Fonte: Leithold 1 e Cálculo A - Flemming. Dr. Régis Quadros
Conjuntos numéricos Notasdeaula Fonte: Leithold 1 e Cálculo A - Flemming Dr. Régis Quadros Conjuntos numéricos Os primeiros conjuntos numéricos conhecidos pela humanidade são os chamados inteiros positivos
2. O número de vectores da base de L construída na alínea anterior é a soma do número de vectores das bases de M e N.
2.4. PROJECÇÕES 2. dim(l)=dim(m)+dim(n) Demonstração. Se L=M N, qualquer vector x L se pode escrever de forma única como a soma de um vector x M M e outro vector x N N. 1. Dada uma base de M, x M pode
AULA 3 FORÇA ELÉTRICA. O conceito de força é a capacidade de provocar a mudança de intensidade, direção e sentido da velocidade.
AULA 3 FORÇA ELÉTRICA O conceito de força é a capacidade de provocar a mudança de intensidade, direção e sentido da velocidade. - Um objeto em repouso (v= 0) entra em movimento, mediante a aplicação de
Prof. Sérgio Rebelo. Curso Profissional Técnico de Eletrónica, Automação e Comando
Prof. Sérgio ebelo Curso Profissional Técnico de Eletrónica, Automação e Comando Eletricidade e Eletrónica - Elenco Modular Módulo Análise de Circuitos em Corrente Contínua 3 Módulo Análise de Circuitos
Trabalho e potencial elétrico
PARTE I Unidade a 3 capítulo Trabalho e potencial elétrico seções: 31 Trabalho da força elétrica 32 Diferença de potencial elétrico 33 Superfície equipotencial antes de estudar o capítulo Veja nesta tabela
2 A Derivada. 2.1 Velocidade Média e Velocidade Instantânea
2 O objetivo geral desse curso de Cálculo será o de estudar dois conceitos básicos: a Derivada e a Integral. No decorrer do curso esses dois conceitos, embora motivados de formas distintas, serão por mais
Fundamentos de Máquinas Elétricas
Universidade Federal do ABC Engenharia de Instrumentação, Automação e Robótica Fundamentos de Máquinas Elétricas Prof. Dr. José Luis Azcue Puma Ementa e avaliação Introdução ao circuito magnético 1 Ementa
Primeira lista de física para o segundo ano 1)
Primeira lista de física para o segundo ano 1) Dois espelhos planos verticais formam um ângulo de 120º, conforme a figura. Um observador está no ponto A. Quantas imagens de si mesmo ele verá? a) 4 b) 2
Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU
Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Prof. Dr. Sergio Pilling (IPD/ Física e Astronomia) III Resolução de sistemas lineares por métodos numéricos. Objetivos: Veremos
LISTA DE EXERCÍCIOS CAMPO MAGNÉTICO
1. (Fuvest 96) A figura esquematiza um ímã permanente, em forma de cruz de pequena espessura, e oito pequenas bússolas, colocadas sobre uma mesa. As letras N e S representam, respectivamente, pólos norte
IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 3
Linhas de Força Mencionamos na aula passada que o físico inglês Michael Faraday (79-867) introduziu o conceito de linha de força para visualizar a interação elétrica entre duas cargas. Para Faraday, as
FISICA. Justificativa: Taxa = 1,34 kw/m 2 Energia em uma hora = (1,34 kw/m 2 ).(600x10 4 m 2 ).(1 h) ~ 10 7 kw. v B. v A.
FISIC 01. Raios solares incidem verticalmente sobre um canavial com 600 hectares de área plantada. Considerando que a energia solar incide a uma taxa de 1340 W/m 2, podemos estimar a ordem de grandeza
Capítulo VI Corrente eléctrica e Resistência eléctrica
ELECTROMAGNETISMO Curso de Electrotecnia e de Computadores 1º Ano 2º Semestre 2010-2011 Capítulo VI Corrente eléctrica e Resistência eléctrica 6.1 Corrente eléctrica e baterias 6.1.1 Corrente eléctrica
Prefácio 11. Lista de Figuras 17. Lista de Tabelas 25
Sumário Prefácio 11 Lista de Figuras 17 Lista de Tabelas 25 I INTRODUÇÃO 27 1 Vetores e Grandezas Vetoriais 29 1.1 Introdução aos Vetores......................... 29 1.2 Sistemas de Coordenadas Retangulares................
UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE CIÊNCIAS INTEGRADAS DO PONTAL FÍSICA EXPERIMENTAL III
UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE CIÊNCIAS INTEGRADAS DO PONTAL FÍSICA EXPERIMENTAL III Distribuição de Potencial e Campo Elétrico Conceitos: Potencial e Campo Elétricos Equipotenciais e
Exercícios de Eletrização
Exercícios de Eletrização 1-Um corpo inicialmente neutro recebe 10 milhões de elétrons. Este corpo adquire uma carga de: (e = 1,6. 10 19 C). a) 1,6. 10 12 C b) 1,6. 10 12 C c) 16. 10 10 C d) 16. 10 7 C
APLICAÇÕES DA DERIVADA
Notas de Aula: Aplicações das Derivadas APLICAÇÕES DA DERIVADA Vimos, na seção anterior, que a derivada de uma função pode ser interpretada como o coeficiente angular da reta tangente ao seu gráfico. Nesta,
Projecto Piloto para o Ensino à
Projecto Piloto para o Ensino à Distância Universidade do Porto Abril de 2000 Disciplina: Curso de Física Geral Docente coordenador: Jaime Villate, Prof. Auxiliar, Faculdade de Engenharia. Identificação
AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2015/2016 PLANIFICAÇÃO ANUAL
AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2015/2016 PLANIFICAÇÃO ANUAL Documento(s) Orientador(es): Programa de Física 12.º ano homologado em 21/10/2004 ENSINO SECUNDÁRIO FÍSICA 12.º ANO TEMAS/DOMÍNIOS
1 Base de um Espaço Vetorial
Disciplina: Anéis e Corpos Professor: Fernando Torres Membros do grupo: Blas Melendez Caraballo (ra143857), Leonardo Soriani Alves (ra115465), Osmar Rogério Reis Severiano (ra134333) Ramon Códamo Braga
1 Módulo ou norma de um vetor
Álgebra Linear I - Aula 3-2005.2 Roteiro 1 Módulo ou norma de um vetor A norma ou módulo do vetor ū = (u 1, u 2, u 3 ) de R 3 é ū = u 2 1 + u2 2 + u2 3. Geometricamente a fórmula significa que o módulo
Física Parte 2. Fórmulas para obtenção das grandezas: 1.Superfície 2.Volume 3.Densidades 4.Vazão 5.Pressão 6.Teorema de Pascal 7.
Física Parte 2 Fórmulas para obtenção das grandezas: 1.Superfície 2.Volume 3.Densidades 4.Vazão 5.Pressão 6.Teorema de Pascal 7.Empuxo Introdução A memorização de unidades para as diversas grandezas existentes
Unidade 12 - Capacitores
Unidade 1 - Capacitores Capacidade Eletrostática Condutor Esférico Energia Armazenada em um capacitor Capacitor Plano Associação de Capacitores Circuitos com capacitores Introdução Os primeiros dispositivos
Universidade Federal do Rio Grande do Norte. Centro De Ciências Exatas e da Terra. Departamento de Física Teórica e Experimental
Universidade Federal do Rio Grande do Norte Centro De Ciências Exatas e da Terra Departamento de Física Teórica e Experimental Programa de Educação Tutorial Curso de Nivelamento: Pré-Cálculo PET DE FÍSICA:
Lei de Coulomb: Campo Elétrico:
Lei de Coulomb: Método para distribuição de cargas: Dividir a distribuição em infinitos dq Analisar feito por dq Dividir em suas componentes dfx e dfy Analisar se há alguma forma de simetria que simplifica
Mecânica dos Fluidos. Aula 3 Estática dos Fluidos, Definição de Pressão. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues
Aula 3 Estática dos Fluidos, Definição de Pressão Tópicos Abordados Nesta Aula Estática dos Fluidos. Definição de Pressão Estática. Unidades de Pressão. Conversão de Unidades de Pressão. Estática dos Fluidos
Capacitores. Prof a. Michelle Mendes Santos michelle.mendes@ifmg.edu.br
Capacitores Prof a. Michelle Mendes Santos michelle.mendes@ifmg.edu.br Capacitor Consiste em doiscondutores separados por um isolante, ou material dielétrico. Capacitores armazenam energia elétrica por
DEPARTAMENTO DE FÍSICA FÍSICA
DEPARTAMENTO DE FÍSICA FÍSICA 5 a SÉRIE Ano lectivo 2008-09 1.Três cargas pontuais estão localizadas nos vértices de um triângulo equilátero como se mostra na gura. Calcule a força eléctrica que se exerce
3 Transdutores de temperatura
3 Transdutores de temperatura Segundo o Vocabulário Internacional de Metrologia (VIM 2008), sensores são elementos de sistemas de medição que são diretamente afetados por um fenômeno, corpo ou substância
2. Duração da Prova: - Escrita: 90 min (+30 minutos de tolerância) - Prática: 90 min (+30 minutos de tolerância)
ESCOLA SECUNDÁRIA FERNÃO DE MAGALHÃES Física 12º ano CÓDIGO 315 (1ª e 2ª Fases ) INFORMAÇÃO PROVA DE EXAME DE EQUIVALÊNCIA À FREQUÊNCIA Alunos do Decreto-Lei nº 74/2004 Formação Específica Ano Letivo:
F q. Vetor campo elétrico O campo elétrico pode ser representado, em cada ponto do espaço por um vetor, usualmente simbolizado por E.
CAMPO ELÉTRICO É a região do espaço que foi modificada pela presença de uma carga elétrica, ou seja, a região do espaço que a carga exerce influência. De maneira, prática o campo elétrico é a região em
Conteúdo Básico Comum (CBC) de MATEMÁTICA do Ensino Médio Exames Supletivos/2013
SECRETARIA DE ESTADO DE EDUCAÇÃO DE MINAS GERAIS SUBSECRETARIA DE DESENVOLVIMENTO DA EDUCAÇÃO BÁSICA SUPERINTENDÊNCIA DE DESENVOLVIMENTO DO ENSINO MÉDIO DIRETORIA DE EDUCAÇÃO DE JOVENS E ADULTOS Conteúdo
Energia e Momento Linear do Campo Eletromagnético
Energia e Momento Linear do Campo Eletromagnético Metas Generalizar a lei de conservação da energia e do momento linear de forma a incluir fenômenos eletromagnéticos; Deduzir as expressões para as densidades
Condensador equivalente de uma associação em série
Eletricidade Condensador equivalente de uma associação em série por ser uma associação em série, a ddp U nos terminais da associação é igual à soma das ddps individuais em cada capacitor. U U U U 1 2 3
Conceitos: A fração como coeficiente. A fração e a sua representação gráfica. Termos que compõem uma fração. Fração unidade. Fração de um número.
Unidade 1. As frações. Enquadramento Curricular em Espanha: Objetos de aprendizagem: 1.1. Conceito de fração Identificar os termos de uma fração. Escrever e ler frações. Comparar frações com igual denominador.
Electricidade e magnetismo
Electricidade e magnetismo Circuitos eléctricos 3ª Parte Prof. Luís Perna 2010/11 Corrente eléctrica Qual a condição para que haja corrente eléctrica entre dois condutores A e B? Que tipo de corrente eléctrica
Capítulo 7 Conservação de Energia
Função de mais de uma variável: Capítulo 7 Conservação de Energia Que para acréscimos pequenos escrevemos Onde usamos o símbolo da derivada parcial: significa derivar U parcialmente em relação a x, mantendo
Fichas de sistemas de partículas
Capítulo 3 Fichas de sistemas de partículas 1. (Alonso, pg 247) Um tubo de secção transversal a lança um fluxo de gás contra uma parede com uma velocidade v muito maior que a agitação térmica das moléculas.
Caracterização temporal de circuitos: análise de transientes e regime permanente. Condições iniciais e finais e resolução de exercícios.
Conteúdo programático: Elementos armazenadores de energia: capacitores e indutores. Revisão de características técnicas e relações V x I. Caracterização de regime permanente. Caracterização temporal de
FÍSICA Adriano Jorge. Aula 1 - Eletrodinâmica
FÍSICA Adriano Jorge Aula 1 - Eletrodinâmica E Coulomb (C) i Ampère (A) Segundos (s) 1 A = 1 C/s 19 e 16, 10 C i 1 18A i 2 12A Resistores e Resistência Unidade(SI): 1 (ohm) 1V / A Potência Dissipada
1 P r o j e t o F u t u r o M i l i t a r w w w. f u t u r o m i l i t a r. c o m. b r
Exercícios Potencial Elétrico 01. O gráfico que melhor descreve a relação entre potencial elétrico V, originado por uma carga elétrica Q < 0, e a distância d de um ponto qualquer à carga, é: 05. Duas cargas