Decisão Suporte: Warehousing, OLAP e Data Mining

Tamanho: px
Começar a partir da página:

Download "Decisão Suporte: Warehousing, OLAP e Data Mining"

Transcrição

1 Decisão Suporte: Warehousing, OLAP e Data Mining 7-1 Introdução Cada vez mais, organizações estão analizando dados correntes e históricos para identificar padrões úteis e suporte a estratégias de negócios. Ênfase na análise exploratória complexa, interativa, de enormes conjuntos de dados criados pela integração de dados através de todas as partes de uma empresa ; dados são razoavel/e estáticos. Contraste tal On-Line Analytic Processing (OLAP) com tradicional On-line Transaction Processing (OLTP): maioria das consultas longas, ao invés de uma transações curtas de atualização

2 Tres Tendências Complementares Data Warehousing: Dados consolidados de muitas pesquisas em uma grande repositório. Sincronização períodicas de réplicas. Integração semântica. OLAPs: Consulta SQL complexas, consultas de negócio, baseadas em operações estilo planilha eletrônica e visão multidimensional de dados. Data Mining: Análise exploratória; essencialmente busca por tendências e anomalias interessantes. 7-3 Data Warehousing EXTERNAL DATA SOURCES Dados dados integrados em longo périodo de tempo frequentemente enriquecida com informações resumidas. Vários gigabytes a terabytes são comuns. Curto tempo de resposta esperado para consultas complexas; atualização adhoc incomum. Metadata Repository EXTRACT TRANSFORM LOAD REFRESH SUPPORTS DATA WAREHOUSE DATA MINING OLAP 7-4 2

3 Pontos em Warehousing Integração Semântica: Quando obtendo dados de multiplas fontes, deve eliminar impedâncias, e.g., moedas diferentes, esquemas. Fontes Heterogêneas: Deve acessar dados de um variado formato de fontes e repositórios. Carregar, Renovar, Eliminar: Deve carregar dados, periodicamente renová-los, e eliminar dados muito velhos. Gerenciamento das Metas de Dados: Deve manter fontes, tempo de carga e outras informações para todos dados no warehouse. 7-5 Modelo de Dados Multidimensional Coleção de medidas númericas que dependem de um conjunto de dimensões. E.g., medida Sales, dimensões Product (key: pid), Location (locid), and Time (timeid). Slice locid=1 is shown: pid timeid locid pid timeid locid sales

4 MOLAP vs ROLAP Dados multidimensionais podem ser armazenados fisicamente em um array (em disco, persistente); chamado sistema MOLAP. Alternativamente, pode ser armazenado como uma relação; chamado sistema ROLAP. A relação principal, que relata dimensões para uma medida, é chamado tabela de fato. Cada dimensão pode ter atributos adicionais e uma tabela de dimensão associada. E.g.,Products(pid, pname, category, price) Tabelas de fatos são muito maiores do que tabelas de dimensões. 7-7 Hierarquias de Dimensões Para cada dimensão, o conjunto de valores pode ser organizado em uma hierarquia: PRODUCT TIME LOCATION year quarter country category week month state pname date city 7-8 4

5 Consultas OLAP Influenciada por SQL e por planilhas. Uma operação comum é agregar uma medida sobre uma ou mais dimensões. Achar total de vendas. Achar total de vendas para cada cidade ou cada estado. Achar os cinco produtos mais vendidos pelo total de vendas. Roll-up: Agregando em diferentes níveis de uma hierarquia de dimensão. E.g., Obtendo total de vendas por cidade, podemos rollup para obter vendas por estado. 7-9 Consultas OLAP Drill-down: O inverso de roll-up. E.g., Obtendo total de vendas por estado, pode drilldown para obter total de vendas por cidade. E.g., Pode também drill-down em diferente dimensão para obter total de vendas por produto para cada estado. Pivoting: Agregações em dimensões selecionadas. E.g., Pivoting em Location and Time WI CA resulta no seguinte (cross-tabulation): Slicing and Dicing: Igualdades e seleções limitadas em uma ou mais dimensões Total Total

6 Comparação Com Consultas SQL A cross-tabulation obtida por pivoting pode também ser computada usando consultas SQL: SELECT SUM(S.sales) FROM Sales S, Times T, Locations L WHERE S.timeid=T.timeid AND S.timeid=L.timeid GROUP BY T.year, L.state SELECT SUM(S.sales) FROM Sales S, Times T WHERE S.timeid=T.timeid GROUP BY T.year SELECT SUM(S.sales) FROM Sales S, Location L WHERE S.timeid=L.timeid GROUP BY L.state 7-11 O Operador CUBE Generalizando o exemplos anteriore, se há dimensões K, temos possíveis 2^k SQL GROUP BY consultas que podem ser geradas através de pivoting em um subconjunto de dimensões. CUBE pid, locid, timeid BY SUM Sales Equivalente a rolling up Sales em todos oitos subconjuntos do conjunto {pid, locid, timeid}; cada rollup corresponde á uma consulta SQL da forma: Muitos trabalhos recentes na optimização do operador CUBE! SELECT SUM(S.sales) FROM Sales S GROUP BY grouping-list

7 Projeto e Implementação Tabelas tipicamente em BCNF; tabela de dimensão não são normalizada. (Intuição?) Novas técnicas de indexação:índices Bit Map, índices Join, compressão, precomputação de agregações, etc. E.g., Índice Bit Map : Bit-vector: 1 bit para cada valor possível. Muitas consultas podem ser respondidas usando oper. bit-vector! sex custid name sex rating rating 112 Joe M Ram M Sue F Woo M Data Mining Este é um amplo termo aplicado para diferentes tipos de análises exploratórias. E.g., Regras de associação, modelos sequenciais, classificação, agrupamento, redes Bayesian networks para inferir casualidade, similaridade de sequencias, visualização. Relatado para trabalhar em Aprendizado de Máquinas, Programação Matemática e Estatística. Novas ênfases: conjuntos enormes de dados

8 Regras de Associação Obtendo uma coleção de compras de clientes (ou transações ) com formato: transid custid date item price qty Queremos identificar regras da forma : {pen} => {ink} Uma transação na qual uma caneta foi comprada é provável ter envolvido também a compra de tinta Regras de Associação LHS => RHS Suporte: % de transações contendo todos os itens em LHS e RHS da regra. Confiança: Considera transações contendo todos itens LHS. Confidência é a % destas transações que também contêm todos itens RHS. Deve ser usado para predição com grande cautela; regras não refletem causalidade. Se usuários compram lápis mesmo quando compram canetas, temos a regra {pencil} => {ink}, Mas não há causalidade; oferecendo uma promoção em lápis no sentido de estimular vendas em tinta será um fracasso!

9 Computação Eficiente de Regras de Associação Objetivo: Achar eficientemente todas regras que satisfazem um dado suporte e nível de confiança. Idéia: Contar com a propriedade a priori que se um conjunto de itens tem suporte mínimo (I.e., é um conjunto de itens frequente) então todo subconjunto deste conjunto de itens também tem suporte mínimo. Iterativamente : Ache todos conjunto de itens frequente c/ 1 item ; depois todos conjuntos de itens frequentes c/ 2 itens, etc. em cada iteração k, somente considere conjunto de itens que contem algum k-1 conjunto de items frequente. Obtendo todos conjuntos de itens frequentes, achar as regras é fácil Resumo Suporte a decisão é uma sub-área de banco de dados emergindo e crescendo rapidamente. Envolve a criação de grande e consolidados repositórios de dados chamados data warehouses Warehouses são exploradas usando técnicas de análises sofisticadas: Consultas de SQL complexas, consultas multidimensionais OLAP (influenciada por ambos SQL e spreadsheets), e análises exploratórias (data mining)

Decisão Suporte: Warehousing, OLAP e Data Mining

Decisão Suporte: Warehousing, OLAP e Data Mining Decisão Suporte: Warehousing, OLAP e Data Mining 7-1 Introdução Cada vez mais, organizações estão analizando dados correntes e históricos para identificar padrões úteis e suporte a estratégias de negócios.

Leia mais

OLAP. Introdução. Cristina C. Vieira Departamento de Engenharia Eletrónica e Informática

OLAP. Introdução. Cristina C. Vieira Departamento de Engenharia Eletrónica e Informática OLAP Introdução Cristina C. Vieira Departamento de Engenharia Eletrónica e Informática OLAP Online analytical processing Existem dois tipos distintos de processamento sobre bases de dados: OLTP Online

Leia mais

Data Warehouses. Alunos: Diego Antônio Cotta Silveira Filipe Augusto Rodrigues Nepomuceno Marcos Bastos Silva Roger Rezende Ribeiro Santos

Data Warehouses. Alunos: Diego Antônio Cotta Silveira Filipe Augusto Rodrigues Nepomuceno Marcos Bastos Silva Roger Rezende Ribeiro Santos Data Warehouses Alunos: Diego Antônio Cotta Silveira Filipe Augusto Rodrigues Nepomuceno Marcos Bastos Silva Roger Rezende Ribeiro Santos Conceitos Básicos Data Warehouse(DW) Banco de Dados voltado para

Leia mais

Sistemas de Apoio à Decisão (SAD) - Senado

Sistemas de Apoio à Decisão (SAD) - Senado Sistemas de Apoio à Decisão (SAD) - Senado DW OLAP BI Ilka Kawashita Material preparado :Prof. Marcio Vitorino Sumário OLAP Data Warehouse (DW/ETL) Modelagem Multidimensional Data Mining BI - Business

Leia mais

Fundamentos da Análise Multidimensional

Fundamentos da Análise Multidimensional Universidade Técnica de Lisboa INSTITUTO SUPERIOR DE ECONOMIA E GESTÃO Informática e Sistemas de Informação Aplicados em Economia Fundamentos da Análise Multidimensional Fundamentos da Análise Multidimensional

Leia mais

TÓPICOS AVANÇADOS EM ENGENHARIA DE SOFTWARE

TÓPICOS AVANÇADOS EM ENGENHARIA DE SOFTWARE TÓPICOS AVANÇADOS EM ENGENHARIA DE SOFTWARE Engenharia de Computação Professor: Rosalvo Ferreira de Oliveira Neto OLPT x OLAP Roteiro OLTP Datawarehouse OLAP Operações OLAP Exemplo com Mondrian e Jpivot

Leia mais

Aprendizagem Simbólica MIACC 02

Aprendizagem Simbólica MIACC 02 Aprendizagem bólica MIACC 02 João Gama LIACC, FEP jgama@liacc.up.pt Introdução O que é Extracção de Conhecimento? Exploração e análise, por meios automáticos ou semi-automáticos, de grandes quantidades

Leia mais

DATA WAREHOUSE. Rafael Ervin Hass Raphael Laércio Zago

DATA WAREHOUSE. Rafael Ervin Hass Raphael Laércio Zago DATA WAREHOUSE Rafael Ervin Hass Raphael Laércio Zago Roteiro Introdução Aplicações Arquitetura Características Desenvolvimento Estudo de Caso Conclusão Introdução O conceito de "data warehousing" data

Leia mais

Aplicação A. Aplicação B. Aplicação C. Aplicação D. Aplicação E. Aplicação F. Aplicação A REL 1 REL 2. Aplicação B REL 3.

Aplicação A. Aplicação B. Aplicação C. Aplicação D. Aplicação E. Aplicação F. Aplicação A REL 1 REL 2. Aplicação B REL 3. Sumário Data Warehouse Modelagem Multidimensional. Data Mining BI - Business Inteligence. 1 2 Introdução Aplicações do negócio: constituem as aplicações que dão suporte ao dia a dia do negócio da empresa,

Leia mais

Data Mining: Conceitos e Técnicas

Data Mining: Conceitos e Técnicas Data Mining: Conceitos e Técnicas DM, DW e OLAP Data Warehousing e OLAP para Data Mining O que é data warehouse? De data warehousing para data mining Data Warehousing e OLAP para Data Mining Data Warehouse:

Leia mais

Data Warehousing. Leonardo da Silva Leandro. CIn.ufpe.br

Data Warehousing. Leonardo da Silva Leandro. CIn.ufpe.br Data Warehousing Leonardo da Silva Leandro Agenda Conceito Elementos básicos de um DW Arquitetura do DW Top-Down Bottom-Up Distribuído Modelo de Dados Estrela Snowflake Aplicação Conceito Em português:

Leia mais

Chapter 3. Análise de Negócios e Visualização de Dados

Chapter 3. Análise de Negócios e Visualização de Dados Chapter 3 Análise de Negócios e Visualização de Dados Objetivos de Aprendizado Descrever a análise de negócios (BA) e sua importância par as organizações Listar e descrever brevemente os principais métodos

Leia mais

Analysis Services. Manual Básico

Analysis Services. Manual Básico Analysis Services Manual Básico Construindo um Banco de Dados OLAP... 2 Criando a origem de dados... 3 Definindo as dimensões... 5 Níveis de dimensão e membros... 8 Construindo o cubo... 11 Tabela de fatos...12

Leia mais

Banco de Dados - Senado

Banco de Dados - Senado Banco de Dados - Senado Exercícios OLAP - CESPE Material preparado: Prof. Marcio Vitorino OLAP Material preparado: Prof. Marcio Vitorino Soluções MOLAP promovem maior independência de fornecedores de SGBDs

Leia mais

Tópicos Avançados Business Intelligence. Banco de Dados Prof. Otacílio José Pereira. Unidade 10 Tópicos Avançados Business Inteligence.

Tópicos Avançados Business Intelligence. Banco de Dados Prof. Otacílio José Pereira. Unidade 10 Tópicos Avançados Business Inteligence. Tópicos Avançados Business Intelligence Banco de Dados Prof. Otacílio José Pereira Unidade 10 Tópicos Avançados Business Inteligence Roteiro Introdução Níveis organizacionais na empresa Visão Geral das

Leia mais

Data Warehousing e OLAP

Data Warehousing e OLAP Data Warehousing e OLAP Jornadas de Engenharia Informática Instituto Politécnico da Guarda Henrique Madeira Departamento de Engenharia Informática Faculdade de Ciências e Tecnologia Universidade de Coimbra

Leia mais

Adriano Maranhão BUSINESS INTELLIGENCE (BI),

Adriano Maranhão BUSINESS INTELLIGENCE (BI), Adriano Maranhão BUSINESS INTELLIGENCE (BI), BUSINESS INTELLIGENCE (BI) O termo Business Intelligence (BI), popularizado por Howard Dresner do Gartner Group, é utilizado para definir sistemas orientados

Leia mais

Curso de Engenharia de Sistemas e Informática - 5º Ano. Ficha T. Prática n.º 1

Curso de Engenharia de Sistemas e Informática - 5º Ano. Ficha T. Prática n.º 1 Análise Inteligente de Dados Objectivo: Curso de Engenharia de Sistemas e Informática - 5º Ano Ficha T. Prática n.º 1 Estudo do paradigma multidimensional com introdução de uma extensão ao diagrama E/R

Leia mais

Professor: Disciplina:

Professor: Disciplina: Professor: Curso: Esp. Marcos Morais de Sousa marcosmoraisdesousa@gmail.com Sistemas de informação Disciplina: Introdução a SI Noções de sistemas de informação Turma: 01º semestre Prof. Esp. Marcos Morais

Leia mais

SQL Comandos para Relatórios e Formulários. Laboratório de Bases de Dados Profa. Dra. Cristina Dutra de Aguiar Ciferri

SQL Comandos para Relatórios e Formulários. Laboratório de Bases de Dados Profa. Dra. Cristina Dutra de Aguiar Ciferri SQL Comandos para Relatórios e Formulários Laboratório de Bases de Dados SELECT SELECT FROM [ WHERE predicado ] [ GROUP BY ]

Leia mais

Data Warehousing e Tecnologia OLAP para Data Mining

Data Warehousing e Tecnologia OLAP para Data Mining Data Warehousing e Tecnologia OLAP para Data Mining O que é um data warehouse? O modelo de dados multi-dimensional Arquitectura de data warehouses Implementação de data warehouses Mais aspectos da tecnologia

Leia mais

Data Warehouses Uma Introdução

Data Warehouses Uma Introdução Data Warehouses Uma Introdução Alex dos Santos Vieira, Renaldy Pereira Sousa, Ronaldo Ribeiro Goldschmidt 1. Motivação e Conceitos Básicos Com o advento da globalização, a competitividade entre as empresas

Leia mais

Prova INSS RJ - 2007 cargo: Fiscal de Rendas

Prova INSS RJ - 2007 cargo: Fiscal de Rendas Prova INSS RJ - 2007 cargo: Fiscal de Rendas Material de Apoio de Informática - Prof(a) Ana Lucia 53. Uma rede de microcomputadores acessa os recursos da Internet e utiliza o endereço IP 138.159.0.0/16,

Leia mais

Arquiteturas de DW e Abordagens de Implementação. Arquiteturas e Abordagens de Implementação

Arquiteturas de DW e Abordagens de Implementação. Arquiteturas e Abordagens de Implementação Curso de Dwing TecBD-DI PUC-Rio Prof. Rubens Melo Arquiteturas de DW e Abordagens de Implementação Arquiteturas e Abordagens de Implementação Arquitetura adequada é fundamental Infra-estrutura disponível

Leia mais

Processo Decisório, OLAP e Relatórios Corporativos OLAP E RELATÓRIOS CORPORATIVOS

Processo Decisório, OLAP e Relatórios Corporativos OLAP E RELATÓRIOS CORPORATIVOS Processo Decisório, OLAP e Relatórios Corporativos OLAP E RELATÓRIOS CORPORATIVOS Sumário Conceitos/Autores chave... 3 1. Introdução... 5 2. OLAP... 6 3. Operações em OLAP... 8 4. Arquiteturas em OLAP...

Leia mais

Modelo de dados do Data Warehouse

Modelo de dados do Data Warehouse Modelo de dados do Data Warehouse Ricardo Andreatto O modelo de dados tem um papel fundamental para o desenvolvimento interativo do data warehouse. Quando os esforços de desenvolvimentos são baseados em

Leia mais

Criação e uso da Inteligência e Governança do BI

Criação e uso da Inteligência e Governança do BI Criação e uso da Inteligência e Governança do BI Criação e uso da Inteligência e Governança do BI Governança do BI O processo geral de criação de inteligência começa pela identificação e priorização de

Leia mais

Planejamento Estratégico de TI. Prof.: Fernando Ascani

Planejamento Estratégico de TI. Prof.: Fernando Ascani Planejamento Estratégico de TI Prof.: Fernando Ascani Data Warehouse - Conceitos Hoje em dia uma organização precisa utilizar toda informação disponível para criar e manter vantagem competitiva. Sai na

Leia mais

BANCO DE DADOS DISTRIBUÍDOS e DATAWAREHOUSING

BANCO DE DADOS DISTRIBUÍDOS e DATAWAREHOUSING BANCO DE DADOS DISTRIBUÍDOS e DATAWAREHOUSING http://www.uniriotec.br/~tanaka/tin0036 tanaka@uniriotec.br Introdução a Data Warehousing e OLAP Introdução a Data Warehouse e Modelagem Dimensional Visão

Leia mais

Resumo dos principais conceitos. Resumo dos principais conceitos. Business Intelligence. Business Intelligence

Resumo dos principais conceitos. Resumo dos principais conceitos. Business Intelligence. Business Intelligence É um conjunto de conceitos e metodologias que, fazem uso de acontecimentos e sistemas e apoiam a tomada de decisões. Utilização de várias fontes de informação para se definir estratégias de competividade

Leia mais

LISTA DE EXERCÍCIOS. 1. Binário: Bit: Menor unidade de dados; dígito binário (0,1) Byte: Grupo de bits que representa um único caractere

LISTA DE EXERCÍCIOS. 1. Binário: Bit: Menor unidade de dados; dígito binário (0,1) Byte: Grupo de bits que representa um único caractere 1. Binário: LISTA DE EXERCÍCIOS Bit: Menor unidade de dados; dígito binário (0,1) Byte: Grupo de bits que representa um único caractere Campo: Grupo de palavras ou um número completo Registro: Grupo de

Leia mais

SUMÁRIO 1. INTRODUÇÃO... 2 2. O QUE É DATA WAREHOUSE?... 2 3. O QUE DATA WAREHOUSE NÃO É... 4 4. IMPORTANTE SABER SOBRE DATA WAREHOUSE... 5 4.

SUMÁRIO 1. INTRODUÇÃO... 2 2. O QUE É DATA WAREHOUSE?... 2 3. O QUE DATA WAREHOUSE NÃO É... 4 4. IMPORTANTE SABER SOBRE DATA WAREHOUSE... 5 4. SUMÁRIO 1. INTRODUÇÃO... 2 2. O QUE É DATA WAREHOUSE?... 2 3. O QUE DATA WAREHOUSE NÃO É... 4 4. IMPORTANTE SABER SOBRE DATA WAREHOUSE... 5 4.1 Armazenamento... 5 4.2 Modelagem... 6 4.3 Metadado... 6 4.4

Leia mais

Business Intelligence e ferramentas de suporte

Business Intelligence e ferramentas de suporte O modelo apresentado na figura procura enfatizar dois aspectos: o primeiro é sobre os aplicativos que cobrem os sistemas que são executados baseados no conhecimento do negócio; sendo assim, o SCM faz o

Leia mais

OLAP em âmbito hospitalar: Transformação de dados de enfermagem para análise multidimensional

OLAP em âmbito hospitalar: Transformação de dados de enfermagem para análise multidimensional OLAP em âmbito hospitalar: Transformação de dados de enfermagem para análise multidimensional João Silva and José Saias m5672@alunos.uevora.pt, jsaias@di.uevora.pt Mestrado em Engenharia Informática, Universidade

Leia mais

FUNDAMENTOS DE SISTEMAS DE INFORMAÇÃO

FUNDAMENTOS DE SISTEMAS DE INFORMAÇÃO @ribeirord FUNDAMENTOS DE SISTEMAS DE INFORMAÇÃO Rafael D. Ribeiro, M.Sc,PMP. rafaeldiasribeiro@gmail.com http://www.rafaeldiasribeiro.com.br Lembrando... Aula 4 1 Lembrando... Aula 4 Sistemas de apoio

Leia mais

Ferramentas Livres de Armazenamento e Mineração de Dados

Ferramentas Livres de Armazenamento e Mineração de Dados Ferramentas Livres de Armazenamento e Mineração de Dados JasperBI, Pentaho, Weka 09/2009 Eng. Pablo Jorge Madril pmadril@summa.com.br Summa Technologies www.summa.com.br Eng. Pablo Jorge Madril pmadril@summa.com.br

Leia mais

KDD E MINERAÇÃO DE DADOS:

KDD E MINERAÇÃO DE DADOS: KDD E MINERAÇÃO DE DADOS: Revisão em Data Warehouses Prof. Ronaldo R. Goldschmidt ronaldo@de9.ime.eb.br rribeiro@univercidade.br geocities.yahoo.com.br/ronaldo_goldschmidt 1 DATA WAREHOUSES UMA VISÃO GERAL

Leia mais

Prof. Ronaldo R. Goldschmidt. ronaldo.rgold@gmail.com

Prof. Ronaldo R. Goldschmidt. ronaldo.rgold@gmail.com DATA WAREHOUSES UMA INTRODUÇÃO Prof. Ronaldo R. Goldschmidt ronaldo.rgold@gmail.com 1 DATA WAREHOUSES UMA INTRODUÇÃO Considerações Iniciais Conceitos Básicos Modelagem Multidimensional Projeto de Data

Leia mais

Módulo 2. Definindo Soluções OLAP

Módulo 2. Definindo Soluções OLAP Módulo 2. Definindo Soluções OLAP Objetivos Ao finalizar este módulo o participante: Recordará os conceitos básicos de um sistema OLTP com seus exemplos. Compreenderá as características de um Data Warehouse

Leia mais

Business Intelligence. Business Intelligence. Business Intelligence. Business Intelligence. Business Intelligence

Business Intelligence. Business Intelligence. Business Intelligence. Business Intelligence. Business Intelligence Juntamente com o desenvolvimento desses aplicativos surgiram os problemas: & Data Warehouse July Any Rizzo Oswaldo Filho Década de 70: alguns produtos de BI Intensa e exaustiva programação Informação em

Leia mais

Modelagem Multidimensional: Esquema Estrela

Modelagem Multidimensional: Esquema Estrela BANCO DE DADOS DISTRIBUÍDOS e DATAWAREHOUSING http://www.uniriotec.br/~tanaka/tin0036 tanaka@uniriotec.br Modelagem Dimensional Conceitos Básicos Modelagem Multidimensional: Esquema Estrela Proposto por

Leia mais

Data Warehouse. Djenane Cristina Silveira dos Santos¹, Felipe Gomes do Prado¹, José Justino Neto¹, Márcia Taliene Alves de Paiva¹

Data Warehouse. Djenane Cristina Silveira dos Santos¹, Felipe Gomes do Prado¹, José Justino Neto¹, Márcia Taliene Alves de Paiva¹ Data Warehouse. Djenane Cristina Silveira dos Santos¹, Felipe Gomes do Prado¹, José Justino Neto¹, Márcia Taliene Alves de Paiva¹ ¹Ciência da Computação Universidade Federal de Itajubá (UNIFEI) MG Brasil

Leia mais

SAD orientado a DADOS

SAD orientado a DADOS Universidade do Contestado Campus Concórdia Curso de Sistemas de Informação Prof.: Maico Petry SAD orientado a DADOS DISCIPLINA: Sistemas de Apoio a Decisão SAD orientado a dados Utilizam grandes repositórios

Leia mais

Fundamentos da inteligência de negócios: gestão da informação e de bancos de dados

Fundamentos da inteligência de negócios: gestão da informação e de bancos de dados Fundamentos da inteligência de negócios: gestão da informação e de bancos de dados slide 1 1 Copyright 2011 Pearson Education, Inc. publishing as Prentice Hall Objetivos de estudo Como um banco de dados

Leia mais

Globalização => as empresas se concentraram mais nos seus modelos de negócio e deixaram um pouco de

Globalização => as empresas se concentraram mais nos seus modelos de negócio e deixaram um pouco de FERRAMENTAS OLAP HISTÓRICO Desenvolvimento da linguagem APL pela IBM final da década de 60. Surgimento de uma nova classe de ferramentas, que foi chamada de OLAP. Final de década de 90. Atualmente algumas

Leia mais

Sobre o que falaremos nesta aula?

Sobre o que falaremos nesta aula? Business Intelligence - BI Inteligência de Negócios Prof. Ricardo José Pfitscher Elaborado com base no material de: José Luiz Mendes Gerson Volney Lagmman Introdução Sobre o que falaremos nesta aula? Ferramentas

Leia mais

Módulo 4. Construindo uma solução OLAP

Módulo 4. Construindo uma solução OLAP Módulo 4. Construindo uma solução OLAP Objetivos Diferenciar as diversas formas de armazenamento Compreender o que é e como definir a porcentagem de agregação Conhecer a possibilidade da utilização de

Leia mais

Sistemas de Informação James A. O Brien Editora Saraiva Capítulo 5

Sistemas de Informação James A. O Brien Editora Saraiva Capítulo 5 Para entender bancos de dados, é útil ter em mente que os elementos de dados que os compõem são divididos em níveis hierárquicos. Esses elementos de dados lógicos constituem os conceitos de dados básicos

Leia mais

Bloco Administrativo

Bloco Administrativo Bloco Administrativo BI Business Intelligence Objetivo O objetivo deste artigo é dar uma visão geral sobre o Módulo Business Intelligence, que se encontra no Bloco Administrativo. Todas informações aqui

Leia mais

Paradigma Simbólico de Aprendizado Aplicado ao Banco de Dados do Vestibular da UFMS

Paradigma Simbólico de Aprendizado Aplicado ao Banco de Dados do Vestibular da UFMS Paradigma Simbólico de Aprendizado Aplicado ao Banco de Dados do Vestibular da UFMS José Edison Cabral Junior Rodrigo Paulino Jorge Rogério Paiva Colman Orientação: Profa. Dra. Maria Bernadete Zanusso

Leia mais

Introdução à Modelagem Dimensional para Datawarehouses

Introdução à Modelagem Dimensional para Datawarehouses Introdução à Modelagem Dimensional para Datawarehouses Fernanda Baião fernanda.baiao@uniriotec.br PPGI UNIRIO Abril 2007 1 Tópicos Inteligência do Negócio Contexto das Organizações A tecnologia de Data

Leia mais

5 Estudo de Caso. 5.1. Material selecionado para o estudo de caso

5 Estudo de Caso. 5.1. Material selecionado para o estudo de caso 5 Estudo de Caso De modo a ilustrar a estruturação e representação de conteúdos educacionais segundo a proposta apresentada nesta tese, neste capítulo apresentamos um estudo de caso que apresenta, para

Leia mais

Data Warehouse. Debora Marrach Renata Miwa Tsuruda

Data Warehouse. Debora Marrach Renata Miwa Tsuruda Debora Marrach Renata Miwa Tsuruda Agenda Introdução Contexto corporativo Agenda Introdução Contexto corporativo Introdução O conceito de Data Warehouse surgiu da necessidade de integrar dados corporativos

Leia mais

Complemento I - Noções Introdutórias em Data Warehouses

Complemento I - Noções Introdutórias em Data Warehouses Complemento I - Noções Introdutórias em Data Warehouses Esse documento é parte integrante do material fornecido pela WEB para a 2ª edição do livro Data Mining: Conceitos, técnicas, algoritmos, orientações

Leia mais

Uma Ferramenta WEB para apoio à Decisão em Ambiente Hospitalar

Uma Ferramenta WEB para apoio à Decisão em Ambiente Hospitalar Uma Ferramenta WEB para apoio à Decisão em Ambiente Hospitalar Mikael de Souza Fernandes 1, Gustavo Zanini Kantorski 12 mikael@cpd.ufsm.br, gustavoz@cpd.ufsm.br 1 Curso de Sistemas de Informação, Universidade

Leia mais

Gerência de Redes: Consulta e Análise de Registros de Alarme Usando OLAP

Gerência de Redes: Consulta e Análise de Registros de Alarme Usando OLAP Gerência de Redes: Consulta e Análise de Registros de Alarme Usando OLAP Este tutorial apresenta o uso de OLAP (On-Line Analytical Processing) para análise de grandes bases de dados com a finalidade de

Leia mais

Módulo 5. Implementando Cubos OLAP

Módulo 5. Implementando Cubos OLAP Módulo 5. Implementando Cubos OLAP Objetivos Compreender a importância da manipulação correta da segurança nos dados. Conhecer as operações que podem ser realizadas na consulta de um cubo. Entender o uso

Leia mais

Business Intelligence Um enfoque gerencial para a Inteligência do Negócio.Efrain Turban e outros.tradução. Bookman, 2009.

Business Intelligence Um enfoque gerencial para a Inteligência do Negócio.Efrain Turban e outros.tradução. Bookman, 2009. REFERÊNCIAS o o Business Intelligence Um enfoque gerencial para a Inteligência do Negócio.Efrain Turban e outros.tradução. Bookman, 2009. Competição Analítica - Vencendo Através da Nova Ciência Davenport,

Leia mais

2 Descoberta de Conhecimento em Bases de Dados 2.1. Introdução

2 Descoberta de Conhecimento em Bases de Dados 2.1. Introdução 2 Descoberta de Conhecimento em Bases de Dados 2.1. Introdução De acordo com [FAYY96], o conceito de descoberta de conhecimento em bases de dados pode ser resumido como o processo não-trivial de identificar

Leia mais

ADMINISTRAÇÃO DOS RECURSOS DE DADOS

ADMINISTRAÇÃO DOS RECURSOS DE DADOS 7 ADMINISTRAÇÃO DOS RECURSOS DE DADOS OBJETIVOS Por que as empresas sentem dificuldades para descobrir que tipo de informação precisam ter em seus sistemas de informação ão? Como um sistema de gerenciamento

Leia mais

Integração Access-Excel para produzir um sistema de apoio a decisão que simula um Data Warehouse e OLAP

Integração Access-Excel para produzir um sistema de apoio a decisão que simula um Data Warehouse e OLAP Integração Access-Excel para produzir um sistema de apoio a decisão que simula um Data Warehouse e OLAP Wílson Luiz Vinci (Faculdades IPEP) wilson@cnptia.embrapa.br Marcelo Gonçalves Narciso (Embrapa Informática

Leia mais

MANUAL BI- Business Intelligence

MANUAL BI- Business Intelligence 1. VISÃO GERAL 1.1 SISTEMA BI Business Intelligence: Segundo Gartner Group, a maior ameaça das empresas da atualidade é o desconhecimento... O Business Intelligence se empenha em eliminar as dúvidas e

Leia mais

2 Conceitos básicos. 2.1 Arquiteturas tradicionais para integração de dados. 2.1.1 Arquitetura de mediadores

2 Conceitos básicos. 2.1 Arquiteturas tradicionais para integração de dados. 2.1.1 Arquitetura de mediadores 17 2 Conceitos básicos 2.1 Arquiteturas tradicionais para integração de dados 2.1.1 Arquitetura de mediadores Um mediador é um componente de software que intermedia o acesso de clientes (usuários ou componentes

Leia mais

Projecto Final de Licenciatura Engenharia Informática - Computadores e Sistemas. elaborado por: Filipe Manuel Marques Pinto Pinheiro

Projecto Final de Licenciatura Engenharia Informática - Computadores e Sistemas. elaborado por: Filipe Manuel Marques Pinto Pinheiro OLAP (ONLINE ANALYTICAL PROCESSING) Projecto Final de Licenciatura Engenharia Informática - Computadores e Sistemas elaborado por: Filipe Manuel Marques Pinto Pinheiro orientado por: Engº Paulo Alexandre

Leia mais

Projeto de Data Warehousing sobre Informações em Saúde para dar Suporte a Análise de Faturamento Hospitalar

Projeto de Data Warehousing sobre Informações em Saúde para dar Suporte a Análise de Faturamento Hospitalar Projeto de Data Warehousing sobre Informações em Saúde para dar Suporte a Análise de Faturamento Hospitalar Newton Shydeo Brandão Miyoshi Joaquim Cezar Felipe Grupo de Informática Biomédica Departamento

Leia mais

Dwing ETL e Metadados. PUC-Rio TecBD/DI. Prof. Rubens Melo. Implementação de DW

Dwing ETL e Metadados. PUC-Rio TecBD/DI. Prof. Rubens Melo. Implementação de DW Dwing ETL e Metadados PUC-Rio TecBD/DI Prof. Rubens Melo Implementação de DW Requer: Monitoração: dos dados que vem das fontes Integração: Limpeza de dados, Carga,... Gerência: Metadado, Projeto,... Processamento:

Leia mais

Microsoft Analysis Service

Microsoft Analysis Service Microsoft Analysis Service Neste capítulo você verá: BI Development Studio Analysis Services e Cubos Microsoft Analysis Services é um conjunto de serviços que são usados para gerenciar os dados que são

Leia mais

UFCD 787. Administração de base de dados. Elsa Marisa S. Almeida

UFCD 787. Administração de base de dados. Elsa Marisa S. Almeida UFCD 787 Administração de base de dados Elsa Marisa S. Almeida 1 Objectivos Replicação de base de dados Gestão de transacções Cópias de segurança Importação e exportação de dados Elsa Marisa S. Almeida

Leia mais

Uma peça estratégica para o seu negócio

Uma peça estratégica para o seu negócio Uma peça estratégica para o seu negócio INFORMAÇÃO GERAL DA EMPRESA CASO DE SUCESSO EM IMPLEMENTAÇÃO BI PERGUNTAS E RESPOSTAS Fundada em 1997, Habber Tec é uma empresa especializada na oferta de soluções

Leia mais

Knowledge Discovery and Data Mining Extensão-UFMS-DCT

Knowledge Discovery and Data Mining Extensão-UFMS-DCT Knowledge Discovery and Data Mining Extensão-UFMS-DCT Introdução ao Processo de KDD Esta introdução se baseou quase que integralmente nas transparências produzidas por: Daniel L. Silver (dsilver@mgmt.dal.ca)

Leia mais

Interatividade aliada a Análise de Negócios

Interatividade aliada a Análise de Negócios Interatividade aliada a Análise de Negócios Na era digital, a quase totalidade das organizações necessita da análise de seus negócios de forma ágil e segura - relatórios interativos, análise de gráficos,

Leia mais

Unidade III PLANEJAMENTO ESTRATÉGICO DE. Prof. Daniel Arthur Gennari Junior

Unidade III PLANEJAMENTO ESTRATÉGICO DE. Prof. Daniel Arthur Gennari Junior Unidade III PLANEJAMENTO ESTRATÉGICO DE TECNOLOGIA DA INFORMAÇÃO Prof. Daniel Arthur Gennari Junior Sobre esta aula Gestão do conhecimento e inteligência Corporativa Conceitos fundamentais Aplicações do

Leia mais

OLAP (On-Line Analytical Processing) e Banco de Dados Multidimensionais O que é OLAP? Processamento de dados Dedicado ao suporte a decisão Visualização de dados agregrados ao longo de várias dimensões

Leia mais

Uma Ferramenta Web para BI focada no Gestor de Informação

Uma Ferramenta Web para BI focada no Gestor de Informação Uma Ferramenta Web para BI focada no Gestor de Informação Mikael de Souza Fernandes 1, Gustavo Zanini Kantorski 12 mikael@cpd.ufsm.br, gustavoz@cpd.ufsm.br 1 Curso de Sistemas de Informação, Universidade

Leia mais

Tecnologias Oracle para DW Índice Bitmap no Oracle 11g EE. Cristiane Yaguinuma Débora Marrach Luana Annibal Vinícius Ferraz

Tecnologias Oracle para DW Índice Bitmap no Oracle 11g EE. Cristiane Yaguinuma Débora Marrach Luana Annibal Vinícius Ferraz Tecnologias Oracle para DW Índice Bitmap no Oracle 11g EE Cristiane Yaguinuma Débora Marrach Luana Annibal Vinícius Ferraz Setembro/29 Agenda Oracle 11g Release 2 - Enterprise Edition Índice Bitmap Conceitos

Leia mais

Data Warehouse. Diogo Matos da Silva 1. Universidade Federal de Ouro Preto, Ouro Preto, MG, Brasil. Banco de Dados II

Data Warehouse. Diogo Matos da Silva 1. Universidade Federal de Ouro Preto, Ouro Preto, MG, Brasil. Banco de Dados II Data Warehouse Diogo Matos da Silva 1 1 Departamento de Computação Universidade Federal de Ouro Preto, Ouro Preto, MG, Brasil Banco de Dados II Diogo Matos (DECOM - UFOP) Banco de Dados II Jun 2013 1 /

Leia mais

Uma aplicação de Data Warehouse para apoiar negócios

Uma aplicação de Data Warehouse para apoiar negócios Uma aplicação de Data Warehouse para apoiar negócios André Vinicius Gouvêa Monteiro Marcos Paulo Oliveira Pinto Rosa Maria E. Moreira da Costa Universidade do Estado do Rio de Janeiro - UERJ IME - Dept

Leia mais

Informações importantes em uma organização, armazenadas em grandes bancos

Informações importantes em uma organização, armazenadas em grandes bancos DATA WAREHOUSE INTRODUÇÃO Informações importantes em uma organização, armazenadas em grandes bancos de dados, geralmente heterogêneas e distribuídas, são pouco aproveitadas para dar suporte à decisão.

Leia mais

Gerenciamento de Dados e Gestão do Conhecimento

Gerenciamento de Dados e Gestão do Conhecimento ELC1075 Introdução a Sistemas de Informação Gerenciamento de Dados e Gestão do Conhecimento Raul Ceretta Nunes CSI/UFSM Introdução Gerenciando dados A abordagem de banco de dados Sistemas de gerenciamento

Leia mais

Capítulo 1 - A revolução dos dados, da informação e do conhecimento 1 B12 4

Capítulo 1 - A revolução dos dados, da informação e do conhecimento 1 B12 4 Sumário Capítulo 1 - A revolução dos dados, da informação e do conhecimento 1 B12 4 Capítulo 2 - Reputação corporativa e uma nova ordem empresarial 7 Inovação e virtualidade 9 Coopetição 10 Modelos plurais

Leia mais

Curso Superior de Tecnologia em Banco de Dados Disciplina: Projeto de Banco de Dados Relacional II Prof.: Fernando Hadad Zaidan

Curso Superior de Tecnologia em Banco de Dados Disciplina: Projeto de Banco de Dados Relacional II Prof.: Fernando Hadad Zaidan Faculdade INED Curso Superior de Tecnologia em Banco de Dados Disciplina: Projeto de Banco de Dados Relacional II Prof.: Fernando Hadad Zaidan 1 Unidade 4.2 2 1 BI BUSINESS INTELLIGENCE BI CARLOS BARBIERI

Leia mais

Identificar as mudanças que acontecem na forma e no uso de apoio à decisão em empreendimentos de e-business. Identificar o papel e alternativas de

Identificar as mudanças que acontecem na forma e no uso de apoio à decisão em empreendimentos de e-business. Identificar o papel e alternativas de 1 Identificar as mudanças que acontecem na forma e no uso de apoio à decisão em empreendimentos de e-business. Identificar o papel e alternativas de relatórios dos sistemas de informação gerencial. Descrever

Leia mais

Prof. Júlio Cesar Nievola Data Mining PPGIa PUCPR

Prof. Júlio Cesar Nievola Data Mining PPGIa PUCPR Uma exploração preliminar dos dados para compreender melhor suas características. Motivações-chave da exploração de dados incluem Ajudar na seleção da técnica correta para pré-processamento ou análise

Leia mais

ESTUDO ANALÍTICO DE FERRAMENTAS OPEN SOURCE

ESTUDO ANALÍTICO DE FERRAMENTAS OPEN SOURCE UNIVERSIDADE DO EXTREMO SUL CATARINENSE - UNESC CURSO DE PÓS-GRADUAÇÃO ESPECIALIZAÇÃO EM MBA GERENCIAMENTO DE BANCO DE DADOS RENATO CRAMER ESTUDO ANALÍTICO DE FERRAMENTAS OPEN SOURCE PARA AMBIENTES OLAP

Leia mais

Prof. Ronaldo R. Goldschmidt. ronaldo@de9.ime.eb.br rribeiro@univercidade.br geocities.yahoo.com.br/ronaldo_goldschmidt

Prof. Ronaldo R. Goldschmidt. ronaldo@de9.ime.eb.br rribeiro@univercidade.br geocities.yahoo.com.br/ronaldo_goldschmidt Prof. Ronaldo R. Goldschmidt ronaldo@de9.ime.eb.br rribeiro@univercidade.br geocities.yahoo.com.br/ronaldo_goldschmidt Prof. Ronaldo Ribeiro Goldschmidt REVISÃO DE BD RELACIONAIS E SQL! "" #!$ #%! $& #

Leia mais

MODELAGEM DIMENSIONAL

MODELAGEM DIMENSIONAL CENTRO UNIVERSITÁRIO DO TRIÂNGULO INSTITUTO DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE CIÊNCIA DA COMPUTAÇÃO MODELAGEM DIMENSIONAL HELOISA MENDES LOPES Uberlândia, dezembro de 2000 CENTRO UNIVERSITÁRIO

Leia mais

Fases para um Projeto de Data Warehouse. Fases para um Projeto de Data Warehouse. Fases para um Projeto de Data Warehouse

Fases para um Projeto de Data Warehouse. Fases para um Projeto de Data Warehouse. Fases para um Projeto de Data Warehouse Definição escopo do projeto (departamental, empresarial) Grau de redundância dos dados(ods, data staging) Tipo de usuário alvo (executivos, unidades) Definição do ambiente (relatórios e consultas préestruturadas

Leia mais

Data Warehouse Processos e Arquitetura

Data Warehouse Processos e Arquitetura Data Warehouse - definições: Coleção de dados orientada a assunto, integrada, não volátil e variável em relação ao tempo, que tem por objetivo dar apoio aos processos de tomada de decisão (Inmon, 1997)

Leia mais

Solução de Business Intelligence para Seguros

Solução de Business Intelligence para Seguros Solução de Business Intelligence para Seguros António Roberto Taveira de Vasconcelos Pinto de Gouveia Mestrado Integrado em Engenharia de Redes e Sistemas Informáticos Departamento de Ciências de Computadores

Leia mais

A NOVA GERAÇÃO DE SISTEMAS DE APOIO À DECISÃO

A NOVA GERAÇÃO DE SISTEMAS DE APOIO À DECISÃO A NOVA GERAÇÃO DE SISTEMAS DE APOIO À DECISÃO Carlos Alberto Ferreira Bispo Professor da Academia da Força Aérea Estrada de Aguaí S/N - Pirassununga - SP Caixa Postal 1062 - CEP 13630-000 - cafbispo@sc.usp.br

Leia mais

INTELIGÊNCIA COMPUTACIONAL

INTELIGÊNCIA COMPUTACIONAL INTELIGÊNCIA COMPUTACIONAL Engenharia de Computação Professor: Rosalvo Ferreira de Oliveira Neto Dados pessoais Rosalvo Ferreira de Oliveira Neto MSc. em ciência da computação (UFPE) rosalvo.oliveira@univasf.edu.br

Leia mais

Procesamiento Analítico con Minería de Datos

Procesamiento Analítico con Minería de Datos Procesamiento Analítico con Minería de Datos Analytical Processing com Data Mining Angelino Feliciano Morales Universidad Autónoma de Guerrero afmorales@uagro.mx René Edmundo Cuevas Valencia Universidad

Leia mais

Banco de Dados. Um momento crucial na organização dos dados é a forma com que cadastramos estes dados, a estrutura de armazenamento que criamos.

Banco de Dados. Um momento crucial na organização dos dados é a forma com que cadastramos estes dados, a estrutura de armazenamento que criamos. Banco de Dados O que é um Banco de Dados? Este assunto é muito vasto, tentaremos resumi-lo para atender as questões encontradas em concursos públicos. Já conhecemos o conceito de dado, ou seja, uma informação

Leia mais

DATA WAREHOUSE. Introdução

DATA WAREHOUSE. Introdução DATA WAREHOUSE Introdução O grande crescimento do ambiente de negócios, médias e grandes empresas armazenam também um alto volume de informações, onde que juntamente com a tecnologia da informação, a correta

Leia mais

ADMINISTRAÇÃO DOS RECURSOS DE DADOS

ADMINISTRAÇÃO DOS RECURSOS DE DADOS Capítulo 7 ADMINISTRAÇÃO DOS RECURSOS DE DADOS 7.1 2003 by Prentice Hall OBJETIVOS Por que as empresas sentem dificuldades para descobrir que tipo de informação precisam ter em seus sistemas de informação?

Leia mais

Data Warehouse Granularidade. rogerioaraujo.wordpress.com twitter: @rgildoaraujo - rgildoaraujo@gmail.com 1

Data Warehouse Granularidade. rogerioaraujo.wordpress.com twitter: @rgildoaraujo - rgildoaraujo@gmail.com 1 Data Warehouse Granularidade rogerioaraujo.wordpress.com twitter: @rgildoaraujo - rgildoaraujo@gmail.com 1 Granularidade A granularidade de dados refere-se ao nível de sumarização dos elementos e de detalhe

Leia mais

Data Warehouse Mineração de Dados

Data Warehouse Mineração de Dados Data Warehouse Mineração de Dados Profa. Roberta Macêdo M. Gouveia robertammg@gmail.com 1 18/12/2014 Data Warehouse Data Mining Big Data A mina de ouro debaixo dos bits 2 Data Warehouse: A Memória da Empresa

Leia mais

Administração de Sistemas de Informação Gerenciais UNIDADE IV: Fundamentos da Inteligência de Negócios: Gestão da Informação e de Banco de Dados Um banco de dados é um conjunto de arquivos relacionados

Leia mais

Palavras-chave: On-line Analytical Processing, Data Warehouse, Web mining.

Palavras-chave: On-line Analytical Processing, Data Warehouse, Web mining. BUSINESS INTELLIGENCE COM DADOS EXTRAÍDOS DO FACEBOOK UTILIZANDO A SUÍTE PENTAHO Francy H. Silva de Almeida 1 ; Maycon Henrique Trindade 2 ; Everton Castelão Tetila 3 UFGD/FACET Caixa Postal 364, 79.804-970

Leia mais